1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
#include <boost/shared_ptr.hpp>
#include "sanity.hh"
#include "graph.hh"
using boost::shared_ptr;
using std::string;
using std::vector;
using std::set;
void
get_reconstruction_path(std::string const & start,
reconstruction_graph const & graph,
reconstruction_path & path)
{
// This function does a breadth-first search from a starting point, until it
// finds some node that matches an arbitrary condition. The intended usage
// is for finding reconstruction paths in a database of deltas -- we start
// from the node we want to reconstruct, and follow existing deltas outward
// until we reach a full-text base. We return the shortest path from
// 'start' to a base version.
//
// The algorithm involves keeping a set of parallel linear paths, starting
// from 'start', that move forward through the DAG until we hit a base.
//
// On each iteration, we extend every active path by one step. If our
// extension involves a fork, we duplicate the path. If any path
// contains a cycle, we fault.
//
// If, by extending a path C, we enter a node which another path
// D has already seen, we kill path C. This avoids the possibility of
// exponential growth in the number of paths due to extensive forking
// and merging.
// Long ago, we used to do this with the boost graph library, but it
// involved loading too much of the storage graph into memory at any
// moment. this imperative version only loads the descendents of the
// reconstruction node, so it much cheaper in terms of memory.
vector< shared_ptr<reconstruction_path> > live_paths;
{
shared_ptr<reconstruction_path> pth0 = shared_ptr<reconstruction_path>(new reconstruction_path());
pth0->push_back(start);
live_paths.push_back(pth0);
}
shared_ptr<reconstruction_path> selected_path;
set<string> seen_nodes;
while (!selected_path)
{
vector< shared_ptr<reconstruction_path> > next_paths;
I(!live_paths.empty());
for (vector<shared_ptr<reconstruction_path> >::const_iterator i = live_paths.begin();
i != live_paths.end(); ++i)
{
shared_ptr<reconstruction_path> pth = *i;
string tip = pth->back();
if (graph.is_base(tip))
{
selected_path = pth;
break;
}
else
{
// This tip is not a root, so extend the path.
set<string> next;
graph.get_next(tip, next);
I(!next.empty());
// Replicate the path if there's a fork.
bool first = true;
for (set<string>::const_iterator j = next.begin(); j != next.end(); ++j)
{
L(FL("considering %s -> %s") % tip % *j);
if (seen_nodes.find(*j) == seen_nodes.end())
{
shared_ptr<reconstruction_path> pthN;
if (first)
{
pthN = pth;
first = false;
}
else
{
// NOTE: this is not the first iteration of the loop, and
// the first iteration appended one item to pth. So, we
// want to remove one before we use it. (Why not just
// copy every time? Because that makes this into an
// O(n^2) algorithm, in the common case where there is
// only one direction to go at each stop.)
pthN = shared_ptr<reconstruction_path>(new reconstruction_path(*pth));
I(!pthN->empty());
pthN->pop_back();
}
// check for a cycle... not that anything would break if
// there were one, but it's nice to let us know we have a bug
for (reconstruction_path::const_iterator k = pthN->begin(); k != pthN->end(); ++k)
I(*k != *j);
pthN->push_back(*j);
next_paths.push_back(pthN);
seen_nodes.insert(*j);
}
}
}
}
I(selected_path || !next_paths.empty());
live_paths = next_paths;
}
path = *selected_path;
}
#ifdef BUILD_UNIT_TESTS
#include <map>
#include "unit_tests.hh"
#include "randomizer.hh"
#include <boost/lexical_cast.hpp>
using boost::lexical_cast;
using std::pair;
typedef std::multimap<string, string> rg_map;
struct mock_reconstruction_graph : public reconstruction_graph
{
rg_map ancestry;
set<string> bases;
mock_reconstruction_graph(rg_map const & ancestry, set<string> const & bases)
: ancestry(ancestry), bases(bases)
{}
virtual bool is_base(string const & node) const
{
return bases.find(node) != bases.end();
}
virtual void get_next(string const & from, set<string> & next) const
{
typedef rg_map::const_iterator ci;
pair<ci, ci> range = ancestry.equal_range(from);
for (ci i = range.first; i != range.second; ++i)
next.insert(i->second);
}
};
static void
make_random_reconstruction_graph(size_t num_nodes, size_t num_random_edges,
size_t num_random_bases,
vector<string> & all_nodes, rg_map & ancestry,
set<string> & bases,
randomizer & rng)
{
for (size_t i = 0; i != num_nodes; ++i)
all_nodes.push_back(lexical_cast<string>(i));
// We put a single long chain of edges in, to make sure that everything is
// reconstructable somehow.
for (size_t i = 1; i != num_nodes; ++i)
ancestry.insert(make_pair(idx(all_nodes, i - 1), idx(all_nodes, i)));
bases.insert(all_nodes.back());
// Then we insert a bunch of random edges too. These edges always go
// forwards, to avoid creating cycles (which make get_reconstruction_path
// unhappy).
for (size_t i = 0; i != num_random_edges; ++i)
{
size_t from_idx = rng.uniform(all_nodes.size() - 1);
size_t to_idx = from_idx + 1 + rng.uniform(all_nodes.size() - 1 - from_idx);
ancestry.insert(make_pair(idx(all_nodes, from_idx),
idx(all_nodes, to_idx)));
}
// And a bunch of random bases.
for (size_t i = 0; i != num_random_bases; ++i)
bases.insert(idx(all_nodes, rng.uniform(all_nodes.size())));
}
static void
check_reconstruction_path(string const & start, reconstruction_graph const & graph,
reconstruction_path const & path)
{
I(!path.empty());
I(*path.begin() == start);
reconstruction_path::const_iterator last = path.end();
--last;
I(graph.is_base(*last));
for (reconstruction_path::const_iterator i = path.begin(); i != last; ++i)
{
set<string> children;
graph.get_next(*i, children);
reconstruction_path::const_iterator next = i;
++next;
I(children.find(*next) != children.end());
}
}
static void
run_get_reconstruction_path_tests_on_random_graph(size_t num_nodes,
size_t num_random_edges,
size_t num_random_bases,
randomizer & rng)
{
vector<string> all_nodes;
rg_map ancestry;
set<string> bases;
make_random_reconstruction_graph(num_nodes, num_random_edges, num_random_bases,
all_nodes, ancestry, bases,
rng);
mock_reconstruction_graph graph(ancestry, bases);
for (vector<string>::const_iterator i = all_nodes.begin();
i != all_nodes.end(); ++i)
{
reconstruction_path path;
get_reconstruction_path(*i, graph, path);
check_reconstruction_path(*i, graph, path);
}
}
UNIT_TEST(graph, random_get_reconstruction_path)
{
randomizer rng;
// Some arbitrary numbers.
run_get_reconstruction_path_tests_on_random_graph(100, 100, 10, rng);
run_get_reconstruction_path_tests_on_random_graph(100, 200, 5, rng);
run_get_reconstruction_path_tests_on_random_graph(1000, 1000, 50, rng);
run_get_reconstruction_path_tests_on_random_graph(1000, 2000, 100, rng);
}
#endif // BUILD_UNIT_TESTS
// Local Variables:
// mode: C++
// fill-column: 76
// c-file-style: "gnu"
// indent-tabs-mode: nil
// End:
// vim: et:sw=2:sts=2:ts=2:cino=>2s,{s,\:s,+s,t0,g0,^-2,e-2,n-2,p2s,(0,=s:
|