1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.136 2005/03/16 12:15:21 danielk1977 Exp $
*/
#include "sqliteInt.h"
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** The idxLeft and idxRight fields are the VDBE cursor numbers for the
** table that contains the column that appears on the left-hand and
** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
** something other than a simple column reference, then idxLeft or
** idxRight are -1.
**
** It is the VDBE cursor number is the value stored in Expr.iTable
** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
**
** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
** but they do so indirectly. A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields. The translation is used in order to maximize the number of
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
** spread out over the non-negative integers. For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask. So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** prereqLeft tells us every VDBE cursor that is referenced on the
** left-hand side of ExprInfo.p. prereqRight does the same for the
** right-hand side of the expression. The following identity always
** holds:
**
** prereqAll = prereqLeft | prereqRight
**
** The ExprInfo.indexable field is true if the ExprInfo.p expression
** is of a form that might control an index. Indexable expressions
** look like this:
**
** <column> <op> <expr>
**
** Where <column> is a simple column name and <op> is on of the operators
** that allowedOp() recognizes.
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
Expr *p; /* Pointer to the subexpression */
u8 indexable; /* True if this subexprssion is usable by an index */
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
** p->pLeft is not the column of any table */
short int idxRight; /* p->pRight is a column in this table number. -1 if
** p->pRight is not the column of any table */
Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
Bitmask prereqAll; /* Bitmask of tables referenced by p */
};
/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
**
** The VDBE cursor numbers are small integers contained in
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence. But we want to make maximum
** use of the bits in our bitmasks. This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning
** with 0.
**
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
**
** For example, if the WHERE clause expression used these VDBE
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
** would map those cursor numbers into bits 0 through 5.
**
** Note that the mapping is not necessarily ordered. In the example
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4. Or one of 719 other combinations might be used. It
** does not really matter. What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
int n; /* Number of assigned cursor values */
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
};
/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separate by the AND operator. aSlot is
** filled with pointers to the subexpressions. For example:
**
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
** \________/ \_______________/ \________________/
** slot[0] slot[1] slot[2]
**
** The original WHERE clause in pExpr is unaltered. All this routine
** does is make aSlot[] entries point to substructure within pExpr.
**
** aSlot[] is an array of subexpressions structures. There are nSlot
** spaces left in this array. This routine finds as many AND-separated
** subexpressions as it can and puts pointers to those subexpressions
** into aSlot[] entries. The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
int cnt = 0;
if( pExpr==0 || nSlot<1 ) return 0;
if( nSlot==1 || pExpr->op!=TK_AND ){
aSlot[0].p = pExpr;
return 1;
}
if( pExpr->pLeft->op!=TK_AND ){
aSlot[0].p = pExpr->pLeft;
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
}else{
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
}
return cnt;
}
/*
** Initialize an expression mask set
*/
#define initMaskSet(P) memset(P, 0, sizeof(*P))
/*
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
int i;
for(i=0; i<pMaskSet->n; i++){
if( pMaskSet->ix[i]==iCursor ){
return ((Bitmask)1)<<i;
}
}
return 0;
}
/*
** Create a new mask for cursor iCursor.
*/
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
}
/*
** Destroy an expression mask set
*/
#define freeMaskSet(P) /* NO-OP */
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ExprResolveNames() on the expression. See
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.
*/
static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
Bitmask mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
mask = getMask(pMaskSet, p->iTable);
return mask;
}
mask = exprTableUsage(pMaskSet, p->pRight);
mask |= exprTableUsage(pMaskSet, p->pLeft);
mask |= exprListTableUsage(pMaskSet, p->pList);
if( p->pSelect ){
Select *pS = p->pSelect;
mask |= exprListTableUsage(pMaskSet, pS->pEList);
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
mask |= exprTableUsage(pMaskSet, pS->pWhere);
mask |= exprTableUsage(pMaskSet, pS->pHaving);
}
return mask;
}
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
int i;
Bitmask mask = 0;
if( pList ){
for(i=0; i<pList->nExpr; i++){
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
}
}
return mask;
}
/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term. The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int allowedOp(int op){
assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
}
/*
** Swap two objects of type T.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
** Return the index in the SrcList that uses cursor iCur. If iCur is
** used by the first entry in SrcList return 0. If iCur is used by
** the second entry return 1. And so forth.
**
** SrcList is the set of tables in the FROM clause in the order that
** they will be processed. The value returned here gives us an index
** of which tables will be processed first.
*/
static int tableOrder(SrcList *pList, int iCur){
int i;
struct SrcList_item *pItem;
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
if( pItem->iCursor==iCur ) return i;
}
return -1;
}
/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
*/
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
Expr *pExpr = pInfo->p;
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
pInfo->indexable = 0;
pInfo->idxLeft = -1;
pInfo->idxRight = -1;
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
pInfo->idxRight = pExpr->pRight->iTable;
pInfo->indexable = 1;
}
if( pExpr->pLeft->op==TK_COLUMN ){
pInfo->idxLeft = pExpr->pLeft->iTable;
pInfo->indexable = 1;
}
}
if( pInfo->indexable ){
assert( pInfo->idxLeft!=pInfo->idxRight );
/* We want the expression to be of the form "X = expr", not "expr = X".
** So flip it over if necessary. If the expression is "X = Y", then
** we want Y to come from an earlier table than X.
**
** The collating sequence rule is to always choose the left expression.
** So if we do a flip, we also have to move the collating sequence.
*/
if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
assert( pExpr->op!=TK_IN );
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
if( pExpr->op>=TK_GT ){
assert( TK_LT==TK_GT+2 );
assert( TK_GE==TK_LE+2 );
assert( TK_GT>TK_EQ );
assert( TK_GT<TK_LE );
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
}
SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
}
}
}
/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause. If it can, it returns 1. If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base". pIdx is an index on pTab.
**
** nEqCol is the number of columns of pIdx that are used as equality
** constraints. Any of these columns may be missing from the ORDER BY
** clause and the match can still be a success.
**
** If the index is UNIQUE, then the ORDER BY clause is allowed to have
** additional terms past the end of the index and the match will still
** be a success.
**
** All terms of the ORDER BY that match against the index must be either
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.) The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int isSortingIndex(
Parse *pParse, /* Parsing context */
Index *pIdx, /* The index we are testing */
Table *pTab, /* The table to be sorted */
int base, /* Cursor number for pTab */
ExprList *pOrderBy, /* The ORDER BY clause */
int nEqCol, /* Number of index columns with == constraints */
int *pbRev /* Set to 1 if ORDER BY is DESC */
){
int i, j; /* Loop counters */
int sortOrder; /* Which direction we are sorting */
int nTerm; /* Number of ORDER BY terms */
struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
sqlite3 *db = pParse->db;
assert( pOrderBy!=0 );
nTerm = pOrderBy->nExpr;
assert( nTerm>0 );
/* Match terms of the ORDER BY clause against columns of
** the index.
*/
for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
Expr *pExpr; /* The expression of the ORDER BY pTerm */
CollSeq *pColl; /* The collating sequence of pExpr */
pExpr = pTerm->pExpr;
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
/* Can not use an index sort on anything that is not a column in the
** left-most table of the FROM clause */
return 0;
}
pColl = sqlite3ExprCollSeq(pParse, pExpr);
if( !pColl ) pColl = db->pDfltColl;
if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
/* Term j of the ORDER BY clause does not match column i of the index */
if( i<nEqCol ){
/* If an index column that is constrained by == fails to match an
** ORDER BY term, that is OK. Just ignore that column of the index
*/
continue;
}else{
/* If an index column fails to match and is not constrained by ==
** then the index cannot satisfy the ORDER BY constraint.
*/
return 0;
}
}
if( i>nEqCol ){
if( pTerm->sortOrder!=sortOrder ){
/* Indices can only be used if all ORDER BY terms past the
** equality constraints are all either DESC or ASC. */
return 0;
}
}else{
sortOrder = pTerm->sortOrder;
}
j++;
pTerm++;
}
/* The index can be used for sorting if all terms of the ORDER BY clause
** or covered or if we ran out of index columns and the it is a UNIQUE
** index.
*/
if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
*pbRev = sortOrder==SQLITE_SO_DESC;
return 1;
}
return 0;
}
/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID. Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
int base, /* Cursor number for table to be sorted */
ExprList *pOrderBy, /* The ORDER BY clause */
int *pbRev /* Set to 1 if ORDER BY is DESC */
){
Expr *p;
assert( pOrderBy!=0 );
assert( pOrderBy->nExpr>0 );
p = pOrderBy->a[0].pExpr;
if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
*pbRev = pOrderBy->a[0].sortOrder;
return 1;
}
return 0;
}
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. We would get the correct
** results if nothing were ever disabled, but joins might run a little
** slower. The trick is to disable as much as we can without disabling
** too much. If we disabled in (1), we'd get the wrong answer.
** See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
Expr *pExpr = *ppExpr;
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
*ppExpr = 0;
}
}
/*
** Generate code that builds a probe for an index. Details:
**
** * Check the top nColumn entries on the stack. If any
** of those entries are NULL, jump immediately to brk,
** which is the loop exit, since no index entry will match
** if any part of the key is NULL.
**
** * Construct a probe entry from the top nColumn entries in
** the stack with affinities appropriate for index pIdx.
*/
static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
sqlite3IndexAffinityStr(v, pIdx);
}
/*
** Generate code for an equality term of the WHERE clause. An equality
** term can be either X=expr or X IN (...). pTerm is the X.
*/
static void codeEqualityTerm(
Parse *pParse, /* The parsing context */
ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
int brk, /* Jump here to abandon the loop */
WhereLevel *pLevel /* When level of the FROM clause we are working on */
){
Expr *pX = pTerm->p;
if( pX->op!=TK_IN ){
assert( pX->op==TK_EQ );
sqlite3ExprCode(pParse, pX->pRight);
#ifndef SQLITE_OMIT_SUBQUERY
}else{
int iTab;
Vdbe *v = pParse->pVdbe;
sqlite3CodeSubselect(pParse, pX);
iTab = pX->iTable;
sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1);
VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
pLevel->inOp = OP_Next;
pLevel->inP1 = iTab;
#endif
}
disableTerm(pLevel, &pTerm->p);
}
/*
** The number of bits in a Bitmask
*/
#define BMS (sizeof(Bitmask)*8-1)
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqlite3WhereEnd()
** end /
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries. The [...] code
** can use OP_Column and OP_Recno opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL. This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
Fetch *pFetch /* Initial location of cursors. NULL otherwise */
){
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont = 0; /* Addresses used during code generation */
int nExpr; /* Number of subexpressions in the WHERE clause */
Bitmask loopMask; /* One bit set for each outer loop */
ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
ExprMaskSet maskSet; /* The expression mask set */
int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
struct SrcList_item *pTabItem; /* A single entry from pTabList */
WhereLevel *pLevel; /* A single level in the pWInfo list */
/* The number of terms in the FROM clause is limited by the number of
** bits in a Bitmask
*/
if( pTabList->nSrc>sizeof(Bitmask)*8 ){
sqlite3ErrorMsg(pParse, "at most %d tables in a join",
sizeof(Bitmask)*8);
return 0;
}
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator. If the aExpr[]
** array fills up, the last entry might point to an expression which
** contains additional unfactored AND operators.
*/
initMaskSet(&maskSet);
memset(aExpr, 0, sizeof(aExpr));
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
if( nExpr==ARRAYSIZE(aExpr) ){
sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
return 0;
}
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
if( sqlite3_malloc_failed ){
sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
return 0;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
pWhere = 0;
}
/* Analyze all of the subexpressions.
*/
for(i=0; i<pTabList->nSrc; i++){
createMask(&maskSet, pTabList->a[i].iCursor);
}
for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
exprAnalyze(pTabList, &maskSet, pTerm);
}
/* Figure out what index to use (if any) for each nested loop.
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
** loop.
**
** If terms exist that use the ROWID of any table, then set the
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
** to the index of the term containing the ROWID. We always prefer
** to use a ROWID which can directly access a table rather than an
** index which requires reading an index first to get the rowid then
** doing a second read of the actual database table.
**
** Actually, if there are more than 32 tables in the join, only the
** first 32 tables are candidates for indices. This is (again) due
** to the limit of 32 bits in an integer bitmask.
*/
loopMask = 0;
pTabItem = pTabList->a;
pLevel = pWInfo->a;
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
int j;
int iCur = pTabItem->iCursor; /* The cursor for this table */
Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
Table *pTab = pTabItem->pTab;
Index *pIdx;
Index *pBestIdx = 0;
int bestScore = 0;
int bestRev = 0;
/* Check to see if there is an expression that uses only the
** ROWID field of this table. For terms of the form ROWID==expr
** set iDirectEq[i] to the index of the term. For terms of the
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
**
** (Added:) Treat ROWID IN expr like ROWID=expr.
*/
pLevel->iIdxCur = -1;
iDirectEq[i] = -1;
iDirectLt[i] = -1;
iDirectGt[i] = -1;
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
Expr *pX = pTerm->p;
if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
switch( pX->op ){
case TK_IN:
case TK_EQ: iDirectEq[i] = j; break;
case TK_LE:
case TK_LT: iDirectLt[i] = j; break;
case TK_GE:
case TK_GT: iDirectGt[i] = j; break;
}
}
}
/* If we found a term that tests ROWID with == or IN, that term
** will be used to locate the rows in the database table. There
** is not need to continue into the code below that looks for
** an index. We will always use the ROWID over an index.
*/
if( iDirectEq[i]>=0 ){
loopMask |= mask;
pLevel->pIdx = 0;
continue;
}
/* Do a search for usable indices. Leave pBestIdx pointing to
** the "best" index. pBestIdx is left set to NULL if no indices
** are usable.
**
** The best index is the one with the highest score. The score
** for the index is determined as follows. For each of the
** left-most terms that is fixed by an equality operator, add
** 32 to the score. The right-most term of the index may be
** constrained by an inequality. Add 4 if for an "x<..." constraint
** and add 8 for an "x>..." constraint. If both constraints
** are present, add 12.
**
** If the left-most term of the index uses an IN operator
** (ex: "x IN (...)") then add 16 to the score.
**
** If an index can be used for sorting, add 2 to the score.
** If an index contains all the terms of a table that are ever
** used by any expression in the SQL statement, then add 1 to
** the score.
**
** This scoring system is designed so that the score can later be
** used to determine how the index is used. If the score&0x1c is 0
** then all constraints are equalities. If score&0x4 is not 0 then
** there is an inequality used as a termination key. (ex: "x<...")
** If score&0x8 is not 0 then there is an inequality used as the
** start key. (ex: "x>..."). A score or 0x10 is the special case
** of an IN operator constraint. (ex: "x IN ...").
**
** The IN operator (as in "<expr> IN (...)") is treated the same as
** an equality comparison except that it can only be used on the
** left-most column of an index and other terms of the WHERE clause
** cannot be used in conjunction with the IN operator to help satisfy
** other columns of the index.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
Bitmask eqMask = 0; /* Index columns covered by an x=... term */
Bitmask ltMask = 0; /* Index columns covered by an x<... term */
Bitmask gtMask = 0; /* Index columns covered by an x>... term */
Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
Bitmask m;
int nEq, score, bRev = 0;
if( pIdx->nColumn>sizeof(eqMask)*8 ){
continue; /* Ignore indices with too many columns to analyze */
}
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
Expr *pX = pTerm->p;
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
if( !pColl && pX->pRight ){
pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
}
if( !pColl ){
pColl = pParse->db->pDfltColl;
}
if( pTerm->idxLeft==iCur
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
int iColumn = pX->pLeft->iColumn;
int k;
char idxaff = pIdx->pTable->aCol[iColumn].affinity;
for(k=0; k<pIdx->nColumn; k++){
/* If the collating sequences or affinities don't match,
** ignore this index. */
if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
if( pIdx->aiColumn[k]==iColumn ){
switch( pX->op ){
case TK_IN: {
if( k==0 ) inMask |= 1;
break;
}
case TK_EQ: {
eqMask |= ((Bitmask)1)<<k;
break;
}
case TK_LE:
case TK_LT: {
ltMask |= ((Bitmask)1)<<k;
break;
}
case TK_GE:
case TK_GT: {
gtMask |= ((Bitmask)1)<<k;
break;
}
default: {
/* CANT_HAPPEN */
assert( 0 );
break;
}
}
break;
}
}
}
}
/* The following loop ends with nEq set to the number of columns
** on the left of the index with == constraints.
*/
for(nEq=0; nEq<pIdx->nColumn; nEq++){
m = (((Bitmask)1)<<(nEq+1))-1;
if( (m & eqMask)!=m ) break;
}
/* Begin assemblying the score
*/
score = nEq*32; /* Base score is 32 times number of == constraints */
m = ((Bitmask)1)<<nEq;
if( m & ltMask ) score+=4; /* Increase score for a < constraint */
if( m & gtMask ) score+=8; /* Increase score for a > constraint */
if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
/* Give bonus points if this index can be used for sorting
*/
if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
int base = pTabList->a[0].iCursor;
if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
score += 2;
}
}
/* Check to see if we can get away with using just the index without
** ever reading the table. If that is the case, then add one bonus
** point to the score.
*/
if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
for(m=0, j=0; j<pIdx->nColumn; j++){
int x = pIdx->aiColumn[j];
if( x<BMS-1 ){
m |= ((Bitmask)1)<<x;
}
}
if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
score++;
}
}
/* If the score for this index is the best we have seen so far, then
** save it
*/
if( score>bestScore ){
pBestIdx = pIdx;
bestScore = score;
bestRev = bRev;
}
}
pLevel->pIdx = pBestIdx;
pLevel->score = bestScore;
pLevel->bRev = bestRev;
loopMask |= mask;
if( pBestIdx ){
pLevel->iIdxCur = pParse->nTab++;
}
}
/* Check to see if the ORDER BY clause is or can be satisfied by the
** use of an index on the first table.
*/
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
Index *pIdx; /* Index derived from the WHERE clause */
Table *pTab; /* Left-most table in the FROM clause */
int bRev = 0; /* True to reverse the output order */
int iCur; /* Btree-cursor that will be used by pTab */
WhereLevel *pLevel0 = &pWInfo->a[0];
pTab = pTabList->a[0].pTab;
pIdx = pLevel0->pIdx;
iCur = pTabList->a[0].iCursor;
if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
/* The ORDER BY clause specifies ROWID order, which is what we
** were going to be doing anyway...
*/
*ppOrderBy = 0;
pLevel0->bRev = bRev;
}else if( pLevel0->score==16 ){
/* If there is already an IN index on the left-most table,
** it will not give the correct sort order.
** So, pretend that no suitable index is found.
*/
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
/* If the left-most column is accessed using its ROWID, then do
** not try to sort by index. But do delete the ORDER BY clause
** if it is redundant.
*/
}else if( (pLevel0->score&2)!=0 ){
/* The index that was selected for searching will cause rows to
** appear in sorted order.
*/
*ppOrderBy = 0;
}
}
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
pLevel = pWInfo->a;
for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
Table *pTab;
Index *pIx;
int iIdxCur = pLevel->iIdxCur;
pTab = pTabItem->pTab;
if( pTab->isTransient || pTab->pSelect ) continue;
if( (pLevel->score & 1)==0 ){
sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
}
pLevel->iTabCur = pTabItem->iCursor;
if( (pIx = pLevel->pIdx)!=0 ){
sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
(char*)&pIx->keyInfo, P3_KEYINFO);
}
if( (pLevel->score & 1)!=0 ){
sqlite3VdbeAddOp(v, OP_KeyAsData, iIdxCur, 1);
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
}
sqlite3CodeVerifySchema(pParse, pTab->iDb);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
/* Generate the code to do the search
*/
loopMask = 0;
pLevel = pWInfo->a;
pTabItem = pTabList->a;
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
int j, k;
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
Index *pIdx; /* The index we will be using */
int iIdxCur; /* The VDBE cursor for the index */
int omitTable; /* True if we use the index only */
pIdx = pLevel->pIdx;
iIdxCur = pLevel->iIdxCur;
pLevel->inOp = OP_Noop;
/* Check to see if it is appropriate to omit the use of the table
** here and use its index instead.
*/
omitTable = (pLevel->score&1)!=0;
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
if( !pParse->nMem ) pParse->nMem++;
pLevel->iLeftJoin = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
VdbeComment((v, "# init LEFT JOIN no-match flag"));
}
if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
/* Case 1: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
assert( k<nExpr );
pTerm = &aExpr[k];
assert( pTerm->p!=0 );
assert( pTerm->idxLeft==iCur );
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
codeEqualityTerm(pParse, pTerm, brk, pLevel);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
}else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
/* Case 2: There is an index and all terms of the WHERE clause that
** refer to the index using the "==" or "IN" operators.
*/
int start;
int nColumn = (pLevel->score+16)/32;
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
/* For each column of the index, find the term of the WHERE clause that
** constraints that column. If the WHERE clause term is X=expr, then
** evaluation expr and leave the result on the stack */
for(j=0; j<nColumn; j++){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
&& (pX->op==TK_EQ || pX->op==TK_IN)
){
char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
if( sqlite3IndexAffinityOk(pX, idxaff) ){
codeEqualityTerm(pParse, pTerm, brk, pLevel);
break;
}
}
}
}
pLevel->iMem = pParse->nMem++;
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
buildIndexProbe(v, nColumn, brk, pIdx);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
/* Generate code (1) to move to the first matching element of the table.
** Then generate code (2) that jumps to "brk" after the cursor is past
** the last matching element of the table. The code (1) is executed
** once to initialize the search, the code (2) is executed before each
** iteration of the scan to see if the scan has finished. */
if( pLevel->bRev ){
/* Scan in reverse order */
sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
pLevel->op = OP_Prev;
}else{
/* Scan in the forward order */
sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
pLevel->op = OP_Next;
}
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
if( !omitTable ){
sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
}
pLevel->p1 = iIdxCur;
pLevel->p2 = start;
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
/* Case 3: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
int bRev = pLevel->bRev;
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
if( bRev ){
int t = iDirectGt[i];
iDirectGt[i] = iDirectLt[i];
iDirectLt[i] = t;
}
if( iDirectGt[i]>=0 ){
Expr *pX;
k = iDirectGt[i];
assert( k<nExpr );
pTerm = &aExpr[k];
pX = pTerm->p;
assert( pX!=0 );
assert( pTerm->idxLeft==iCur );
sqlite3ExprCode(pParse, pX->pRight);
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
VdbeComment((v, "pk"));
disableTerm(pLevel, &pTerm->p);
}else{
sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
}
if( iDirectLt[i]>=0 ){
Expr *pX;
k = iDirectLt[i];
assert( k<nExpr );
pTerm = &aExpr[k];
pX = pTerm->p;
assert( pX!=0 );
assert( pTerm->idxLeft==iCur );
sqlite3ExprCode(pParse, pX->pRight);
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
if( pX->op==TK_LT || pX->op==TK_GT ){
testOp = bRev ? OP_Le : OP_Ge;
}else{
testOp = bRev ? OP_Lt : OP_Gt;
}
disableTerm(pLevel, &pTerm->p);
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
if( testOp!=OP_Noop ){
sqlite3VdbeAddOp(v, OP_Recno, iCur, 0);
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, (int)(('n'<<8)&0x0000FF00), brk);
}
}else if( pIdx==0 ){
/* Case 4: There is no usable index. We must do a complete
** scan of the entire database table.
*/
int start;
int opRewind;
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
if( pLevel->bRev ){
opRewind = OP_Last;
pLevel->op = OP_Prev;
}else{
opRewind = OP_Rewind;
pLevel->op = OP_Next;
}
sqlite3VdbeAddOp(v, opRewind, iCur, brk);
start = sqlite3VdbeCurrentAddr(v);
pLevel->p1 = iCur;
pLevel->p2 = start;
}else{
/* Case 5: The WHERE clause term that refers to the right-most
** column of the index is an inequality. For example, if
** the index is on (x,y,z) and the WHERE clause is of the
** form "x=5 AND y<10" then this case is used. Only the
** right-most column can be an inequality - the rest must
** use the "==" operator.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
int score = pLevel->score;
int nEqColumn = score/32;
int start;
int leFlag=0, geFlag=0;
int testOp;
/* Evaluate the equality constraints
*/
for(j=0; j<nEqColumn; j++){
int iIdxCol = pIdx->aiColumn[j];
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& pX->op==TK_EQ
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==iIdxCol
){
sqlite3ExprCode(pParse, pX->pRight);
disableTerm(pLevel, &pTerm->p);
break;
}
}
}
/* Duplicate the equality term values because they will all be
** used twice: once to make the termination key and once to make the
** start key.
*/
for(j=0; j<nEqColumn; j++){
sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
}
/* Labels for the beginning and end of the loop
*/
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
/* Generate the termination key. This is the key value that
** will end the search. There is no termination key if there
** are no equality terms and no "X<..." term.
**
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
** key computed here really ends up being the start key.
*/
if( (score & 4)!=0 ){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pX->op==TK_LT || pX->op==TK_LE)
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
){
sqlite3ExprCode(pParse, pX->pRight);
leFlag = pX->op==TK_LE;
disableTerm(pLevel, &pTerm->p);
break;
}
}
testOp = OP_IdxGE;
}else{
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
leFlag = 1;
}
if( testOp!=OP_Noop ){
int nCol = nEqColumn + ((score & 4)!=0);
pLevel->iMem = pParse->nMem++;
buildIndexProbe(v, nCol, brk, pIdx);
if( pLevel->bRev ){
int op = leFlag ? OP_MoveLe : OP_MoveLt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}else{
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
}
}else if( pLevel->bRev ){
sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
}
/* Generate the start key. This is the key that defines the lower
** bound on the search. There is no start key if there are no
** equality terms and if there is no "X>..." term. In
** that case, generate a "Rewind" instruction in place of the
** start key search.
**
** 2002-Dec-04: In the case of a reverse-order search, the so-called
** "start" key really ends up being used as the termination key.
*/
if( (score & 8)!=0 ){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pX->op==TK_GT || pX->op==TK_GE)
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
){
sqlite3ExprCode(pParse, pX->pRight);
geFlag = pX->op==TK_GE;
disableTerm(pLevel, &pTerm->p);
break;
}
}
}else{
geFlag = 1;
}
if( nEqColumn>0 || (score&8)!=0 ){
int nCol = nEqColumn + ((score&8)!=0);
buildIndexProbe(v, nCol, brk, pIdx);
if( pLevel->bRev ){
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
testOp = OP_IdxLT;
}else{
int op = geFlag ? OP_MoveGe : OP_MoveGt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}
}else if( pLevel->bRev ){
testOp = OP_Noop;
}else{
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
}
/* Generate the the top of the loop. If there is a termination
** key we have to test for that key and abort at the top of the
** loop.
*/
start = sqlite3VdbeCurrentAddr(v);
if( testOp!=OP_Noop ){
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
}
}
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
if( !omitTable ){
sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
}
/* Record the instruction used to terminate the loop.
*/
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
pLevel->p1 = iIdxCur;
pLevel->p2 = start;
}
loopMask |= getMask(&maskSet, iCur);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
if( pTerm->p==0 ) continue;
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
continue;
}
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
pTerm->p = 0;
}
brk = cont;
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
*/
if( pLevel->iLeftJoin ){
pLevel->top = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
VdbeComment((v, "# record LEFT JOIN hit"));
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
if( pTerm->p==0 ) continue;
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
pTerm->p = 0;
}
}
}
pWInfo->iContinue = cont;
freeMaskSet(&maskSet);
return pWInfo;
}
/*
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
struct SrcList_item *pTabItem;
/* Generate loop termination code.
*/
for(i=pTabList->nSrc-1; i>=0; i--){
pLevel = &pWInfo->a[i];
sqlite3VdbeResolveLabel(v, pLevel->cont);
if( pLevel->op!=OP_Noop ){
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
}
sqlite3VdbeResolveLabel(v, pLevel->brk);
if( pLevel->inOp!=OP_Noop ){
sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
}
if( pLevel->iLeftJoin ){
int addr;
addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
if( pLevel->iIdxCur>=0 ){
sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
}
sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
}
}
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
/* Close all of the cursors that were opend by sqlite3WhereBegin.
*/
pLevel = pWInfo->a;
pTabItem = pTabList->a;
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
if( pTab->isTransient || pTab->pSelect ) continue;
if( (pLevel->score & 1)==0 ){
sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
}
if( pLevel->pIdx!=0 ){
sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
}
/* Make cursor substitutions for cases where we want to use
** just the index and never reference the table.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
** directly. This loop scans all that code looking for opcodes
** that reference the table and converts them into opcodes that
** reference the index.
*/
if( pLevel->score & 1 ){
int i, j, last;
VdbeOp *pOp;
Index *pIdx = pLevel->pIdx;
assert( pIdx!=0 );
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
last = sqlite3VdbeCurrentAddr(v);
for(i=pWInfo->iTop; i<last; i++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
pOp->p1 = pLevel->iIdxCur;
for(j=0; j<pIdx->nColumn; j++){
if( pOp->p2==pIdx->aiColumn[j] ){
pOp->p2 = j;
break;
}
}
}else if( pOp->opcode==OP_Recno ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRecno;
}else if( pOp->opcode==OP_NullRow ){
pOp->opcode = OP_Noop;
}
}
}
}
/* Final cleanup
*/
sqliteFree(pWInfo);
return;
}
|