1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#region License
/*
MIT License
Copyright © 2006 The Mono.Xna Team
All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion License
using System;
using System.ComponentModel;
namespace Microsoft.Xna.Framework
{
public struct Ray : IEquatable<Ray>
{
#region Public Fields
public Vector3 Direction;
public Vector3 Position;
#endregion
#region Public Constructors
public Ray(Vector3 position, Vector3 direction)
{
this.Position = position;
this.Direction = direction;
}
#endregion
#region Public Methods
public override bool Equals(object obj)
{
return (obj is Ray) ? this.Equals((Ray)obj) : false;
}
public bool Equals(Ray other)
{
return this.Position.Equals(other.Position) && this.Direction.Equals(other.Direction);
}
public override int GetHashCode()
{
return Position.GetHashCode() ^ Direction.GetHashCode();
}
public float? Intersects(BoundingBox box)
{
//first test if start in box
if (Position.X >= box.Min.X
&& Position.X <= box.Max.X
&& Position.Y >= box.Min.Y
&& Position.Y <= box.Max.Y
&& Position.Z >= box.Min.Z
&& Position.Z <= box.Max.Z)
return 0.0f;// here we concidere cube is full and origine is in cube so intersect at origine
//Second we check each face
Vector3 maxT = new Vector3(-1.0f);
//Vector3 minT = new Vector3(-1.0f);
//calcul intersection with each faces
if (Position.X < box.Min.X && Direction.X != 0.0f)
maxT.X = (box.Min.X - Position.X) / Direction.X;
else if (Position.X > box.Max.X && Direction.X != 0.0f)
maxT.X = (box.Max.X - Position.X) / Direction.X;
if (Position.Y < box.Min.Y && Direction.Y != 0.0f)
maxT.Y = (box.Min.Y - Position.Y) / Direction.Y;
else if (Position.Y > box.Max.Y && Direction.Y != 0.0f)
maxT.Y = (box.Max.Y - Position.Y) / Direction.Y;
if (Position.Z < box.Min.Z && Direction.Z != 0.0f)
maxT.Z = (box.Min.Z - Position.Z) / Direction.Z;
else if (Position.Z > box.Max.Z && Direction.Z != 0.0f)
maxT.Z = (box.Max.Z - Position.Z) / Direction.Z;
//get the maximum maxT
if (maxT.X > maxT.Y && maxT.X > maxT.Z)
{
if (maxT.X < 0.0f)
return null;// ray go on opposite of face
//coordonate of hit point of face of cube
float coord = Position.Z + maxT.X * Direction.Z;
// if hit point coord ( intersect face with ray) is out of other plane coord it miss
if (coord < box.Min.Z || coord > box.Max.Z)
return null;
coord = Position.Y + maxT.X * Direction.Y;
if (coord < box.Min.Y || coord > box.Max.Y)
return null;
return maxT.X;
}
if (maxT.Y > maxT.X && maxT.Y > maxT.Z)
{
if (maxT.Y < 0.0f)
return null;// ray go on opposite of face
//coordonate of hit point of face of cube
float coord = Position.Z + maxT.Y * Direction.Z;
// if hit point coord ( intersect face with ray) is out of other plane coord it miss
if (coord < box.Min.Z || coord > box.Max.Z)
return null;
coord = Position.X + maxT.Y * Direction.X;
if (coord < box.Min.X || coord > box.Max.X)
return null;
return maxT.Y;
}
else //Z
{
if (maxT.Z < 0.0f)
return null;// ray go on opposite of face
//coordonate of hit point of face of cube
float coord = Position.X + maxT.Z * Direction.X;
// if hit point coord ( intersect face with ray) is out of other plane coord it miss
if (coord < box.Min.X || coord > box.Max.X)
return null;
coord = Position.Y + maxT.Z * Direction.Y;
if (coord < box.Min.Y || coord > box.Max.Y)
return null;
return maxT.Z;
}
}
public void Intersects(ref BoundingBox box, out float? result)
{
result = Intersects(box);
}
public float? Intersects(BoundingFrustum frustum)
{
if (frustum == null)
{
throw new ArgumentNullException("frustum");
}
return frustum.Intersects(this);
}
public float? Intersects(BoundingSphere sphere)
{
float? result;
Intersects(ref sphere, out result);
return result;
}
public float? Intersects(Plane plane)
{
throw new NotImplementedException();
}
public void Intersects(ref Plane plane, out float? result)
{
throw new NotImplementedException();
}
public void Intersects(ref BoundingSphere sphere, out float? result)
{
// Find the vector between where the ray starts the the sphere's centre
Vector3 difference = sphere.Center - this.Position;
float differenceLengthSquared = difference.LengthSquared();
float sphereRadiusSquared = sphere.Radius * sphere.Radius;
float distanceAlongRay;
// If the distance between the ray start and the sphere's centre is less than
// the radius of the sphere, it means we've intersected. N.B. checking the LengthSquared is faster.
if (differenceLengthSquared < sphereRadiusSquared)
{
result = 0.0f;
return;
}
Vector3.Dot(ref this.Direction, ref difference, out distanceAlongRay);
// If the ray is pointing away from the sphere then we don't ever intersect
if (distanceAlongRay < 0)
{
result = null;
return;
}
// Next we kinda use Pythagoras to check if we are within the bounds of the sphere
// if x = radius of sphere
// if y = distance between ray position and sphere centre
// if z = the distance we've travelled along the ray
// if x^2 + z^2 - y^2 < 0, we do not intersect
float dist = sphereRadiusSquared + distanceAlongRay * distanceAlongRay - differenceLengthSquared;
result = (dist < 0) ? null : distanceAlongRay - (float?)Math.Sqrt(dist);
}
public static bool operator !=(Ray a, Ray b)
{
return !a.Equals(b);
}
public static bool operator ==(Ray a, Ray b)
{
return a.Equals(b);
}
public override string ToString()
{
return string.Format("{{Position:{0} Direction:{1}}}", Position.ToString(), Direction.ToString());
}
#endregion
}
}
|