1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
#region License
/*
MIT License
Copyright © 2006 The Mono.Xna Team
All rights reserved.
Authors:
Olivier Dufour (Duff)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion License
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.InteropServices;
using System.Text;
namespace Microsoft.Xna.Framework
{
public class BoundingFrustum : IEquatable<BoundingFrustum>
{
#region Private Fields
private Matrix matrix;
private Plane bottom;
private Plane far;
private Plane left;
private Plane right;
private Plane near;
private Plane top;
private Vector3[] corners;
#endregion Private Fields
#region Public Fields
public const int CornerCount = 8;
#endregion
#region Public Constructors
public BoundingFrustum(Matrix value)
{
this.matrix = value;
CreatePlanes();
CreateCorners();
}
#endregion Public Constructors
#region Public Properties
public Plane Bottom
{
get { return this.bottom; }
}
public Plane Far
{
get { return this.far; }
}
public Plane Left
{
get { return this.left; }
}
public Matrix Matrix
{
get { return this.matrix; }
set
{
this.matrix = value;
this.CreatePlanes(); // FIXME: The odds are the planes will be used a lot more often than the matrix
this.CreateCorners(); // is updated, so this should help performance. I hope ;)
}
}
public Plane Near
{
get { return this.near; }
}
public Plane Right
{
get { return this.right; }
}
public Plane Top
{
get { return this.top; }
}
#endregion Public Properties
#region Public Methods
public static bool operator ==(BoundingFrustum a, BoundingFrustum b)
{
if (object.Equals(a, null))
return (object.Equals(b, null));
if (object.Equals(b, null))
return (object.Equals(a, null));
return a.matrix == (b.matrix);
}
public static bool operator !=(BoundingFrustum a, BoundingFrustum b)
{
return !(a == b);
}
public ContainmentType Contains(BoundingBox box)
{
ContainmentType result;
this.Contains(ref box, out result);
return result;
}
public void Contains(ref BoundingBox box, out ContainmentType result)
{
// FIXME: Is this a bug?
// If the bounding box is of W * D * H = 0, then return disjoint
if (box.Min == box.Max)
{
result = ContainmentType.Disjoint;
return;
}
int i;
ContainmentType contained;
Vector3[] corners = box.GetCorners();
// First we assume completely disjoint. So if we find a point that is contained, we break out of this loop
for (i = 0; i < corners.Length; i++)
{
this.Contains(ref corners[i], out contained);
if (contained != ContainmentType.Disjoint)
break;
}
if (i == corners.Length) // This means we checked all the corners and they were all disjoint
{
result = ContainmentType.Disjoint;
return;
}
if (i != 0) // if i is not equal to zero, we can fastpath and say that this box intersects
{ // because we know at least one point is outside and one is inside.
result = ContainmentType.Intersects;
return;
}
// If we get here, it means the first (and only) point we checked was actually contained in the frustum.
// So we assume that all other points will also be contained. If one of the points is disjoint, we can
// exit immediately saying that the result is Intersects
i++;
for (; i < corners.Length; i++)
{
this.Contains(ref corners[i], out contained);
if (contained != ContainmentType.Contains)
{
result = ContainmentType.Intersects;
return;
}
}
// If we get here, then we know all the points were actually contained, therefore result is Contains
result = ContainmentType.Contains;
return;
}
// TODO: Implement this
public ContainmentType Contains(BoundingFrustum frustum)
{
if (this == frustum) // We check to see if the two frustums are equal
return ContainmentType.Contains;// If they are, there's no need to go any further.
throw new NotImplementedException();
}
public ContainmentType Contains(BoundingSphere sphere)
{
ContainmentType result;
this.Contains(ref sphere, out result);
return result;
}
public void Contains(ref BoundingSphere sphere, out ContainmentType result)
{
float val;
ContainmentType contained;
// We first check if the sphere is inside the frustum
this.Contains(ref sphere.Center, out contained);
// The sphere is inside. Now we need to check if it's fully contained or not
// So we see if the perpendicular distance to each plane is less than or equal to the sphere's radius.
// If the perpendicular distance is less, just return Intersects.
if (contained == ContainmentType.Contains)
{
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.bottom);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.far);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.left);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.near);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.right);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
val = PlaneHelper.PerpendicularDistance(ref sphere.Center, ref this.top);
if (val < sphere.Radius)
{
result = ContainmentType.Intersects;
return;
}
// If we get here, the sphere is fully contained
result = ContainmentType.Contains;
return;
}
//duff idea : test if all corner is in same side of a plane if yes and outside it is disjoint else intersect
// issue is that we can have some times when really close aabb
// If we're here, the the sphere's centre was outside of the frustum. This makes things hard :(
// We can't use perpendicular distance anymore. I'm not sure how to code this.
throw new NotImplementedException();
}
public ContainmentType Contains(Vector3 point)
{
ContainmentType result;
this.Contains(ref point, out result);
return result;
}
public void Contains(ref Vector3 point, out ContainmentType result)
{
float val;
// If a point is on the POSITIVE side of the plane, then the point is not contained within the frustum
// Check the top
val = PlaneHelper.ClassifyPoint(ref point, ref this.top);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// Check the bottom
val = PlaneHelper.ClassifyPoint(ref point, ref this.bottom);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// Check the left
val = PlaneHelper.ClassifyPoint(ref point, ref this.left);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// Check the right
val = PlaneHelper.ClassifyPoint(ref point, ref this.right);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// Check the near
val = PlaneHelper.ClassifyPoint(ref point, ref this.near);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// Check the far
val = PlaneHelper.ClassifyPoint(ref point, ref this.far);
if (val > 0)
{
result = ContainmentType.Disjoint;
return;
}
// If we get here, it means that the point was on the correct side of each plane to be
// contained. Therefore this point is contained
result = ContainmentType.Contains;
}
public bool Equals(BoundingFrustum other)
{
return (this == other);
}
public override bool Equals(object obj)
{
BoundingFrustum f = obj as BoundingFrustum;
return (object.Equals(f, null)) ? false : (this == f);
}
public Vector3[] GetCorners()
{
return (Vector3[])this.corners.Clone();
}
public void GetCorners(Vector3[] corners)
{
if (corners == null) throw new ArgumentNullException("corners");
if (corners.Length < 8) throw new ArgumentOutOfRangeException("corners");
this.corners.CopyTo(corners, 0);
}
public override int GetHashCode()
{
return this.matrix.GetHashCode();
}
public bool Intersects(BoundingBox box)
{
var result = false;
this.Intersects(ref box, out result);
return result;
}
public void Intersects(ref BoundingBox box, out bool result)
{
var containment = ContainmentType.Disjoint;
this.Contains(ref box, out containment);
result = containment != ContainmentType.Disjoint;
}
public bool Intersects(BoundingFrustum frustum)
{
throw new NotImplementedException();
}
public bool Intersects(BoundingSphere sphere)
{
throw new NotImplementedException();
}
public void Intersects(ref BoundingSphere sphere, out bool result)
{
throw new NotImplementedException();
}
public PlaneIntersectionType Intersects(Plane plane)
{
throw new NotImplementedException();
}
public void Intersects(ref Plane plane, out PlaneIntersectionType result)
{
throw new NotImplementedException();
}
public Nullable<float> Intersects(Ray ray)
{
throw new NotImplementedException();
}
public void Intersects(ref Ray ray, out Nullable<float> result)
{
throw new NotImplementedException();
}
public override string ToString()
{
StringBuilder sb = new StringBuilder(256);
sb.Append("{Near:");
sb.Append(this.near.ToString());
sb.Append(" Far:");
sb.Append(this.far.ToString());
sb.Append(" Left:");
sb.Append(this.left.ToString());
sb.Append(" Right:");
sb.Append(this.right.ToString());
sb.Append(" Top:");
sb.Append(this.top.ToString());
sb.Append(" Bottom:");
sb.Append(this.bottom.ToString());
sb.Append("}");
return sb.ToString();
}
#endregion Public Methods
#region Private Methods
#warning Move this to the PlaneHelper class
private void CreateCorners()
{
this.corners = new Vector3[8];
this.corners[0] = IntersectionPoint(ref this.near, ref this.left, ref this.top);
this.corners[1] = IntersectionPoint(ref this.near, ref this.right, ref this.top);
this.corners[2] = IntersectionPoint(ref this.near, ref this.right, ref this.bottom);
this.corners[3] = IntersectionPoint(ref this.near, ref this.left, ref this.bottom);
this.corners[4] = IntersectionPoint(ref this.far, ref this.left, ref this.top);
this.corners[5] = IntersectionPoint(ref this.far, ref this.right, ref this.top);
this.corners[6] = IntersectionPoint(ref this.far, ref this.right, ref this.bottom);
this.corners[7] = IntersectionPoint(ref this.far, ref this.left, ref this.bottom);
}
private void CreatePlanes()
{
// Pre-calculate the different planes needed
this.left = new Plane(-this.matrix.M14 - this.matrix.M11, -this.matrix.M24 - this.matrix.M21,
-this.matrix.M34 - this.matrix.M31, -this.matrix.M44 - this.matrix.M41);
this.right = new Plane(this.matrix.M11 - this.matrix.M14, this.matrix.M21 - this.matrix.M24,
this.matrix.M31 - this.matrix.M34, this.matrix.M41 - this.matrix.M44);
this.top = new Plane(this.matrix.M12 - this.matrix.M14, this.matrix.M22 - this.matrix.M24,
this.matrix.M32 - this.matrix.M34, this.matrix.M42 - this.matrix.M44);
this.bottom = new Plane(-this.matrix.M14 - this.matrix.M12, -this.matrix.M24 - this.matrix.M22,
-this.matrix.M34 - this.matrix.M32, -this.matrix.M44 - this.matrix.M42);
this.near = new Plane(-this.matrix.M13, -this.matrix.M23, -this.matrix.M33, -this.matrix.M43);
this.far = new Plane(this.matrix.M13 - this.matrix.M14, this.matrix.M23 - this.matrix.M24,
this.matrix.M33 - this.matrix.M34, this.matrix.M43 - this.matrix.M44);
this.NormalizePlane(ref this.left);
this.NormalizePlane(ref this.right);
this.NormalizePlane(ref this.top);
this.NormalizePlane(ref this.bottom);
this.NormalizePlane(ref this.near);
this.NormalizePlane(ref this.far);
}
private static Vector3 IntersectionPoint(ref Plane a, ref Plane b, ref Plane c)
{
// Formula used
// d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
//P = -------------------------------------------------------------------------
// N1 . ( N2 * N3 )
//
// Note: N refers to the normal, d refers to the displacement. '.' means dot product. '*' means cross product
Vector3 v1, v2, v3;
float f = -Vector3.Dot(a.Normal, Vector3.Cross(b.Normal, c.Normal));
v1 = (a.D * (Vector3.Cross(b.Normal, c.Normal)));
v2 = (b.D * (Vector3.Cross(c.Normal, a.Normal)));
v3 = (c.D * (Vector3.Cross(a.Normal, b.Normal)));
Vector3 vec = new Vector3(v1.X + v2.X + v3.X, v1.Y + v2.Y + v3.Y, v1.Z + v2.Z + v3.Z);
return vec / f;
}
private void NormalizePlane(ref Plane p)
{
float factor = 1f / p.Normal.Length();
p.Normal.X *= factor;
p.Normal.Y *= factor;
p.Normal.Z *= factor;
p.D *= factor;
}
#endregion
}
}
|