1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/*************************************************
* Modular Exponentiation Source File *
* (C) 1999-2005 The Botan Project *
*************************************************/
#include <botan/numthry.h>
#include <vector>
namespace Botan {
namespace {
/*************************************************
* Exponentiation Window Size *
*************************************************/
u32bit window_size(u32bit exp_bits)
{
struct mapping { u32bit bits; u32bit window_size; };
static const mapping wsize[] = {
{ 2048, 7 },
{ 1024, 6 },
{ 256, 5 },
{ 128, 4 },
{ 64, 3 },
{ 0, 0 }
};
for(u32bit j = 0; wsize[j].bits; j++)
{
if(exp_bits >= wsize[j].bits)
return wsize[j].window_size;
}
return 1;
}
/*************************************************
* Left-to-Right Binary Modular Exponentiation *
*************************************************/
BigInt power_mod_l2r(const BigInt& basex, const BigInt& exp,
ModularReducer* reducer)
{
const BigInt base = reducer->convert_in(basex);
const u32bit exp_bits = exp.bits();
BigInt x = reducer->convert_in(1);
for(u32bit j = exp_bits; j > 0; j--)
{
x = reducer->square(x);
if(exp.get_bit(j-1))
x = reducer->multiply(x, base);
}
return reducer->convert_out(x);
}
/*************************************************
* Modular Exponentiation with g = 2 *
*************************************************/
BigInt power_mod_g2(const BigInt& exp, ModularReducer* reducer)
{
if(reducer->must_convert())
throw Internal_Error("power_mod_g2: Can't use this reducer");
const u32bit exp_bits = exp.bits();
BigInt x = 1;
for(u32bit j = exp_bits; j > 0; j--)
{
x = reducer->square(x);
if(exp.get_bit(j-1))
{
x <<= 1;
x = reducer->reduce(x);
}
}
return x;
}
/*************************************************
* Window Modular Exponentiation *
*************************************************/
BigInt power_mod_window(const BigInt& base, const BigInt& exp,
ModularReducer* reducer, u32bit window_bits)
{
if(window_bits < 2)
throw Internal_Error("power_mod_window: Window size too small");
std::vector<BigInt> g((1 << window_bits) - 1);
g[0] = reducer->convert_in(base);
for(u32bit j = 1; j != g.size(); j++)
g[j] = reducer->multiply(g[j-1], g[0]);
const u32bit exp_nibbles = (exp.bits() + window_bits - 1) / window_bits;
BigInt x = reducer->convert_in(1);
for(u32bit j = exp_nibbles; j > 0; j--)
{
for(u32bit k = 0; k != window_bits; k++)
x = reducer->square(x);
u32bit nibble = exp.get_nibble(j-1, window_bits);
if(nibble)
x = reducer->multiply(x, g[nibble-1]);
}
return reducer->convert_out(x);
}
}
/*************************************************
* Modular Exponentiation *
*************************************************/
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
{
ModularReducer* reducer = get_reducer(mod);
BigInt x = power_mod(base, exp, reducer);
delete reducer;
return x;
}
/*************************************************
* Modular Exponentiation Algorithm Dispatch *
*************************************************/
BigInt power_mod(const BigInt& base, const BigInt& exp,
ModularReducer* reducer)
{
if(base.is_negative())
throw Invalid_Argument("power_mod: base must be positive");
if(exp.is_negative())
throw Invalid_Argument("power_mod: exponent must be positive");
if(exp.is_zero())
return 1;
const u32bit window_bits = window_size(exp.bits());
if(base == 2 && !reducer->must_convert())
return power_mod_g2(exp, reducer);
if(window_bits > 1)
return power_mod_window(base, exp, reducer, window_bits);
return power_mod_l2r(base, exp, reducer);
}
}
|