1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*************************************************
* Prime Generation Source File *
* (C) 1999-2005 The Botan Project *
*************************************************/
#include <botan/numthry.h>
#include <botan/lookup.h>
#include <botan/bit_ops.h>
#include <botan/parsing.h>
#include <botan/rng.h>
#include <botan/ui.h>
#include <memory>
namespace Botan {
namespace {
/*************************************************
* Increment the seed by one *
*************************************************/
void increment(SecureVector<byte>& seed)
{
for(u32bit j = seed.size(); j > 0; j--)
if(++seed[j-1])
break;
}
}
/*************************************************
* Attempt DSA prime generation with given seed *
*************************************************/
bool generate_dsa_primes(BigInt& p, BigInt& q, const byte const_seed[],
u32bit seed_len, u32bit pbits, u32bit counter_start)
{
if(seed_len < 20)
throw Invalid_Argument("DSA prime generation needs a seed "
"at least 160 bits long");
if((pbits % 64 != 0) || (pbits > 1024) || (pbits < 512))
throw Invalid_Argument("DSA prime generation algorithm does not support "
"prime size " + to_string(pbits));
std::auto_ptr<HashFunction> sha1(get_hash("SHA-1"));
SecureVector<byte> seed(const_seed, seed_len);
SecureVector<byte> qhash = sha1->process(seed);
increment(seed);
SecureVector<byte> qhash2 = sha1->process(seed);
xor_buf(qhash, qhash2, qhash.size());
qhash[0] |= 0x80;
qhash[19] |= 0x01;
q.binary_decode(qhash, qhash.size());
if(!is_prime(q))
return false;
UI::pulse(UI::PRIME_FOUND);
u32bit n = (pbits-1) / 160, b = (pbits-1) % 160;
SecureVector<byte> W(20 * (n+1));
BigInt X;
for(u32bit j = 0; j != counter_start; j++)
for(u32bit k = 0; k != n + 1; k++)
increment(seed);
for(u32bit j = 0; j != 4096 - counter_start; j++)
{
UI::pulse(UI::PRIME_SEARCHING);
for(u32bit k = 0; k != n + 1; k++)
{
increment(seed);
sha1->update(seed);
sha1->final(W + 20 * (n-k));
}
X.binary_decode(W + (20 - 1 - b/8), W.size() - (20 - 1 - b/8));
X.set_bit(pbits-1);
p = X - (X % (2*q) - 1);
if(p.bits() == pbits && is_prime(p))
{
UI::pulse(UI::PRIME_FOUND);
return true;
}
}
return false;
}
/*************************************************
* Generate DSA Primes *
*************************************************/
SecureVector<byte> generate_dsa_primes(BigInt& p, BigInt& q, u32bit pbits)
{
SecureVector<byte> seed(20);
while(true)
{
Global_RNG::randomize(seed, seed.size(), Nonce);
UI::pulse(UI::PRIME_SEARCHING);
if(generate_dsa_primes(p, q, seed, seed.size(), pbits))
return seed;
}
}
/*************************************************
* Generate a random prime *
*************************************************/
BigInt random_prime(u32bit bits, RNG_Quality level, const BigInt& coprime,
u32bit equiv, u32bit modulo)
{
if(bits <= 48)
throw Invalid_Argument("random_prime: Can't make a prime of " +
to_string(bits) + " bits");
if(coprime <= 0)
throw Invalid_Argument("random_prime: coprime must be > 0");
if(modulo % 2 == 1 || modulo == 0)
throw Invalid_Argument("random_prime: Invalid modulo value");
if(equiv >= modulo || equiv % 2 == 0)
throw Invalid_Argument("random_prime: equiv must be < modulo, and odd");
while(true)
{
UI::pulse(UI::PRIME_SEARCHING);
BigInt p = random_integer(bits, level);
p.set_bit(bits - 2);
p.set_bit(0);
if(p % modulo != equiv)
p += (modulo - p % modulo) + equiv;
const u32bit sieve_size = std::min(bits / 2, PRIME_TABLE_SIZE);
SecureVector<u32bit> sieve(sieve_size);
for(u32bit j = 0; j != sieve.size(); j++)
{
sieve[j] = p % PRIMES[j];
UI::pulse(UI::PRIME_SIEVING);
}
u32bit counter = 0;
while(true)
{
if(counter == 4096 || p.bits() > bits)
break;
UI::pulse(UI::PRIME_SEARCHING);
bool passes_sieve = true;
counter++;
p += modulo;
for(u32bit j = 0; j != sieve.size(); j++)
{
sieve[j] = (sieve[j] + modulo) % PRIMES[j];
UI::pulse(UI::PRIME_SIEVING);
if(sieve[j] == 0)
passes_sieve = false;
}
if(!passes_sieve || gcd(p - 1, coprime) != 1)
continue;
UI::pulse(UI::PRIME_PASSED_SIEVE);
if(passes_mr_tests(p))
{
UI::pulse(UI::PRIME_FOUND);
return p;
}
}
}
}
}
|