File: merkle_tree.cc

package info (click to toggle)
monotone 0.18-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 16,440 kB
  • ctags: 13,394
  • sloc: sh: 130,618; ansic: 70,657; cpp: 51,980; perl: 421; makefile: 359; python: 184; lisp: 132; sql: 83
file content (503 lines) | stat: -rw-r--r-- 15,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// copyright (C) 2004 graydon hoare <graydon@pobox.com>
// all rights reserved.
// licensed to the public under the terms of the GNU GPL (>= 2)
// see the file COPYING for details

#include <iostream>
#include <map>
#include <string>
#include <sstream>

#include <boost/dynamic_bitset.hpp>

#include "cryptopp/sha.h"

#include "constants.hh"
#include "merkle_tree.hh"
#include "netio.hh"
#include "numeric_vocab.hh"
#include "sanity.hh"
#include "transforms.hh"

using namespace boost;
using namespace std;
using namespace CryptoPP;

void 
netcmd_item_type_to_string(netcmd_item_type t, string & typestr)
{
  typestr.clear();
  switch (t)
    {
    case revision_item:
      typestr = "revision";
      break;
    case manifest_item:
      typestr = "manifest";
      break;
    case file_item:
      typestr = "file";
      break;
    case cert_item:
      typestr = "cert";
      break;
    case key_item:
      typestr = "key";
      break;
    case epoch_item:
      typestr = "epoch";
      break;
    }
  I(!typestr.empty());
}

// this is a *raw* SHA1, not the nice friendly hex-encoded type. it is half
// as many bytes. since merkle nodes are mostly nothing but SHA1 values,
// and we have to send them over the wire, we use a raw variant here
// for compactness.

string 
raw_sha1(string const & in)
{
  SHA hash;
  hash.Update(reinterpret_cast<byte const *>(in.data()), 
              static_cast<unsigned int>(in.size()));
  char digest[SHA::DIGESTSIZE];
  hash.Final(reinterpret_cast<byte *>(digest));
  string out(digest, SHA::DIGESTSIZE);
  return out;
}


merkle_node::merkle_node() : level(0), pref(0), 
                             total_num_leaves(0), 
                             bitmap(constants::merkle_bitmap_length_in_bits),
                             slots(constants::merkle_num_slots),
                             type(manifest_item) 
{}

bool 
merkle_node::operator==(merkle_node const & other) const
{
  return (level == other.level
          && pref == other.pref
          && total_num_leaves == other.total_num_leaves
          && bitmap == other.bitmap
          && slots == other.slots
          && type == other.type);
}

void 
merkle_node::check_invariants() const
{
  I(this->pref.size() == prefix_length_in_bits(this->level));
  I(this->level <= constants::merkle_num_tree_levels);
  I(this->slots.size() == constants::merkle_num_slots);
  I(this->bitmap.size() == constants::merkle_bitmap_length_in_bits);
}

void 
merkle_node::get_raw_prefix(prefix & pref) const
{
  check_invariants();
  ostringstream oss;
  to_block_range(this->pref, ostream_iterator<char>(oss));
  pref = prefix(oss.str());
}

void 
merkle_node::get_hex_prefix(hexenc<prefix> & hpref) const
{
  prefix pref;
  get_raw_prefix(pref);
  encode_hexenc(pref, hpref);
}

void 
merkle_node::get_raw_slot(size_t slot, id & i) const
{
  I(get_slot_state(slot) != empty_state);
  check_invariants();
  i = idx(this->slots, slot);
}

void 
merkle_node::get_hex_slot(size_t slot, hexenc<id> & val) const
{
  id i;
  get_raw_slot(slot, i);
  encode_hexenc(i, val);
}

void 
merkle_node::set_raw_slot(size_t slot, id const & val)
{
  check_invariants();
  idx(this->slots, slot) = val;
}

void 
merkle_node::set_hex_slot(size_t slot, hexenc<id> const & val)
{
  id i;
  decode_hexenc(val, i);
  set_raw_slot(slot, i);
}

void 
merkle_node::extended_prefix(size_t slot, 
                             dynamic_bitset<unsigned char> & extended) const
{
  // remember, in a dynamic_bitset, bit size()-1 is most significant
  check_invariants();
  I(slot < constants::merkle_num_slots);
  extended = this->pref;
  for (size_t i = 0; i < constants::merkle_fanout_bits; ++i)
    extended.push_back(static_cast<bool>((slot >> i) & 1));
}

void 
merkle_node::extended_raw_prefix(size_t slot, 
                                 prefix & extended) const
{
  dynamic_bitset<unsigned char> ext;
  extended_prefix(slot, ext);
  ostringstream oss;
  to_block_range(ext, ostream_iterator<char>(oss));
  extended = prefix(oss.str());
}

void 
merkle_node::extended_hex_prefix(size_t slot, 
                                 hexenc<prefix> & extended) const
{
  prefix pref;
  extended_raw_prefix(slot, pref);
  encode_hexenc(pref, extended);
}

slot_state 
merkle_node::get_slot_state(size_t n) const
{
  check_invariants();
  I(n < constants::merkle_num_slots);
  I(2*n + 1 < bitmap.size());
  if (bitmap[2*n])
    {
      if (bitmap[2*n+1])
        return subtree_state;
      else
        return live_leaf_state;
    }
  else
    {
      if (bitmap[2*n+1])
        return dead_leaf_state;
      else
        return empty_state;
    }      
}

void 
merkle_node::set_slot_state(size_t n, slot_state st)
{
  check_invariants();
  I(n < constants::merkle_num_slots);
  I(2*n + 1 < bitmap.size());
  bitmap.reset(2*n);
  bitmap.reset(2*n+1);
  if (st == subtree_state || st == live_leaf_state)
    bitmap.set(2*n);
  if (st == subtree_state || st == dead_leaf_state)
    bitmap.set(2*n+1);
}    


size_t 
prefix_length_in_bits(size_t level)
{
  return level * constants::merkle_fanout_bits;
}

size_t 
prefix_length_in_bytes(size_t level)
{
  // level is the number of levels in tree this prefix has.
  // the prefix's binary *length* is the number of bytes used
  // to represent it, rounded up to a byte.
  size_t num_bits = prefix_length_in_bits(level);
  if (num_bits % 8 == 0)
    return num_bits / 8;
  else
    return (num_bits / 8) + 1;
}

void 
write_node(merkle_node const & in, string & outbuf)
{      
  ostringstream oss;
  oss.put(static_cast<u8>(in.type));
  I(in.pref.size() == in.level * constants::merkle_fanout_bits);

  string tmp;
  insert_datum_uleb128<size_t>(in.level, tmp);
  oss.write(tmp.data(), tmp.size());
  tmp.clear();

  to_block_range(in.pref, ostream_iterator<char>(oss));

  insert_datum_uleb128<size_t>(in.total_num_leaves, tmp);
  oss.write(tmp.data(), tmp.size());
  tmp.clear();

  to_block_range(in.bitmap, ostream_iterator<char>(oss));

  for (size_t slot = 0; slot < constants::merkle_num_slots; ++slot)
    {
      if (in.get_slot_state(slot) != empty_state)
        {
          I(slot < in.slots.size());
          id slot_val;
          in.get_raw_slot(slot, slot_val);
          oss.write(slot_val().data(), slot_val().size());
        }
    }
  string hash = raw_sha1(oss.str());
  I(hash.size() == constants::merkle_hash_length_in_bytes);
  outbuf = hash + oss.str();
}
    
void 
read_node(string const & inbuf, merkle_node & out)
{
  size_t pos = 0;
  string hash = extract_substring(inbuf, pos, 
                                  constants::merkle_hash_length_in_bytes, 
                                  "node hash");
  out.type = static_cast<netcmd_item_type>(extract_datum_lsb<u8>(inbuf, pos, "node type"));
  out.level = extract_datum_uleb128<size_t>(inbuf, pos, "node level");

  if (out.level >= constants::merkle_num_tree_levels)
    throw bad_decode(F("node level is %d, exceeds maximum %d") 
                     % widen<u32,u8>(out.level)
                     % widen<u32,u8>(constants::merkle_num_tree_levels));

  size_t prefixsz = prefix_length_in_bytes(out.level);
  require_bytes(inbuf, pos, prefixsz, "node prefix");   
  out.pref.resize(prefix_length_in_bits(out.level));
  from_block_range(inbuf.begin() + pos, 
                   inbuf.begin() + pos + prefixsz,
                   out.pref);
  pos += prefixsz;

  out.total_num_leaves = extract_datum_uleb128<size_t>(inbuf, pos, "number of leaves");

  require_bytes(inbuf, pos, constants::merkle_bitmap_length_in_bytes, "bitmap");
  out.bitmap.resize(constants::merkle_bitmap_length_in_bits);
  from_block_range(inbuf.begin() + pos, 
                   inbuf.begin() + pos + constants::merkle_bitmap_length_in_bytes,
                   out.bitmap);
  pos += constants::merkle_bitmap_length_in_bytes;

  for (size_t slot = 0; slot < constants::merkle_num_slots; ++slot)
    {
      if (out.get_slot_state(slot) != empty_state)
        {
          string slot_val = extract_substring(inbuf, pos, 
                                              constants::merkle_hash_length_in_bytes, 
                                              "slot value");
          out.set_raw_slot(slot, slot_val);
        }
    }
    
  assert_end_of_buffer(inbuf, pos, "node");
  string checkhash = raw_sha1(inbuf.substr(constants::merkle_hash_length_in_bytes));
  out.check_invariants();
  if (hash != checkhash)
    throw bad_decode(F("mismatched node hash value %s, expected %s") 
                     % xform<HexEncoder>(checkhash) % xform<HexEncoder>(hash));
}


// returns the first hashsz bytes of the serialized node, which is 
// the hash of its contents.

static id 
hash_merkle_node(merkle_node const & node)
{
  string out;
  write_node(node, out);
  I(out.size() >= constants::merkle_hash_length_in_bytes);
  return id(out.substr(0, constants::merkle_hash_length_in_bytes));
}

void 
pick_slot_and_prefix_for_value(id const & val, 
                               size_t level, 
                               size_t & slotnum, 
                               dynamic_bitset<unsigned char> & pref)
{
  pref.resize(val().size() * 8);
  from_block_range(val().begin(), val().end(), pref);

  // remember, in a dynamic_bitset, bit size()-1 is most significant

  slotnum = 0;
  for (size_t i = constants::merkle_fanout_bits; i > 0; --i)
    {
      slotnum <<= 1;
      if (pref[level * constants::merkle_fanout_bits + (i-1)])
        slotnum |= static_cast<size_t>(1);
      else
        slotnum &= static_cast<size_t>(~1);
    }
  pref.resize(level * constants::merkle_fanout_bits);
}

id
recalculate_merkle_codes(merkle_table & tab,
                         prefix const & pref, 
                         size_t level)
{
  merkle_table::const_iterator i = tab.find(make_pair(pref, level));      
  I(i != tab.end());
  merkle_ptr node = i->second;
  
  for (size_t slotnum = 0; slotnum < constants::merkle_num_slots; ++slotnum)
    {
      slot_state st = node->get_slot_state(slotnum);
      if (st == subtree_state)
        {
          id slotval;
          node->get_raw_slot(slotnum, slotval);
          if (slotval().empty())
            {
              prefix extended;
              node->extended_raw_prefix(slotnum, extended);
              slotval = recalculate_merkle_codes(tab, extended, level+1);
              node->set_raw_slot(slotnum, slotval);
            }
        }
    }
  
  return hash_merkle_node(*node);
}


void
insert_into_merkle_tree(merkle_table & tab,
                        netcmd_item_type type,
                        bool live_p,
                        id const & leaf,
                        size_t level)
{
  I(constants::merkle_hash_length_in_bytes == leaf().size());
  I(constants::merkle_fanout_bits * (level + 1) 
    <= constants::merkle_hash_length_in_bits);
  
  hexenc<id> hleaf;
  encode_hexenc(leaf, hleaf);

  size_t slotnum;
  dynamic_bitset<unsigned char> pref;
  pick_slot_and_prefix_for_value(leaf, level, slotnum, pref);

  ostringstream oss;
  to_block_range(pref, ostream_iterator<char>(oss));
  //   hexenc<prefix> hpref;
  prefix rawpref(oss.str());
  //   encode_hexenc(rawpref, hpref);

  //   if (level == 0)
  //     L(F("-- beginning top level insert --\n"));
  
  //   L(F("inserting %s leaf %s into slot 0x%x at node with prefix %s, level %d\n") 
  //     % (live_p ? "live" : "dead") % hleaf % slotnum % hpref % level);
  
  merkle_table::const_iterator i = tab.find(make_pair(rawpref, level));
  merkle_ptr node;

  if (i != tab.end())
    {
      node = i->second;
      slot_state st = node->get_slot_state(slotnum);
      switch (st)
        {
        case live_leaf_state:
        case dead_leaf_state:
          {
            id slotval;
            node->get_raw_slot(slotnum, slotval);
            if (slotval == leaf)
              {
                //                 L(F("found existing entry for %s at slot 0x%x of node %s, level %d\n") 
                //                   % hleaf % slotnum % hpref % level);
                if (st == dead_leaf_state && live_p)
                  {
                    //                     L(F("changing setting from dead to live, for %s at slot 0x%x of node %s, level %d\n") 
                    //                       % hleaf % slotnum % hpref % level);
                    node->set_slot_state(slotnum, live_leaf_state);
                  }
                else if (st == live_leaf_state && !live_p)
                  {
                    //                     L(F("changing setting from live to dead, for %s at slot 0x%x of node %s, level %d\n") 
                    //                       % hleaf % slotnum % hpref % level);
                    node->set_slot_state(slotnum, dead_leaf_state);
                  }
              }
            else
              {
                hexenc<id> existing_hleaf;
                encode_hexenc(slotval, existing_hleaf);
                //                 L(F("pushing existing leaf %s in slot 0x%x of node %s, level %d into subtree\n")
                //                   % existing_hleaf % slotnum % hpref % level);
                insert_into_merkle_tree(tab, type, (st == live_leaf_state ? true : false), slotval, level+1);
                insert_into_merkle_tree(tab, type, live_p, leaf, level+1);
                //                 L(F("changing setting to subtree, empty hash at slot 0x%x of node %s, level %d\n") 
                //                   % slotnum % hpref % level);
                id empty_subtree_hash;
                node->set_raw_slot(slotnum, empty_subtree_hash);
                node->set_slot_state(slotnum, subtree_state);      
              }
          }
          break;

        case empty_state:
          //           L(F("placing leaf %s in previously empty slot 0x%x of node %s, level %d\n")
          //             % hleaf % slotnum % hpref % level);
          node->total_num_leaves++;
          node->set_slot_state(slotnum, (live_p ? live_leaf_state : dead_leaf_state));
          node->set_raw_slot(slotnum, leaf);
          break;

        case subtree_state:
          {
            //             L(F("taking %s to subtree in slot 0x%x of node %s, level %d\n")
            //               % hleaf % slotnum % hpref % level);
            insert_into_merkle_tree(tab, type, live_p, leaf, level+1);
            id empty_subtree_hash;
            //             L(F("updating subtree, setting to empty hash at slot 0x%x of node %s, level %d\n") 
            //               % slotnum % hpref % level);
            node->set_raw_slot(slotnum, empty_subtree_hash);
            node->set_slot_state(slotnum, subtree_state);
          }
          break;
        }
    }
  else
    {
      //       L(F("creating new node with prefix %s, level %d, holding %s at slot 0x%x\n")
      //         % hpref % level % hleaf % slotnum);
      node = merkle_ptr(new merkle_node());
      node->type = type;
      node->level = level;
      node->pref = pref;
      node->total_num_leaves = 1;
      node->set_slot_state(slotnum, (live_p ? live_leaf_state : dead_leaf_state));
      node->set_raw_slot(slotnum, leaf);
      tab.insert(std::make_pair(std::make_pair(rawpref, level), node));
    }

  //   if (level == 0)
  //       L(F("-- finished top level insert --\n"));
}