1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*************************************************
* BigInt Assignment Operators Source File *
* (C) 1999-2005 The Botan Project *
*************************************************/
#include <botan/bigint.h>
#include <botan/numthry.h>
#include <botan/mp_core.h>
#include <botan/bit_ops.h>
namespace Botan {
/*************************************************
* Addition Operator *
*************************************************/
BigInt& BigInt::operator+=(const BigInt& n)
{
if((sign() == n.sign()))
{
const u32bit reg_size = std::max(sig_words(), n.sig_words()) + 1;
grow_to(reg_size);
bigint_add2(get_reg(), reg_size-1, n.data(), n.sig_words());
}
else
(*this) = (*this) + n;
return (*this);
}
/*************************************************
* Subtraction Operator *
*************************************************/
BigInt& BigInt::operator-=(const BigInt& n)
{
s32bit relative_size = bigint_cmp(data(), sig_words(),
n.data(), n.sig_words());
if(relative_size == 0)
{
if(sign() == n.sign())
(*this) = 0;
else
(*this) <<= 1;
return (*this);
}
const u32bit reg_size = std::max(sig_words(), n.sig_words()) + 1;
grow_to(reg_size);
if(relative_size == -1)
{
if(sign() == n.sign())
(*this) = (*this) - n;
else
bigint_add2(get_reg(), reg_size-1, n.data(), n.sig_words());
set_sign(n.reverse_sign());
}
if(relative_size == 1)
{
if(sign() == n.sign())
bigint_sub2(get_reg(), sig_words(), n.data(), n.sig_words());
else
bigint_add2(get_reg(), reg_size-1, n.data(), n.sig_words());
}
return (*this);
}
/*************************************************
* Multiplication Operator *
*************************************************/
BigInt& BigInt::operator*=(const BigInt& n)
{
if(is_zero()) return (*this);
if(n.is_zero()) { (*this) = 0; return (*this); }
if(sign() != n.sign())
set_sign(Negative);
else
set_sign(Positive);
const u32bit words = sig_words();
const u32bit n_words = n.sig_words();
if(words == 1 || n_words == 1)
{
grow_to(words + n_words);
if(n_words == 1)
bigint_linmul2(get_reg(), words, n.word_at(0));
else
bigint_linmul3(get_reg(), n.data(), n_words, word_at(0));
return (*this);
}
BigInt z(sign(), size() + n.size());
bigint_mul3(z.get_reg(), z.size(),
data(), size(), words,
n.data(), n.size(), n_words);
(*this) = z;
return (*this);
}
/*************************************************
* Division Operator *
*************************************************/
BigInt& BigInt::operator/=(const BigInt& n)
{
if(n.sig_words() == 1 && power_of_2(n.word_at(0)))
(*this) >>= (n.bits() - 1);
else
(*this) = (*this) / n;
return (*this);
}
/*************************************************
* Modulo Operator *
*************************************************/
BigInt& BigInt::operator%=(const BigInt& mod)
{
return (*this = (*this) % mod);
}
/*************************************************
* Modulo Operator *
*************************************************/
word BigInt::operator%=(word mod)
{
if(mod == 0)
throw BigInt::DivideByZero();
if(power_of_2(mod))
{
word result = (word_at(0) & (mod - 1));
clear();
reg.grow_to(2);
reg[0] = result;
return result;
}
word remainder = 0;
u32bit size = sig_words();
for(u32bit j = size; j > 0; j--)
remainder = bigint_modop(remainder, word_at(j-1), mod);
clear();
reg.grow_to(2);
reg[0] = remainder;
return word_at(0);
}
/*************************************************
* Left Shift Operator *
*************************************************/
BigInt& BigInt::operator<<=(u32bit shift)
{
if(shift == 0) return (*this);
const u32bit shift_words = shift / MP_WORD_BITS,
shift_bits = shift % MP_WORD_BITS;
grow_to(sig_words() + shift_words + (shift_bits ? 1 : 0));
bigint_shl1(get_reg(), sig_words(), shift_words, shift_bits);
return (*this);
}
/*************************************************
* Right Shift Operator *
*************************************************/
BigInt& BigInt::operator>>=(u32bit shift)
{
if(shift == 0) return (*this);
if(bits() <= shift)
{
(*this) = 0;
return (*this);
}
const u32bit shift_words = shift / MP_WORD_BITS,
shift_bits = shift % MP_WORD_BITS;
bigint_shr1(get_reg(), sig_words(), shift_words, shift_bits);
return (*this);
}
}
|