1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.FlowAnalysis;
using ICSharpCode.NRefactory.Utils;
using Mono.Cecil;
using Mono.Cecil.Cil;
using Mono.CSharp;
namespace ICSharpCode.Decompiler.ILAst
{
public enum ILAstOptimizationStep
{
RemoveRedundantCode,
ReduceBranchInstructionSet,
InlineVariables,
CopyPropagation,
YieldReturn,
PropertyAccessInstructions,
SplitToMovableBlocks,
TypeInference,
SimplifyShortCircuit,
SimplifyTernaryOperator,
SimplifyNullCoalescing,
JoinBasicBlocks,
SimplifyLogicNot,
SimplifyShiftOperators,
TransformDecimalCtorToConstant,
SimplifyLdObjAndStObj,
SimplifyCustomShortCircuit,
SimplifyLiftedOperators,
TransformArrayInitializers,
TransformMultidimensionalArrayInitializers,
TransformObjectInitializers,
MakeAssignmentExpression,
IntroducePostIncrement,
InlineExpressionTreeParameterDeclarations,
InlineVariables2,
FindLoops,
FindConditions,
FlattenNestedMovableBlocks,
RemoveEndFinally,
RemoveRedundantCode2,
GotoRemoval,
DuplicateReturns,
GotoRemoval2,
ReduceIfNesting,
InlineVariables3,
CachedDelegateInitialization,
IntroduceFixedStatements,
RecombineVariables,
TypeInference2,
RemoveRedundantCode3,
None
}
public partial class ILAstOptimizer
{
int nextLabelIndex = 0;
DecompilerContext context;
TypeSystem typeSystem;
ILBlock method;
public void Optimize(DecompilerContext context, ILBlock method, ILAstOptimizationStep abortBeforeStep = ILAstOptimizationStep.None)
{
this.context = context;
this.typeSystem = context.CurrentMethod.Module.TypeSystem;
this.method = method;
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode) return;
RemoveRedundantCode(method);
if (abortBeforeStep == ILAstOptimizationStep.ReduceBranchInstructionSet) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
ReduceBranchInstructionSet(block);
}
// ReduceBranchInstructionSet runs before inlining because the non-aggressive inlining heuristic
// looks at which type of instruction consumes the inlined variable.
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables) return;
// Works better after simple goto removal because of the following debug pattern: stloc X; br Next; Next:; ldloc X
ILInlining inlining1 = new ILInlining(method);
inlining1.InlineAllVariables();
if (abortBeforeStep == ILAstOptimizationStep.CopyPropagation) return;
inlining1.CopyPropagation();
if (abortBeforeStep == ILAstOptimizationStep.YieldReturn) return;
YieldReturnDecompiler.Run(context, method);
if (abortBeforeStep == ILAstOptimizationStep.PropertyAccessInstructions) return;
IntroducePropertyAccessInstructions(method);
if (abortBeforeStep == ILAstOptimizationStep.SplitToMovableBlocks) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
SplitToBasicBlocks(block);
}
if (abortBeforeStep == ILAstOptimizationStep.TypeInference) return;
// Types are needed for the ternary operator optimization
TypeAnalysis.Run(context, method);
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
bool modified;
do {
modified = false;
if (abortBeforeStep == ILAstOptimizationStep.SimplifyShortCircuit) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyShortCircuit);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyTernaryOperator) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyTernaryOperator);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyNullCoalescing) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyNullCoalescing);
if (abortBeforeStep == ILAstOptimizationStep.JoinBasicBlocks) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).JoinBasicBlocks);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyLogicNot) return;
modified |= block.RunOptimization(SimplifyLogicNot);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyShiftOperators) return;
modified |= block.RunOptimization(SimplifyShiftOperators);
if (abortBeforeStep == ILAstOptimizationStep.TransformDecimalCtorToConstant) return;
modified |= block.RunOptimization(TransformDecimalCtorToConstant);
modified |= block.RunOptimization(SimplifyLdcI4ConvI8);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyLdObjAndStObj) return;
modified |= block.RunOptimization(SimplifyLdObjAndStObj);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyCustomShortCircuit) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyCustomShortCircuit);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyLiftedOperators) return;
// modified |= block.RunOptimization(SimplifyLiftedOperators);
if (abortBeforeStep == ILAstOptimizationStep.TransformArrayInitializers) return;
modified |= block.RunOptimization(TransformArrayInitializers);
if (abortBeforeStep == ILAstOptimizationStep.TransformMultidimensionalArrayInitializers) return;
modified |= block.RunOptimization(TransformMultidimensionalArrayInitializers);
if (abortBeforeStep == ILAstOptimizationStep.TransformObjectInitializers) return;
modified |= block.RunOptimization(TransformObjectInitializers);
if (abortBeforeStep == ILAstOptimizationStep.MakeAssignmentExpression) return;
modified |= block.RunOptimization(MakeAssignmentExpression);
modified |= block.RunOptimization(MakeCompoundAssignments);
if (abortBeforeStep == ILAstOptimizationStep.IntroducePostIncrement) return;
modified |= block.RunOptimization(IntroducePostIncrement);
if (abortBeforeStep == ILAstOptimizationStep.InlineExpressionTreeParameterDeclarations) return;
if (context.Settings.ExpressionTrees) {
modified |= block.RunOptimization(InlineExpressionTreeParameterDeclarations);
}
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables2) return;
modified |= new ILInlining(method).InlineAllInBlock(block);
new ILInlining(method).CopyPropagation();
} while(modified);
}
if (abortBeforeStep == ILAstOptimizationStep.FindLoops) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
new LoopsAndConditions(context).FindLoops(block);
}
if (abortBeforeStep == ILAstOptimizationStep.FindConditions) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
new LoopsAndConditions(context).FindConditions(block);
}
if (abortBeforeStep == ILAstOptimizationStep.FlattenNestedMovableBlocks) return;
FlattenBasicBlocks(method);
if (abortBeforeStep == ILAstOptimizationStep.RemoveEndFinally) return;
RemoveEndFinally(method);
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode2) return;
RemoveRedundantCode(method);
if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval) return;
new GotoRemoval().RemoveGotos(method);
if (abortBeforeStep == ILAstOptimizationStep.DuplicateReturns) return;
DuplicateReturnStatements(method);
if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval2) return;
new GotoRemoval().RemoveGotos(method);
if (abortBeforeStep == ILAstOptimizationStep.ReduceIfNesting) return;
ReduceIfNesting(method);
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables3) return;
// The 2nd inlining pass is necessary because DuplicateReturns and the introduction of ternary operators
// open up additional inlining possibilities.
new ILInlining(method).InlineAllVariables();
if (abortBeforeStep == ILAstOptimizationStep.CachedDelegateInitialization) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count; i++) {
// TODO: Move before loops
CachedDelegateInitializationWithField(block, ref i);
CachedDelegateInitializationWithLocal(block, ref i);
}
}
if (abortBeforeStep == ILAstOptimizationStep.IntroduceFixedStatements) return;
// we need post-order traversal, not pre-order, for "fixed" to work correctly
foreach (ILBlock block in TreeTraversal.PostOrder<ILNode>(method, n => n.GetChildren()).OfType<ILBlock>()) {
for (int i = block.Body.Count - 1; i >= 0; i--) {
// TODO: Move before loops
if (i < block.Body.Count)
IntroduceFixedStatements(block.Body, i);
}
}
if (abortBeforeStep == ILAstOptimizationStep.RecombineVariables) return;
RecombineVariables(method);
if (abortBeforeStep == ILAstOptimizationStep.TypeInference2) return;
TypeAnalysis.Reset(method);
TypeAnalysis.Run(context, method);
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode3) return;
GotoRemoval.RemoveRedundantCode(method);
// ReportUnassignedILRanges(method);
}
/// <summary>
/// Removes redundatant Br, Nop, Dup, Pop
/// Ignore arguments of 'leave'
/// </summary>
/// <param name="method"></param>
void RemoveRedundantCode(ILBlock method)
{
Dictionary<ILLabel, int> labelRefCount = new Dictionary<ILLabel, int>();
foreach (ILLabel target in method.GetSelfAndChildrenRecursive<ILExpression>(e => e.IsBranch()).SelectMany(e => e.GetBranchTargets())) {
labelRefCount[target] = labelRefCount.GetOrDefault(target) + 1;
}
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
List<ILNode> body = block.Body;
List<ILNode> newBody = new List<ILNode>(body.Count);
for (int i = 0; i < body.Count; i++) {
ILLabel target;
ILExpression popExpr;
if (body[i].Match(ILCode.Br, out target) && i+1 < body.Count && body[i+1] == target) {
// Ignore the branch
if (labelRefCount[target] == 1)
i++; // Ignore the label as well
} else if (body[i].Match(ILCode.Nop)){
// Ignore nop
} else if (body[i].Match(ILCode.Pop, out popExpr)) {
ILVariable v;
if (!popExpr.Match(ILCode.Ldloc, out v))
throw new Exception("Pop should have just ldloc at this stage");
// Best effort to move the ILRange to previous statement
ILVariable prevVar;
ILExpression prevExpr;
if (i - 1 >= 0 && body[i - 1].Match(ILCode.Stloc, out prevVar, out prevExpr) && prevVar == v)
prevExpr.ILRanges.AddRange(((ILExpression)body[i]).ILRanges);
// Ignore pop
} else {
newBody.Add(body[i]);
}
}
block.Body = newBody;
}
// Ignore arguments of 'leave'
foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>(e => e.Code == ILCode.Leave)) {
if (expr.Arguments.Any(arg => !arg.Match(ILCode.Ldloc)))
throw new Exception("Leave should have just ldloc at this stage");
expr.Arguments.Clear();
}
// 'dup' removal
foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
for (int i = 0; i < expr.Arguments.Count; i++) {
ILExpression child;
if (expr.Arguments[i].Match(ILCode.Dup, out child)) {
child.ILRanges.AddRange(expr.Arguments[i].ILRanges);
expr.Arguments[i] = child;
}
}
}
}
/// <summary>
/// Reduces the branch codes to just br and brtrue.
/// Moves ILRanges to the branch argument
/// </summary>
void ReduceBranchInstructionSet(ILBlock block)
{
for (int i = 0; i < block.Body.Count; i++) {
ILExpression expr = block.Body[i] as ILExpression;
if (expr != null && expr.Prefixes == null) {
ILCode op;
switch(expr.Code) {
case ILCode.Switch:
case ILCode.Brtrue:
expr.Arguments.Single().ILRanges.AddRange(expr.ILRanges);
expr.ILRanges.Clear();
continue;
case ILCode.__Brfalse: op = ILCode.LogicNot; break;
case ILCode.__Beq: op = ILCode.Ceq; break;
case ILCode.__Bne_Un: op = ILCode.Cne; break;
case ILCode.__Bgt: op = ILCode.Cgt; break;
case ILCode.__Bgt_Un: op = ILCode.Cgt_Un; break;
case ILCode.__Ble: op = ILCode.Cle; break;
case ILCode.__Ble_Un: op = ILCode.Cle_Un; break;
case ILCode.__Blt: op = ILCode.Clt; break;
case ILCode.__Blt_Un: op = ILCode.Clt_Un; break;
case ILCode.__Bge: op = ILCode.Cge; break;
case ILCode.__Bge_Un: op = ILCode.Cge_Un; break;
default:
continue;
}
var newExpr = new ILExpression(op, null, expr.Arguments);
block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, newExpr);
newExpr.ILRanges = expr.ILRanges;
}
}
}
/// <summary>
/// Converts call and callvirt instructions that read/write properties into CallGetter/CallSetter instructions.
///
/// CallGetter/CallSetter is used to allow the ILAst to represent "while ((SomeProperty = value) != null)".
///
/// Also simplifies 'newobj(SomeDelegate, target, ldvirtftn(F, target))' to 'newobj(SomeDelegate, target, ldvirtftn(F))'
/// </summary>
void IntroducePropertyAccessInstructions(ILNode node)
{
ILExpression parentExpr = node as ILExpression;
if (parentExpr != null) {
for (int i = 0; i < parentExpr.Arguments.Count; i++) {
ILExpression expr = parentExpr.Arguments[i];
IntroducePropertyAccessInstructions(expr);
IntroducePropertyAccessInstructions(expr, parentExpr, i);
}
} else {
foreach (ILNode child in node.GetChildren()) {
IntroducePropertyAccessInstructions(child);
ILExpression expr = child as ILExpression;
if (expr != null) {
IntroducePropertyAccessInstructions(expr, null, -1);
}
}
}
}
void IntroducePropertyAccessInstructions(ILExpression expr, ILExpression parentExpr, int posInParent)
{
if (expr.Code == ILCode.Call || expr.Code == ILCode.Callvirt) {
MethodReference cecilMethod = (MethodReference)expr.Operand;
if (cecilMethod.DeclaringType is ArrayType) {
switch (cecilMethod.Name) {
case "Get":
expr.Code = ILCode.CallGetter;
break;
case "Set":
expr.Code = ILCode.CallSetter;
break;
case "Address":
ByReferenceType brt = cecilMethod.ReturnType as ByReferenceType;
if (brt != null) {
MethodReference getMethod = new MethodReference("Get", brt.ElementType, cecilMethod.DeclaringType);
foreach (var p in cecilMethod.Parameters)
getMethod.Parameters.Add(p);
getMethod.HasThis = cecilMethod.HasThis;
expr.Operand = getMethod;
}
expr.Code = ILCode.CallGetter;
if (parentExpr != null) {
parentExpr.Arguments[posInParent] = new ILExpression(ILCode.AddressOf, null, expr);
}
break;
}
} else {
MethodDefinition cecilMethodDef = cecilMethod.Resolve();
if (cecilMethodDef != null) {
if (cecilMethodDef.IsGetter)
expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallGetter : ILCode.CallvirtGetter;
else if (cecilMethodDef.IsSetter)
expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallSetter : ILCode.CallvirtSetter;
}
}
} else if (expr.Code == ILCode.Newobj && expr.Arguments.Count == 2) {
// Might be 'newobj(SomeDelegate, target, ldvirtftn(F, target))'.
ILVariable target;
if (expr.Arguments[0].Match(ILCode.Ldloc, out target)
&& expr.Arguments[1].Code == ILCode.Ldvirtftn
&& expr.Arguments[1].Arguments.Count == 1
&& expr.Arguments[1].Arguments[0].MatchLdloc(target))
{
// Remove the 'target' argument from the ldvirtftn instruction.
// It's not needed in the translation to C#, and needs to be eliminated so that the target expression
// can be inlined.
expr.Arguments[1].Arguments.Clear();
}
}
}
/// <summary>
/// Group input into a set of blocks that can be later arbitraliby schufled.
/// The method adds necessary branches to make control flow between blocks
/// explicit and thus order independent.
/// </summary>
void SplitToBasicBlocks(ILBlock block)
{
List<ILNode> basicBlocks = new List<ILNode>();
ILLabel entryLabel = block.Body.FirstOrDefault() as ILLabel ?? new ILLabel() { Name = "Block_" + (nextLabelIndex++) };
ILBasicBlock basicBlock = new ILBasicBlock();
basicBlocks.Add(basicBlock);
basicBlock.Body.Add(entryLabel);
block.EntryGoto = new ILExpression(ILCode.Br, entryLabel);
if (block.Body.Count > 0) {
if (block.Body[0] != entryLabel)
basicBlock.Body.Add(block.Body[0]);
for (int i = 1; i < block.Body.Count; i++) {
ILNode lastNode = block.Body[i - 1];
ILNode currNode = block.Body[i];
// Start a new basic block if necessary
if (currNode is ILLabel ||
currNode is ILTryCatchBlock || // Counts as label
lastNode.IsConditionalControlFlow() ||
lastNode.IsUnconditionalControlFlow())
{
// Try to reuse the label
ILLabel label = currNode as ILLabel ?? new ILLabel() { Name = "Block_" + (nextLabelIndex++).ToString() };
// Terminate the last block
if (!lastNode.IsUnconditionalControlFlow()) {
// Explicit branch from one block to other
basicBlock.Body.Add(new ILExpression(ILCode.Br, label));
}
// Start the new block
basicBlock = new ILBasicBlock();
basicBlocks.Add(basicBlock);
basicBlock.Body.Add(label);
// Add the node to the basic block
if (currNode != label)
basicBlock.Body.Add(currNode);
} else {
basicBlock.Body.Add(currNode);
}
}
}
block.Body = basicBlocks;
return;
}
void DuplicateReturnStatements(ILBlock method)
{
Dictionary<ILLabel, ILNode> nextSibling = new Dictionary<ILLabel, ILNode>();
// Build navigation data
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count - 1; i++) {
ILLabel curr = block.Body[i] as ILLabel;
if (curr != null) {
nextSibling[curr] = block.Body[i + 1];
}
}
}
// Duplicate returns
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count; i++) {
ILLabel targetLabel;
if (block.Body[i].Match(ILCode.Br, out targetLabel) || block.Body[i].Match(ILCode.Leave, out targetLabel)) {
// Skip extra labels
while(nextSibling.ContainsKey(targetLabel) && nextSibling[targetLabel] is ILLabel) {
targetLabel = (ILLabel)nextSibling[targetLabel];
}
// Inline return statement
ILNode target;
List<ILExpression> retArgs;
if (nextSibling.TryGetValue(targetLabel, out target)) {
if (target.Match(ILCode.Ret, out retArgs)) {
ILVariable locVar;
object constValue;
if (retArgs.Count == 0) {
block.Body[i] = new ILExpression(ILCode.Ret, null);
} else if (retArgs.Single().Match(ILCode.Ldloc, out locVar)) {
block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldloc, locVar));
} else if (retArgs.Single().Match(ILCode.Ldc_I4, out constValue)) {
block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldc_I4, constValue));
}
}
} else {
if (method.Body.Count > 0 && method.Body.Last() == targetLabel) {
// It exits the main method - so it is same as return;
block.Body[i] = new ILExpression(ILCode.Ret, null);
}
}
}
}
}
}
/// <summary>
/// Flattens all nested basic blocks, except the the top level 'node' argument
/// </summary>
void FlattenBasicBlocks(ILNode node)
{
ILBlock block = node as ILBlock;
if (block != null) {
List<ILNode> flatBody = new List<ILNode>();
foreach (ILNode child in block.GetChildren()) {
FlattenBasicBlocks(child);
ILBasicBlock childAsBB = child as ILBasicBlock;
if (childAsBB != null) {
if (!(childAsBB.Body.FirstOrDefault() is ILLabel))
throw new Exception("Basic block has to start with a label. \n" + childAsBB.ToString());
if (childAsBB.Body.LastOrDefault() is ILExpression && !childAsBB.Body.LastOrDefault().IsUnconditionalControlFlow())
throw new Exception("Basci block has to end with unconditional control flow. \n" + childAsBB.ToString());
flatBody.AddRange(childAsBB.GetChildren());
} else {
flatBody.Add(child);
}
}
block.EntryGoto = null;
block.Body = flatBody;
} else if (node is ILExpression) {
// Optimization - no need to check expressions
} else if (node != null) {
// Recursively find all ILBlocks
foreach(ILNode child in node.GetChildren()) {
FlattenBasicBlocks(child);
}
}
}
/// <summary>
/// Replace endfinally with jump to the end of the finally block
/// </summary>
void RemoveEndFinally(ILBlock method)
{
// Go thought the list in reverse so that we do the nested blocks first
foreach(var tryCatch in method.GetSelfAndChildrenRecursive<ILTryCatchBlock>(tc => tc.FinallyBlock != null).Reverse()) {
ILLabel label = new ILLabel() { Name = "EndFinally_" + nextLabelIndex++ };
tryCatch.FinallyBlock.Body.Add(label);
foreach(var block in tryCatch.FinallyBlock.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count; i++) {
if (block.Body[i].Match(ILCode.Endfinally)) {
block.Body[i] = new ILExpression(ILCode.Br, label).WithILRanges(((ILExpression)block.Body[i]).ILRanges);
}
}
}
}
}
/// <summary>
/// Reduce the nesting of conditions.
/// It should be done on flat data that already had most gotos removed
/// </summary>
void ReduceIfNesting(ILNode node)
{
ILBlock block = node as ILBlock;
if (block != null) {
for (int i = 0; i < block.Body.Count; i++) {
ILCondition cond = block.Body[i] as ILCondition;
if (cond != null) {
bool trueExits = cond.TrueBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
bool falseExits = cond.FalseBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
if (trueExits) {
// Move the false block after the condition
block.Body.InsertRange(i + 1, cond.FalseBlock.GetChildren());
cond.FalseBlock = new ILBlock();
} else if (falseExits) {
// Move the true block after the condition
block.Body.InsertRange(i + 1, cond.TrueBlock.GetChildren());
cond.TrueBlock = new ILBlock();
}
// Eliminate empty true block
if (!cond.TrueBlock.GetChildren().Any() && cond.FalseBlock.GetChildren().Any()) {
// Swap bodies
ILBlock tmp = cond.TrueBlock;
cond.TrueBlock = cond.FalseBlock;
cond.FalseBlock = tmp;
cond.Condition = new ILExpression(ILCode.LogicNot, null, cond.Condition);
}
}
}
}
// We are changing the number of blocks so we use plain old recursion to get all blocks
foreach(ILNode child in node.GetChildren()) {
if (child != null && !(child is ILExpression))
ReduceIfNesting(child);
}
}
void RecombineVariables(ILBlock method)
{
// Recombine variables that were split when the ILAst was created
// This ensures that a single IL variable is a single C# variable (gets assigned only one name)
// The DeclareVariables transformation might then split up the C# variable again if it is used indendently in two separate scopes.
Dictionary<VariableDefinition, ILVariable> dict = new Dictionary<VariableDefinition, ILVariable>();
ReplaceVariables(
method,
delegate(ILVariable v) {
if (v.OriginalVariable == null)
return v;
ILVariable combinedVariable;
if (!dict.TryGetValue(v.OriginalVariable, out combinedVariable)) {
dict.Add(v.OriginalVariable, v);
combinedVariable = v;
}
return combinedVariable;
});
}
public static void ReplaceVariables(ILNode node, Func<ILVariable, ILVariable> variableMapping)
{
ILExpression expr = node as ILExpression;
if (expr != null) {
ILVariable v = expr.Operand as ILVariable;
if (v != null)
expr.Operand = variableMapping(v);
foreach (ILExpression child in expr.Arguments)
ReplaceVariables(child, variableMapping);
} else {
var catchBlock = node as ILTryCatchBlock.CatchBlock;
if (catchBlock != null && catchBlock.ExceptionVariable != null) {
catchBlock.ExceptionVariable = variableMapping(catchBlock.ExceptionVariable);
}
foreach (ILNode child in node.GetChildren())
ReplaceVariables(child, variableMapping);
}
}
void ReportUnassignedILRanges(ILBlock method)
{
var unassigned = ILRange.Invert(method.GetSelfAndChildrenRecursive<ILExpression>().SelectMany(e => e.ILRanges), context.CurrentMethod.Body.CodeSize).ToList();
if (unassigned.Count > 0)
Debug.WriteLine(string.Format("Unassigned ILRanges for {0}.{1}: {2}", this.context.CurrentMethod.DeclaringType.Name, this.context.CurrentMethod.Name, string.Join(", ", unassigned.Select(r => r.ToString()))));
}
}
public static class ILAstOptimizerExtensionMethods
{
/// <summary>
/// Perform one pass of a given optimization on this block.
/// This block must consist of only basicblocks.
/// </summary>
public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILBasicBlock, int, bool> optimization)
{
bool modified = false;
List<ILNode> body = block.Body;
for (int i = body.Count - 1; i >= 0; i--) {
if (i < body.Count && optimization(body, (ILBasicBlock)body[i], i)) {
modified = true;
}
}
return modified;
}
public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILExpression, int, bool> optimization)
{
bool modified = false;
foreach (ILBasicBlock bb in block.Body) {
for (int i = bb.Body.Count - 1; i >= 0; i--) {
ILExpression expr = bb.Body.ElementAtOrDefault(i) as ILExpression;
if (expr != null && optimization(bb.Body, expr, i)) {
modified = true;
}
}
}
return modified;
}
public static bool IsConditionalControlFlow(this ILNode node)
{
ILExpression expr = node as ILExpression;
return expr != null && expr.Code.IsConditionalControlFlow();
}
public static bool IsUnconditionalControlFlow(this ILNode node)
{
ILExpression expr = node as ILExpression;
return expr != null && expr.Code.IsUnconditionalControlFlow();
}
/// <summary>
/// The expression has no effect on the program and can be removed
/// if its return value is not needed.
/// </summary>
public static bool HasNoSideEffects(this ILExpression expr)
{
// Remember that if expression can throw an exception, it is a side effect
switch(expr.Code) {
case ILCode.Ldloc:
case ILCode.Ldloca:
case ILCode.Ldstr:
case ILCode.Ldnull:
case ILCode.Ldc_I4:
case ILCode.Ldc_I8:
case ILCode.Ldc_R4:
case ILCode.Ldc_R8:
case ILCode.Ldc_Decimal:
return true;
default:
return false;
}
}
public static bool IsStoreToArray(this ILCode code)
{
switch (code) {
case ILCode.Stelem_Any:
case ILCode.Stelem_I:
case ILCode.Stelem_I1:
case ILCode.Stelem_I2:
case ILCode.Stelem_I4:
case ILCode.Stelem_I8:
case ILCode.Stelem_R4:
case ILCode.Stelem_R8:
case ILCode.Stelem_Ref:
return true;
default:
return false;
}
}
public static bool IsLoadFromArray(this ILCode code)
{
switch (code) {
case ILCode.Ldelem_Any:
case ILCode.Ldelem_I:
case ILCode.Ldelem_I1:
case ILCode.Ldelem_I2:
case ILCode.Ldelem_I4:
case ILCode.Ldelem_I8:
case ILCode.Ldelem_U1:
case ILCode.Ldelem_U2:
case ILCode.Ldelem_U4:
case ILCode.Ldelem_R4:
case ILCode.Ldelem_R8:
case ILCode.Ldelem_Ref:
return true;
default:
return false;
}
}
/// <summary>
/// Can the expression be used as a statement in C#?
/// </summary>
public static bool CanBeExpressionStatement(this ILExpression expr)
{
switch(expr.Code) {
case ILCode.Call:
case ILCode.Callvirt:
// property getters can't be expression statements, but all other method calls can be
MethodReference mr = (MethodReference)expr.Operand;
return !mr.Name.StartsWith("get_", StringComparison.Ordinal);
case ILCode.CallSetter:
case ILCode.CallvirtSetter:
case ILCode.Newobj:
case ILCode.Newarr:
case ILCode.Stloc:
case ILCode.Stobj:
case ILCode.Stsfld:
case ILCode.Stfld:
case ILCode.Stind_Ref:
case ILCode.Stelem_Any:
case ILCode.Stelem_I:
case ILCode.Stelem_I1:
case ILCode.Stelem_I2:
case ILCode.Stelem_I4:
case ILCode.Stelem_I8:
case ILCode.Stelem_R4:
case ILCode.Stelem_R8:
case ILCode.Stelem_Ref:
return true;
default:
return false;
}
}
public static ILExpression WithILRanges(this ILExpression expr, IEnumerable<ILRange> ilranges)
{
expr.ILRanges.AddRange(ilranges);
return expr;
}
public static void RemoveTail(this List<ILNode> body, params ILCode[] codes)
{
for (int i = 0; i < codes.Length; i++) {
if (((ILExpression)body[body.Count - codes.Length + i]).Code != codes[i])
throw new Exception("Tailing code does not match expected.");
}
body.RemoveRange(body.Count - codes.Length, codes.Length);
}
public static V GetOrDefault<K,V>(this Dictionary<K, V> dict, K key)
{
V ret;
dict.TryGetValue(key, out ret);
return ret;
}
public static void RemoveOrThrow<T>(this ICollection<T> collection, T item)
{
if (!collection.Remove(item))
throw new Exception("The item was not found in the collection");
}
public static void RemoveOrThrow<K,V>(this Dictionary<K,V> collection, K key)
{
if (!collection.Remove(key))
throw new Exception("The key was not found in the dictionary");
}
}
}
|