File: YieldReturnDecompiler.cs

package info (click to toggle)
monodevelop 3.0.3.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 153,256 kB
  • sloc: cs: 1,020,242; xml: 751,053; makefile: 9,596; sh: 1,529; objc: 302; sql: 129; ansic: 96
file content (957 lines) | stat: -rwxr-xr-x 35,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Mono.Cecil;

namespace ICSharpCode.Decompiler.ILAst
{
	public class YieldReturnDecompiler
	{
		// For a description on the code generated by the C# compiler for yield return:
		// http://csharpindepth.com/Articles/Chapter6/IteratorBlockImplementation.aspx
		
		// The idea here is:
		// - Figure out whether the current method is instanciating an enumerator
		// - Figure out which of the fields is the state field
		// - Construct an exception table based on states. This allows us to determine, for each state, what the parent try block is.
		
		/// <summary>
		/// This exception is thrown when we find something else than we expect from the C# compiler.
		/// This aborts the analysis and makes the whole transform fail.
		/// </summary>
		class YieldAnalysisFailedException : Exception {}
		
		DecompilerContext context;
		TypeDefinition enumeratorType;
		MethodDefinition enumeratorCtor;
		MethodDefinition disposeMethod;
		FieldDefinition stateField;
		FieldDefinition currentField;
		Dictionary<FieldDefinition, ILVariable> fieldToParameterMap = new Dictionary<FieldDefinition, ILVariable>();
		List<ILNode> newBody;
		
		#region Run() method
		public static void Run(DecompilerContext context, ILBlock method)
		{
			if (!context.Settings.YieldReturn)
				return; // abort if enumerator decompilation is disabled
			var yrd = new YieldReturnDecompiler();
			yrd.context = context;
			if (!yrd.MatchEnumeratorCreationPattern(method))
				return;
			yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
			#if DEBUG
			if (Debugger.IsAttached) {
				yrd.Run();
			} else {
				#endif
				try {
					yrd.Run();
				} catch (YieldAnalysisFailedException) {
					return;
				}
				#if DEBUG
			}
			#endif
			method.Body.Clear();
			method.EntryGoto = null;
			method.Body.AddRange(yrd.newBody);
			
			// Repeat the inlining/copy propagation optimization because the conversion of field access
			// to local variables can open up additional inlining possibilities.
			ILInlining inlining = new ILInlining(method);
			inlining.InlineAllVariables();
			inlining.CopyPropagation();
		}
		
		void Run()
		{
			AnalyzeCtor();
			AnalyzeCurrentProperty();
			ResolveIEnumerableIEnumeratorFieldMapping();
			ConstructExceptionTable();
			AnalyzeMoveNext();
			TranslateFieldsToLocalAccess();
		}
		#endregion
		
		#region Match the enumerator creation pattern
		bool MatchEnumeratorCreationPattern(ILBlock method)
		{
			if (method.Body.Count == 0)
				return false;
			ILExpression newObj;
			if (method.Body.Count == 1) {
				// ret(newobj(...))
				if (method.Body[0].Match(ILCode.Ret, out newObj))
					return MatchEnumeratorCreationNewObj(newObj, out enumeratorCtor);
				else
					return false;
			}
			// stloc(var_1, newobj(..)
			ILVariable var1;
			if (!method.Body[0].Match(ILCode.Stloc, out var1, out newObj))
				return false;
			if (!MatchEnumeratorCreationNewObj(newObj, out enumeratorCtor))
				return false;
			
			int i;
			for (i = 1; i < method.Body.Count; i++) {
				// stfld(..., ldloc(var_1), ldloc(parameter))
				FieldReference storedField;
				ILExpression ldloc, loadParameter;
				if (!method.Body[i].Match(ILCode.Stfld, out storedField, out ldloc, out loadParameter))
					break;
				ILVariable loadedVar, loadedArg;
				if (!ldloc.Match(ILCode.Ldloc, out loadedVar) || !loadParameter.Match(ILCode.Ldloc, out loadedArg))
					return false;
				storedField = GetFieldDefinition(storedField);
				if (loadedVar != var1 || storedField == null || !loadedArg.IsParameter)
					return false;
				fieldToParameterMap[(FieldDefinition)storedField] = loadedArg;
			}
			ILVariable var2;
			ILExpression ldlocForStloc2;
			if (i < method.Body.Count && method.Body[i].Match(ILCode.Stloc, out var2, out ldlocForStloc2)) {
				// stloc(var_2, ldloc(var_1))
				if (ldlocForStloc2.Code != ILCode.Ldloc || ldlocForStloc2.Operand != var1)
					return false;
				i++;
			} else {
				// the compiler might skip the above instruction in release builds; in that case, it directly returns stloc.Operand
				var2 = var1;
			}
			ILExpression retArg;
			if (i < method.Body.Count && method.Body[i].Match(ILCode.Ret, out retArg)) {
				// ret(ldloc(var_2))
				if (retArg.Code == ILCode.Ldloc && retArg.Operand == var2) {
					return true;
				}
			}
			return false;
		}
		
		static FieldDefinition GetFieldDefinition(FieldReference field)
		{
			return CecilExtensions.ResolveWithinSameModule(field);
		}
		
		static MethodDefinition GetMethodDefinition(MethodReference method)
		{
			return CecilExtensions.ResolveWithinSameModule(method);
		}
		
		bool MatchEnumeratorCreationNewObj(ILExpression expr, out MethodDefinition ctor)
		{
			// newobj(CurrentType/...::.ctor, ldc.i4(-2))
			ctor = null;
			if (expr.Code != ILCode.Newobj || expr.Arguments.Count != 1)
				return false;
			if (expr.Arguments[0].Code != ILCode.Ldc_I4)
				return false;
			int initialState = (int)expr.Arguments[0].Operand;
			if (!(initialState == -2 || initialState == 0))
				return false;
			ctor = GetMethodDefinition(expr.Operand as MethodReference);
			if (ctor == null || ctor.DeclaringType.DeclaringType != context.CurrentType)
				return false;
			return IsCompilerGeneratorEnumerator(ctor.DeclaringType);
		}
		
		public static bool IsCompilerGeneratorEnumerator(TypeDefinition type)
		{
			if (!(type.DeclaringType != null && type.IsCompilerGenerated()))
				return false;
			foreach (TypeReference i in type.Interfaces) {
				if (i.Namespace == "System.Collections" && i.Name == "IEnumerator")
					return true;
			}
			return false;
		}
		#endregion
		
		#region Figure out what the 'state' field is (analysis of .ctor())
		/// <summary>
		/// Looks at the enumerator's ctor and figures out which of the fields holds the state.
		/// </summary>
		void AnalyzeCtor()
		{
			ILBlock method = CreateILAst(enumeratorCtor);
			
			foreach (ILNode node in method.Body) {
				FieldReference field;
				ILExpression instExpr;
				ILExpression stExpr;
				ILVariable arg;
				if (node.Match(ILCode.Stfld, out field, out instExpr, out stExpr) &&
				    instExpr.MatchThis() &&
				    stExpr.Match(ILCode.Ldloc, out arg) &&
				    arg.IsParameter && arg.OriginalParameter.Index == 0)
				{
					stateField = GetFieldDefinition(field);
				}
			}
			if (stateField == null)
				throw new YieldAnalysisFailedException();
		}
		
		/// <summary>
		/// Creates ILAst for the specified method, optimized up to before the 'YieldReturn' step.
		/// </summary>
		ILBlock CreateILAst(MethodDefinition method)
		{
			if (method == null || !method.HasBody)
				throw new YieldAnalysisFailedException();
			
			ILBlock ilMethod = new ILBlock();
			ILAstBuilder astBuilder = new ILAstBuilder();
			ilMethod.Body = astBuilder.Build(method, true, context);
			ILAstOptimizer optimizer = new ILAstOptimizer();
			optimizer.Optimize(context, ilMethod, ILAstOptimizationStep.YieldReturn);
			return ilMethod;
		}
		#endregion
		
		#region Figure out what the 'current' field is (analysis of get_Current())
		/// <summary>
		/// Looks at the enumerator's get_Current method and figures out which of the fields holds the current value.
		/// </summary>
		void AnalyzeCurrentProperty()
		{
			MethodDefinition getCurrentMethod = enumeratorType.Methods.FirstOrDefault(
				m => m.Name.StartsWith("System.Collections.Generic.IEnumerator", StringComparison.Ordinal)
				&& m.Name.EndsWith(".get_Current", StringComparison.Ordinal));
			ILBlock method = CreateILAst(getCurrentMethod);
			if (method.Body.Count == 1) {
				// release builds directly return the current field
				ILExpression retExpr;
				FieldReference field;
				ILExpression ldFromObj;
				if (method.Body[0].Match(ILCode.Ret, out retExpr) &&
				    retExpr.Match(ILCode.Ldfld, out field, out ldFromObj) &&
				    ldFromObj.MatchThis())
				{
					currentField = GetFieldDefinition(field);
				}
			} else if (method.Body.Count == 2) {
				ILVariable v, v2;
				ILExpression stExpr;
				FieldReference field;
				ILExpression ldFromObj;
				ILExpression retExpr;
				if (method.Body[0].Match(ILCode.Stloc, out v, out stExpr) &&
				    stExpr.Match(ILCode.Ldfld, out field, out ldFromObj) &&
				    ldFromObj.MatchThis() &&
				    method.Body[1].Match(ILCode.Ret, out retExpr) &&
				    retExpr.Match(ILCode.Ldloc, out v2) &&
				    v == v2)
				{
					currentField = GetFieldDefinition(field);
				}
			}
			if (currentField == null)
				throw new YieldAnalysisFailedException();
		}
		#endregion
		
		#region Figure out the mapping of IEnumerable fields to IEnumerator fields  (analysis of GetEnumerator())
		void ResolveIEnumerableIEnumeratorFieldMapping()
		{
			MethodDefinition getEnumeratorMethod = enumeratorType.Methods.FirstOrDefault(
				m => m.Name.StartsWith("System.Collections.Generic.IEnumerable", StringComparison.Ordinal)
				&& m.Name.EndsWith(".GetEnumerator", StringComparison.Ordinal));
			if (getEnumeratorMethod == null)
				return; // no mappings (maybe it's just an IEnumerator implementation?)
			
			ILBlock method = CreateILAst(getEnumeratorMethod);
			foreach (ILNode node in method.Body) {
				FieldReference stField;
				ILExpression stToObj;
				ILExpression stExpr;
				FieldReference ldField;
				ILExpression ldFromObj;
				if (node.Match(ILCode.Stfld, out stField, out stToObj, out stExpr) &&
				    stExpr.Match(ILCode.Ldfld, out ldField, out ldFromObj) &&
				    ldFromObj.MatchThis())
				{
					FieldDefinition storedField = GetFieldDefinition(stField);
					FieldDefinition loadedField = GetFieldDefinition(ldField);
					if (storedField != null && loadedField != null) {
						ILVariable mappedParameter;
						if (fieldToParameterMap.TryGetValue(loadedField, out mappedParameter))
							fieldToParameterMap[storedField] = mappedParameter;
					}
				}
			}
		}
		#endregion
		
		#region Construction of the exception table (analysis of Dispose())
		// We construct the exception table by analyzing the enumerator's Dispose() method.
		
		// Assumption: there are no loops/backward jumps
		// We 'run' the code, with "state" being a symbolic variable
		// so it can form expressions like "state + x" (when there's a sub instruction)
		// For each instruction, we maintain a list of value ranges for state for which the instruction is reachable.
		// This is (int.MinValue, int.MaxValue) for the first instruction.
		// These ranges are propagated depending on the conditional jumps performed by the code.
		
		Dictionary<MethodDefinition, Interval> finallyMethodToStateInterval;
		
		void ConstructExceptionTable()
		{
			disposeMethod = enumeratorType.Methods.FirstOrDefault(m => m.Name == "System.IDisposable.Dispose");
			ILBlock ilMethod = CreateILAst(disposeMethod);
			
			finallyMethodToStateInterval = new Dictionary<MethodDefinition, Interval>();
			
			InitStateRanges(ilMethod.Body[0]);
			AssignStateRanges(ilMethod.Body, ilMethod.Body.Count, forDispose: true);
			
			// Now look at the finally blocks:
			foreach (var tryFinally in ilMethod.GetSelfAndChildrenRecursive<ILTryCatchBlock>()) {
				Interval interval = ranges[tryFinally.TryBlock.Body[0]].ToEnclosingInterval();
				var finallyBody = tryFinally.FinallyBlock.Body;
				if (finallyBody.Count != 2)
					throw new YieldAnalysisFailedException();
				ILExpression call = finallyBody[0] as ILExpression;
				if (call == null || call.Code != ILCode.Call || call.Arguments.Count != 1)
					throw new YieldAnalysisFailedException();
				if (!call.Arguments[0].MatchThis())
					throw new YieldAnalysisFailedException();
				if (!finallyBody[1].Match(ILCode.Endfinally))
					throw new YieldAnalysisFailedException();
				
				MethodDefinition mdef = GetMethodDefinition(call.Operand as MethodReference);
				if (mdef == null || finallyMethodToStateInterval.ContainsKey(mdef))
					throw new YieldAnalysisFailedException();
				finallyMethodToStateInterval.Add(mdef, interval);
			}
			ranges = null;
		}
		#endregion
		
		#region Assign StateRanges / Symbolic Execution (used for analysis of Dispose() and MoveNext())
		#region struct Interval / class StateRange
		struct Interval
		{
			public readonly int Start, End;
			
			public Interval(int start, int end)
			{
				Debug.Assert(start <= end || (start == 0 && end == -1));
				this.Start = start;
				this.End = end;
			}
			
			public override string ToString()
			{
				return string.Format("({0} to {1})", Start, End);
			}
		}
		
		class StateRange
		{
			readonly List<Interval> data = new List<Interval>();
			
			public StateRange()
			{
			}
			
			public StateRange(int start, int end)
			{
				this.data.Add(new Interval(start, end));
			}
			
			public bool Contains(int val)
			{
				foreach (Interval v in data) {
					if (v.Start <= val && val <= v.End)
						return true;
				}
				return false;
			}
			
			public void UnionWith(StateRange other)
			{
				data.AddRange(other.data);
			}
			
			/// <summary>
			/// Unions this state range with (other intersect (minVal to maxVal))
			/// </summary>
			public void UnionWith(StateRange other, int minVal, int maxVal)
			{
				foreach (Interval v in other.data) {
					int start = Math.Max(v.Start, minVal);
					int end = Math.Min(v.End, maxVal);
					if (start <= end)
						data.Add(new Interval(start, end));
				}
			}
			
			/// <summary>
			/// Merges overlapping interval ranges.
			/// </summary>
			public void Simplify()
			{
				if (data.Count < 2)
					return;
				data.Sort((a, b) => a.Start.CompareTo(b.Start));
				Interval prev = data[0];
				int prevIndex = 0;
				for (int i = 1; i < data.Count; i++) {
					Interval next = data[i];
					Debug.Assert(prev.Start <= next.Start);
					if (next.Start <= prev.End + 1) { // intervals overlapping or touching
						prev = new Interval(prev.Start, Math.Max(prev.End, next.End));
						data[prevIndex] = prev;
						data[i] = new Interval(0, -1); // mark as deleted
					} else {
						prev = next;
						prevIndex = i;
					}
				}
				data.RemoveAll(i => i.Start > i.End); // remove all entries that were marked as deleted
			}
			
			public override string ToString()
			{
				return string.Join(",", data);
			}
			
			public Interval ToEnclosingInterval()
			{
				if (data.Count == 0)
					throw new YieldAnalysisFailedException();
				return new Interval(data[0].Start, data[data.Count - 1].End);
			}
		}
		#endregion
		
		DefaultDictionary<ILNode, StateRange> ranges;
		ILVariable rangeAnalysisStateVariable;
		
		/// <summary>
		/// Initializes the state range logic:
		/// Clears 'ranges' and sets 'ranges[entryPoint]' to the full range (int.MinValue to int.MaxValue)
		/// </summary>
		void InitStateRanges(ILNode entryPoint)
		{
			ranges = new DefaultDictionary<ILNode, StateRange>(n => new StateRange());
			ranges[entryPoint] = new StateRange(int.MinValue, int.MaxValue);
			rangeAnalysisStateVariable = null;
		}
		
		int AssignStateRanges(List<ILNode> body, int bodyLength, bool forDispose)
		{
			if (bodyLength == 0)
				return 0;
			for (int i = 0; i < bodyLength; i++) {
				StateRange nodeRange = ranges[body[i]];
				nodeRange.Simplify();
				
				ILLabel label = body[i] as ILLabel;
				if (label != null) {
					ranges[body[i + 1]].UnionWith(nodeRange);
					continue;
				}
				
				ILTryCatchBlock tryFinally = body[i] as ILTryCatchBlock;
				if (tryFinally != null) {
					if (!forDispose || tryFinally.CatchBlocks.Count != 0 || tryFinally.FaultBlock != null || tryFinally.FinallyBlock == null)
						throw new YieldAnalysisFailedException();
					ranges[tryFinally.TryBlock].UnionWith(nodeRange);
					if (tryFinally.TryBlock.Body.Count != 0) {
						ranges[tryFinally.TryBlock.Body[0]].UnionWith(nodeRange);
						AssignStateRanges(tryFinally.TryBlock.Body, tryFinally.TryBlock.Body.Count, forDispose);
					}
					continue;
				}
				
				ILExpression expr = body[i] as ILExpression;
				if (expr == null)
					throw new YieldAnalysisFailedException();
				switch (expr.Code) {
					case ILCode.Switch:
						{
							SymbolicValue val = Eval(expr.Arguments[0]);
							if (val.Type != SymbolicValueType.State)
								throw new YieldAnalysisFailedException();
							ILLabel[] targetLabels = (ILLabel[])expr.Operand;
							for (int j = 0; j < targetLabels.Length; j++) {
								int state = j - val.Constant;
								ranges[targetLabels[j]].UnionWith(nodeRange, state, state);
							}
							StateRange nextRange = ranges[body[i + 1]];
							nextRange.UnionWith(nodeRange, int.MinValue, -1 - val.Constant);
							nextRange.UnionWith(nodeRange, targetLabels.Length - val.Constant, int.MaxValue);
							break;
						}
					case ILCode.Br:
					case ILCode.Leave:
						ranges[(ILLabel)expr.Operand].UnionWith(nodeRange);
						break;
					case ILCode.Brtrue:
						{
							SymbolicValue val = Eval(expr.Arguments[0]);
							if (val.Type == SymbolicValueType.StateEquals) {
								ranges[(ILLabel)expr.Operand].UnionWith(nodeRange, val.Constant, val.Constant);
								StateRange nextRange = ranges[body[i + 1]];
								nextRange.UnionWith(nodeRange, int.MinValue, val.Constant - 1);
								nextRange.UnionWith(nodeRange, val.Constant + 1, int.MaxValue);
							} else if (val.Type == SymbolicValueType.StateInEquals) {
								ranges[body[i + 1]].UnionWith(nodeRange, val.Constant, val.Constant);
								StateRange targetRange = ranges[(ILLabel)expr.Operand];
								targetRange.UnionWith(nodeRange, int.MinValue, val.Constant - 1);
								targetRange.UnionWith(nodeRange, val.Constant + 1, int.MaxValue);
							} else {
								throw new YieldAnalysisFailedException();
							}
							break;
						}
					case ILCode.Nop:
						ranges[body[i + 1]].UnionWith(nodeRange);
						break;
					case ILCode.Ret:
						break;
					case ILCode.Stloc:
						{
							SymbolicValue val = Eval(expr.Arguments[0]);
							if (val.Type == SymbolicValueType.State && val.Constant == 0 && rangeAnalysisStateVariable == null)
								rangeAnalysisStateVariable = (ILVariable)expr.Operand;
							else
								throw new YieldAnalysisFailedException();
							goto case ILCode.Nop;
						}
					case ILCode.Call:
						// in some cases (e.g. foreach over array) the C# compiler produces a finally method outside of try-finally blocks
						if (forDispose) {
							MethodDefinition mdef = GetMethodDefinition(expr.Operand as MethodReference);
							if (mdef == null || finallyMethodToStateInterval.ContainsKey(mdef))
								throw new YieldAnalysisFailedException();
							finallyMethodToStateInterval.Add(mdef, nodeRange.ToEnclosingInterval());
						} else {
							throw new YieldAnalysisFailedException();
						}
						break;
					default:
						if (forDispose)
							throw new YieldAnalysisFailedException();
						else
							return i;
				}
			}
			return bodyLength;
		}
		
		enum SymbolicValueType
		{
			/// <summary>
			/// int: Constant (result of ldc.i4)
			/// </summary>
			IntegerConstant,
			/// <summary>
			/// int: State + Constant
			/// </summary>
			State,
			/// <summary>
			/// This pointer (result of ldarg.0)
			/// </summary>
			This,
			/// <summary>
			/// bool: State == Constant
			/// </summary>
			StateEquals,
			/// <summary>
			/// bool: State != Constant
			/// </summary>
			StateInEquals
		}
		
		struct SymbolicValue
		{
			public readonly int Constant;
			public readonly SymbolicValueType Type;
			
			public SymbolicValue(SymbolicValueType type, int constant = 0)
			{
				this.Type = type;
				this.Constant = constant;
			}
			
			public override string ToString()
			{
				return string.Format("[SymbolicValue {0}: {1}]", this.Type, this.Constant);
			}
		}
		
		SymbolicValue Eval(ILExpression expr)
		{
			SymbolicValue left, right;
			switch (expr.Code) {
				case ILCode.Sub:
					left = Eval(expr.Arguments[0]);
					right = Eval(expr.Arguments[1]);
					if (left.Type != SymbolicValueType.State && left.Type != SymbolicValueType.IntegerConstant)
						throw new YieldAnalysisFailedException();
					if (right.Type != SymbolicValueType.IntegerConstant)
						throw new YieldAnalysisFailedException();
					return new SymbolicValue(left.Type, unchecked ( left.Constant - right.Constant ));
				case ILCode.Ldfld:
					if (Eval(expr.Arguments[0]).Type != SymbolicValueType.This)
						throw new YieldAnalysisFailedException();
					if (GetFieldDefinition(expr.Operand as FieldReference) != stateField)
						throw new YieldAnalysisFailedException();
					return new SymbolicValue(SymbolicValueType.State);
				case ILCode.Ldloc:
					ILVariable loadedVariable = (ILVariable)expr.Operand;
					if (loadedVariable == rangeAnalysisStateVariable)
						return new SymbolicValue(SymbolicValueType.State);
					else if (loadedVariable.IsParameter && loadedVariable.OriginalParameter.Index < 0)
						return new SymbolicValue(SymbolicValueType.This);
					else
						throw new YieldAnalysisFailedException();
				case ILCode.Ldc_I4:
					return new SymbolicValue(SymbolicValueType.IntegerConstant, (int)expr.Operand);
				case ILCode.Ceq:
				case ILCode.Cne:
					left = Eval(expr.Arguments[0]);
					right = Eval(expr.Arguments[1]);
					if (left.Type != SymbolicValueType.State || right.Type != SymbolicValueType.IntegerConstant)
						throw new YieldAnalysisFailedException();
					// bool: (state + left.Constant == right.Constant)
					// bool: (state == right.Constant - left.Constant)
					return new SymbolicValue(expr.Code == ILCode.Ceq ? SymbolicValueType.StateEquals : SymbolicValueType.StateInEquals, unchecked(right.Constant - left.Constant));
				case ILCode.LogicNot:
					SymbolicValue val = Eval(expr.Arguments[0]);
					if (val.Type == SymbolicValueType.StateEquals)
						return new SymbolicValue(SymbolicValueType.StateInEquals, val.Constant);
					else if (val.Type == SymbolicValueType.StateInEquals)
						return new SymbolicValue(SymbolicValueType.StateEquals, val.Constant);
					else
						throw new YieldAnalysisFailedException();
				default:
					throw new YieldAnalysisFailedException();
			}
		}
		#endregion
		
		#region Analysis of MoveNext()
		ILVariable returnVariable;
		ILLabel returnLabel;
		ILLabel returnFalseLabel;
		
		void AnalyzeMoveNext()
		{
			MethodDefinition moveNextMethod = enumeratorType.Methods.FirstOrDefault(m => m.Name == "MoveNext");
			ILBlock ilMethod = CreateILAst(moveNextMethod);
			
			if (ilMethod.Body.Count == 0)
				throw new YieldAnalysisFailedException();
			ILExpression lastReturnArg;
			if (!ilMethod.Body.Last().Match(ILCode.Ret, out lastReturnArg))
				throw new YieldAnalysisFailedException();
			
			// There are two possibilities:
			if (lastReturnArg.Code == ILCode.Ldloc) {
				// a) the compiler uses a variable for returns (in debug builds, or when there are try-finally blocks)
				returnVariable = (ILVariable)lastReturnArg.Operand;
				returnLabel = ilMethod.Body.ElementAtOrDefault(ilMethod.Body.Count - 2) as ILLabel;
				if (returnLabel == null)
					throw new YieldAnalysisFailedException();
			} else {
				// b) the compiler directly returns constants
				returnVariable = null;
				returnLabel = null;
				// In this case, the last return must return false.
				if (lastReturnArg.Code != ILCode.Ldc_I4 || (int)lastReturnArg.Operand != 0)
					throw new YieldAnalysisFailedException();
			}
			
			ILTryCatchBlock tryFaultBlock = ilMethod.Body[0] as ILTryCatchBlock;
			List<ILNode> body;
			int bodyLength;
			if (tryFaultBlock != null) {
				// there are try-finally blocks
				if (returnVariable == null) // in this case, we must use a return variable
					throw new YieldAnalysisFailedException();
				// must be a try-fault block:
				if (tryFaultBlock.CatchBlocks.Count != 0 || tryFaultBlock.FinallyBlock != null || tryFaultBlock.FaultBlock == null)
					throw new YieldAnalysisFailedException();
				
				ILBlock faultBlock = tryFaultBlock.FaultBlock;
				// Ensure the fault block contains the call to Dispose().
				if (faultBlock.Body.Count != 2)
					throw new YieldAnalysisFailedException();
				MethodReference disposeMethodRef;
				ILExpression disposeArg;
				if (!faultBlock.Body[0].Match(ILCode.Call, out disposeMethodRef, out disposeArg))
					throw new YieldAnalysisFailedException();
				if (GetMethodDefinition(disposeMethodRef) != disposeMethod || !disposeArg.MatchThis())
					throw new YieldAnalysisFailedException();
				if (!faultBlock.Body[1].Match(ILCode.Endfinally))
					throw new YieldAnalysisFailedException();
				
				body = tryFaultBlock.TryBlock.Body;
				bodyLength = body.Count;
			} else {
				// no try-finally blocks
				body = ilMethod.Body;
				if (returnVariable == null)
					bodyLength = body.Count - 1; // all except for the return statement
				else
					bodyLength = body.Count - 2; // all except for the return label and statement
			}
			
			// Now verify that the last instruction in the body is 'ret(false)'
			if (returnVariable != null) {
				// If we don't have a return variable, we already verified that above.
				// If we do have one, check for 'stloc(returnVariable, ldc.i4(0))'
				
				// Maybe might be a jump to the return label after the stloc:
				ILExpression leave = body.ElementAtOrDefault(bodyLength - 1) as ILExpression;
				if (leave != null && (leave.Code == ILCode.Br || leave.Code == ILCode.Leave) && leave.Operand == returnLabel)
					bodyLength--;
				ILExpression store0 = body.ElementAtOrDefault(bodyLength - 1) as ILExpression;
				if (store0 == null || store0.Code != ILCode.Stloc || store0.Operand != returnVariable)
					throw new YieldAnalysisFailedException();
				if (store0.Arguments[0].Code != ILCode.Ldc_I4 || (int)store0.Arguments[0].Operand != 0)
					throw new YieldAnalysisFailedException();
				
				bodyLength--; // don't conside the stloc instruction to be part of the body
			}
			// verify that the last element in the body is a label pointing to the 'ret(false)'
			returnFalseLabel = body.ElementAtOrDefault(bodyLength - 1) as ILLabel;
			if (returnFalseLabel == null)
				throw new YieldAnalysisFailedException();
			
			InitStateRanges(body[0]);
			int pos = AssignStateRanges(body, bodyLength, forDispose: false);
			if (pos > 0 && body[pos - 1] is ILLabel) {
				pos--;
			} else {
				// ensure that the first element at body[pos] is a label:
				ILLabel newLabel = new ILLabel();
				newLabel.Name = "YieldReturnEntryPoint";
				ranges[newLabel] = ranges[body[pos]]; // give the label the range of the instruction at body[pos]
				
				body.Insert(pos, newLabel);
				bodyLength++;
			}
			
			List<KeyValuePair<ILLabel, StateRange>> labels = new List<KeyValuePair<ILLabel, StateRange>>();
			for (int i = pos; i < bodyLength; i++) {
				ILLabel label = body[i] as ILLabel;
				if (label != null) {
					labels.Add(new KeyValuePair<ILLabel, StateRange>(label, ranges[label]));
				}
			}
			
			ConvertBody(body, pos, bodyLength, labels);
		}
		#endregion
		
		#region ConvertBody
		struct SetState
		{
			public readonly int NewBodyPos;
			public readonly int NewState;
			
			public SetState(int newBodyPos, int newState)
			{
				this.NewBodyPos = newBodyPos;
				this.NewState = newState;
			}
		}
		
		void ConvertBody(List<ILNode> body, int startPos, int bodyLength, List<KeyValuePair<ILLabel, StateRange>> labels)
		{
			newBody = new List<ILNode>();
			newBody.Add(MakeGoTo(labels, 0));
			List<SetState> stateChanges = new List<SetState>();
			int currentState = -1;
			// Copy all instructions from the old body to newBody.
			for (int pos = startPos; pos < bodyLength; pos++) {
				ILExpression expr = body[pos] as ILExpression;
				if (expr != null && expr.Code == ILCode.Stfld && expr.Arguments[0].MatchThis()) {
					// Handle stores to 'state' or 'current'
					if (GetFieldDefinition(expr.Operand as FieldReference) == stateField) {
						if (expr.Arguments[1].Code != ILCode.Ldc_I4)
							throw new YieldAnalysisFailedException();
						currentState = (int)expr.Arguments[1].Operand;
						stateChanges.Add(new SetState(newBody.Count, currentState));
					} else if (GetFieldDefinition(expr.Operand as FieldReference) == currentField) {
						newBody.Add(new ILExpression(ILCode.YieldReturn, null, expr.Arguments[1]));
					} else {
						newBody.Add(body[pos]);
					}
				} else if (returnVariable != null && expr != null && expr.Code == ILCode.Stloc && expr.Operand == returnVariable) {
					// handle store+branch to the returnVariable
					ILExpression br = body.ElementAtOrDefault(++pos) as ILExpression;
					if (br == null || !(br.Code == ILCode.Br || br.Code == ILCode.Leave) || br.Operand != returnLabel || expr.Arguments[0].Code != ILCode.Ldc_I4)
						throw new YieldAnalysisFailedException();
					int val = (int)expr.Arguments[0].Operand;
					if (val == 0) {
						newBody.Add(MakeGoTo(returnFalseLabel));
					} else if (val == 1) {
						newBody.Add(MakeGoTo(labels, currentState));
					} else {
						throw new YieldAnalysisFailedException();
					}
				} else if (expr != null && expr.Code == ILCode.Ret) {
					if (expr.Arguments.Count != 1 || expr.Arguments[0].Code != ILCode.Ldc_I4)
						throw new YieldAnalysisFailedException();
					// handle direct return (e.g. in release builds)
					int val = (int)expr.Arguments[0].Operand;
					if (val == 0) {
						newBody.Add(MakeGoTo(returnFalseLabel));
					} else if (val == 1) {
						newBody.Add(MakeGoTo(labels, currentState));
					} else {
						throw new YieldAnalysisFailedException();
					}
				} else if (expr != null && expr.Code == ILCode.Call && expr.Arguments.Count == 1 && expr.Arguments[0].MatchThis()) {
					MethodDefinition method = GetMethodDefinition(expr.Operand as MethodReference);
					if (method == null)
						throw new YieldAnalysisFailedException();
					Interval interval;
					if (method == disposeMethod) {
						// Explicit call to dispose is used for "yield break;" within the method.
						ILExpression br = body.ElementAtOrDefault(++pos) as ILExpression;
						if (br == null || !(br.Code == ILCode.Br || br.Code == ILCode.Leave) || br.Operand != returnFalseLabel)
							throw new YieldAnalysisFailedException();
						newBody.Add(MakeGoTo(returnFalseLabel));
					} else if (finallyMethodToStateInterval.TryGetValue(method, out interval)) {
						// Call to Finally-method
						int index = stateChanges.FindIndex(ss => ss.NewState >= interval.Start && ss.NewState <= interval.End);
						if (index < 0)
							throw new YieldAnalysisFailedException();
						
						ILLabel label = new ILLabel();
						label.Name = "JumpOutOfTryFinally" + interval.Start + "_" + interval.End;
						newBody.Add(new ILExpression(ILCode.Leave, label));
						
						SetState stateChange = stateChanges[index];
						// Move all instructions from stateChange.Pos to newBody.Count into a try-block
						stateChanges.RemoveRange(index, stateChanges.Count - index); // remove all state changes up to the one we found
						ILTryCatchBlock tryFinally = new ILTryCatchBlock();
						tryFinally.TryBlock = new ILBlock(newBody.GetRange(stateChange.NewBodyPos, newBody.Count - stateChange.NewBodyPos));
						newBody.RemoveRange(stateChange.NewBodyPos, newBody.Count - stateChange.NewBodyPos); // remove all nodes that we just moved into the try block
						tryFinally.CatchBlocks = new List<ILTryCatchBlock.CatchBlock>();
						tryFinally.FinallyBlock = ConvertFinallyBlock(method);
						newBody.Add(tryFinally);
						newBody.Add(label);
					}
				} else {
					newBody.Add(body[pos]);
				}
			}
			newBody.Add(new ILExpression(ILCode.YieldBreak, null));
		}
		
		ILExpression MakeGoTo(ILLabel targetLabel)
		{
			if (targetLabel == returnFalseLabel)
				return new ILExpression(ILCode.YieldBreak, null);
			else
				return new ILExpression(ILCode.Br, targetLabel);
		}
		
		ILExpression MakeGoTo(List<KeyValuePair<ILLabel, StateRange>> labels, int state)
		{
			foreach (var pair in labels) {
				if (pair.Value.Contains(state))
					return MakeGoTo(pair.Key);
			}
			throw new YieldAnalysisFailedException();
		}
		
		ILBlock ConvertFinallyBlock(MethodDefinition finallyMethod)
		{
			ILBlock block = CreateILAst(finallyMethod);
			// Get rid of assignment to state
			FieldReference stfld;
			List<ILExpression> args;
			if (block.Body.Count > 0 && block.Body[0].Match(ILCode.Stfld, out stfld, out args)) {
				if (GetFieldDefinition(stfld) == stateField && args[0].MatchThis())
					block.Body.RemoveAt(0);
			}
			// Convert ret to endfinally
			foreach (ILExpression expr in block.GetSelfAndChildrenRecursive<ILExpression>()) {
				if (expr.Code == ILCode.Ret)
					expr.Code = ILCode.Endfinally;
			}
			return block;
		}
		#endregion
		
		#region TranslateFieldsToLocalAccess
		void TranslateFieldsToLocalAccess()
		{
			var fieldToLocalMap = new DefaultDictionary<FieldDefinition, ILVariable>(f => new ILVariable { Name = f.Name, Type = f.FieldType });
			foreach (ILNode node in newBody) {
				foreach (ILExpression expr in node.GetSelfAndChildrenRecursive<ILExpression>()) {
					FieldDefinition field = GetFieldDefinition(expr.Operand as FieldReference);
					if (field != null) {
						switch (expr.Code) {
							case ILCode.Ldfld:
								if (expr.Arguments[0].MatchThis()) {
									expr.Code = ILCode.Ldloc;
									if (fieldToParameterMap.ContainsKey(field)) {
										expr.Operand = fieldToParameterMap[field];
									} else {
										expr.Operand = fieldToLocalMap[field];
									}
									expr.Arguments.Clear();
								}
								break;
							case ILCode.Stfld:
								if (expr.Arguments[0].MatchThis()) {
									expr.Code = ILCode.Stloc;
									if (fieldToParameterMap.ContainsKey(field)) {
										expr.Operand = fieldToParameterMap[field];
									} else {
										expr.Operand = fieldToLocalMap[field];
									}
									expr.Arguments.RemoveAt(0);
								}
								break;
							case ILCode.Ldflda:
								if (expr.Arguments[0].MatchThis()) {
									expr.Code = ILCode.Ldloca;
									if (fieldToParameterMap.ContainsKey(field)) {
										expr.Operand = fieldToParameterMap[field];
									} else {
										expr.Operand = fieldToLocalMap[field];
									}
									expr.Arguments.Clear();
								}
								break;
						}
					}
				}
			}
		}
		#endregion
	}
}