File: refiner.cc

package info (click to toggle)
monotone 0.31-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 20,680 kB
  • ctags: 14,801
  • sloc: cpp: 87,711; ansic: 64,862; sh: 5,691; lisp: 954; perl: 783; makefile: 509; python: 265; sql: 98; sed: 16
file content (741 lines) | stat: -rw-r--r-- 22,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
// Copyright (C) 2005 Graydon Hoare <graydon@pobox.com>
//
// This program is made available under the GNU GPL version 2.0 or
// greater. See the accompanying file COPYING for details.
//
// This program is distributed WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE.

#include <algorithm>
#include <set>
#include <string>
#include <utility>

#include <boost/shared_ptr.hpp>

#include "refiner.hh"
#include "vocab.hh"
#include "merkle_tree.hh"
#include "netcmd.hh"
#include "netsync.hh"

using std::inserter;
using std::make_pair;
using std::set;
using std::set_difference;
using std::string;

using boost::dynamic_bitset;

// Our goal is to learn the complete set of items to send. To do this
// we exchange two types of refinement commands: queries and responses.
//
//  - On receiving a 'query' refinement for a node (p,l) you have:
//    - Compare the query node to your node (p,l), noting all the leaves
//      you must send as a result of what you learn in comparison.
//    - For each slot, if you have a subtree where the peer does not
//      (or you both do, and yours differs) send a sub-query for that
//      node, incrementing your query-in-flight counter.
//    - Send a 'response' refinement carrying your node (p,l)
//
//  - On receiving a 'query' refinement for a node (p,l) you don't have:
//    - Send a 'response' refinement carrying an empty synthetic node (p,l)
//
//  - On receiving a 'response' refinement for (p,l)
//    - Compare the query node to your node (p,l), noting all the leaves
//      you must send as a result of what you learn in comparison.
//    - Decrement your query-in-flight counter.
//
// The client kicks the process off by sending a query refinement for the
// root node. When the client's query-in-flight counter drops to zero,
// the client sends a done command, stating how many items it will be
// sending.
//
// When the server receives a done command, it echoes it back stating how
// many items *it* is going to send.
//
// When either side receives a done command, it transitions to
// streaming send mode, sending all the items it's calculated.

void
refiner::note_local_item(id const & item)
{
  local_items.insert(item);
  insert_into_merkle_tree(table, type, item, 0);
}

void
refiner::reindex_local_items()
{
  recalculate_merkle_codes(table, prefix(""), 0);
}

void
refiner::load_merkle_node(size_t level, prefix const & pref,
                          merkle_ptr & node)
{
  merkle_table::const_iterator j = table.find(make_pair(pref, level));
  I(j != table.end());
  node = j->second;
}

bool
refiner::merkle_node_exists(size_t level,
                            prefix const & pref)
{
  merkle_table::const_iterator j = table.find(make_pair(pref, level));
  return (j != table.end());
}

void
refiner::calculate_items_to_send()
{
  if (calculated_items_to_send)
    return;

  items_to_send.clear();
  items_to_receive = 0;

  set_difference(local_items.begin(), local_items.end(),
                 peer_items.begin(), peer_items.end(),
                 inserter(items_to_send, items_to_send.begin()));

  string typestr;
  netcmd_item_type_to_string(type, typestr);

  //   L(FL("%s determined %d %s items to send") 
  //     % voicestr() % items_to_send.size() % typestr);
  calculated_items_to_send = true;
}


void
refiner::send_subquery(merkle_node const & our_node, size_t slot)
{
  prefix subprefix;
  our_node.extended_raw_prefix(slot, subprefix);
  merkle_ptr our_subtree;
  load_merkle_node(our_node.level + 1, subprefix, our_subtree);
  // L(FL("%s queueing subquery on level %d\n") % voicestr() % (our_node.level + 1));
  cb.queue_refine_cmd(refinement_query, *our_subtree);
  ++queries_in_flight;
}

void
refiner::send_synthetic_subquery(merkle_node const & our_node, size_t slot)
{
  id val;
  size_t subslot;
  dynamic_bitset<unsigned char> subprefix;

  our_node.get_raw_slot(slot, val);
  pick_slot_and_prefix_for_value(val, our_node.level + 1, subslot, subprefix);

  merkle_node synth_node;
  synth_node.pref = subprefix;
  synth_node.level = our_node.level + 1;
  synth_node.type = our_node.type;
  synth_node.set_raw_slot(subslot, val);
  synth_node.set_slot_state(subslot, our_node.get_slot_state(slot));

  // L(FL("%s queueing synthetic subquery on level %d\n") % voicestr() % (our_node.level + 1));
  cb.queue_refine_cmd(refinement_query, synth_node);
  ++queries_in_flight;
}

void
refiner::note_subtree_shared_with_peer(merkle_node const & our_node, size_t slot)
{
  prefix pref;
  our_node.extended_raw_prefix(slot, pref);
  collect_items_in_subtree(table, pref, our_node.level+1, peer_items);
}

refiner::refiner(netcmd_item_type type, protocol_voice voice, refiner_callbacks & cb)
  : type(type), voice (voice), cb(cb),
    sent_initial_query(false),
    queries_in_flight(0),
    calculated_items_to_send(false),
    done(false),
    items_to_receive(0)
{
  merkle_ptr root = merkle_ptr(new merkle_node());
  root->type = type;
  table.insert(make_pair(make_pair(prefix(""), 0), root));
}

void
refiner::note_item_in_peer(merkle_node const & their_node, size_t slot)
{
  I(slot < constants::merkle_num_slots);
  id slotval;
  their_node.get_raw_slot(slot, slotval);
  peer_items.insert(slotval);

  // Write a debug message
  /*
  {
    hexenc<id> hslotval;
    their_node.get_hex_slot(slot, hslotval);

    hexenc<prefix> hpref;
    their_node.get_hex_prefix(hpref);

    string typestr;
    netcmd_item_type_to_string(their_node.type, typestr);

    L(FL("%s's peer has %s '%s' at slot %d (in node '%s', level %d)")
      % voicestr() % typestr % hslotval % slot % hpref % their_node.level);
  }
  */
}


void
refiner::begin_refinement()
{
  merkle_ptr root;
  load_merkle_node(0, prefix(""), root);
  // L(FL("%s queueing initial node\n") % voicestr());
  cb.queue_refine_cmd(refinement_query, *root);
  ++queries_in_flight;
  sent_initial_query = true;
  string typestr;
  netcmd_item_type_to_string(type, typestr);
  L(FL("Beginning %s refinement on %s.") % typestr % voicestr());
}
  
void
refiner::process_done_command(size_t n_items)
{
  string typestr;
  netcmd_item_type_to_string(type, typestr);

  calculate_items_to_send();
  items_to_receive = n_items;

  L(FL("%s finished %s refinement: %d to send, %d to receive")
    % voicestr() % typestr % items_to_send.size() % items_to_receive);

  /*
  if (local_items.size() < 25) 
    {
      // Debugging aid.
      L(FL("+++ %d items in %s") % local_items.size() % voicestr());
      for (set<id>::const_iterator i = local_items.begin(); 
           i != local_items.end(); ++i)
        {
          hexenc<id> hid;
          encode_hexenc(*i, hid);
          L(FL("%s item %s") % voicestr() % hid);
        }
      L(FL("--- items in %s") % voicestr());
    }
  */

  if (voice == server_voice) 
    {
      //       L(FL("server responding to [done %s %d] with [done %s %d]")
      //         % typestr % n_items % typestr % items_to_send.size());
      cb.queue_done_cmd(type, items_to_send.size());
    }

  done = true;
}


void
refiner::process_refinement_command(refinement_type ty,
                                    merkle_node const & their_node)
{
  prefix pref;
  hexenc<prefix> hpref;
  their_node.get_raw_prefix(pref);
  their_node.get_hex_prefix(hpref);
  string typestr;

  netcmd_item_type_to_string(their_node.type, typestr);
  size_t lev = static_cast<size_t>(their_node.level);

  //   L(FL("%s received refinement %s netcmd on %s node '%s', level %d") %
  //   voicestr() % (ty == refinement_query ? "query" : "response") %
  //   typestr % hpref % lev);

  merkle_ptr our_node;

  if (merkle_node_exists(their_node.level, pref))
    load_merkle_node(their_node.level, pref, our_node);
  else
    {
      // Synthesize empty node if we don't have one.
      our_node = merkle_ptr(new merkle_node);
      our_node->pref = their_node.pref;
      our_node->level = their_node.level;
      our_node->type = their_node.type;
    }

  for (size_t slot = 0; slot < constants::merkle_num_slots; ++slot)
    {
      // Note any leaves they have.
      if (their_node.get_slot_state(slot) == leaf_state)
        note_item_in_peer(their_node, slot);

      if (ty == refinement_query)
        {
          // This block handles the interesting asymmetric cases of subtree
          // vs. leaf.
          //
          // Note that in general we're not allowed to send a new query
          // packet when we're looking at a response. This wrinkle is both
          // why this block appears to do slightly more work than necessary,
          // and why it's predicated on "ty == refinement_query". More detail
          // in the cases below.

          if (their_node.get_slot_state(slot) == leaf_state
              && our_node->get_slot_state(slot) == subtree_state)
            {
              // If they have a leaf and we have a subtree, we need to look
              // in our subtree to find if their leaf is present, and send
              // them a "query" that will inform them, in passing, of the
              // presence of our node.

              id their_slotval;
              their_node.get_raw_slot(slot, their_slotval);
              size_t snum;
              merkle_ptr mp;
              if (locate_item(table, their_slotval, snum, mp))
                {
                  cb.queue_refine_cmd(refinement_query, *mp);
                  ++queries_in_flight;
                }                  

            }

          else if (their_node.get_slot_state(slot) == subtree_state
                   && our_node->get_slot_state(slot) == leaf_state)
            {
              // If they have a subtree and we have a leaf, we need to
              // arrange for a subquery to explore the subtree looking for
              // the leaf in *their* subtree. The tricky part is that we
              // cannot have this subquery triggered by our response
              // packet. We need to initiate a new (redundant) query here to
              // prompt our peer to explore the subtree.
              //
              // This is purely for the sake of balancing the bracketing of
              // queries and responses: if they were to reply to our
              // response packet, our query-in-flight counter would have
              // temporarily dropped to zero and we'd have initiated
              // streaming send mode.
              //
              // Yes, the need to invert the sense of queries in this case
              // represents a misdesign in this generation of the netsync
              // protocol. It still contains much less hair than it used to,
              // so I'm willing to accept it.

              send_synthetic_subquery(*our_node, slot);
            }

          // Finally: if they had an empty slot in either case, there's no
          // subtree exploration to perform; the response packet will inform
          // the peer of everything relevant know about this node: namely
          // that they're going to receive a complete subtree, we know
          // what's in it, and we'll tell them how many nodes to expect in
          // the aggregate count of the 'done' commane.

        }

      // Compare any subtrees, if we both have subtrees.
      if (their_node.get_slot_state(slot) == subtree_state
          && our_node->get_slot_state(slot) == subtree_state)
        {
          id our_slotval, their_slotval;
          their_node.get_raw_slot(slot, their_slotval);
          our_node->get_raw_slot(slot, our_slotval);

          // Always note when you share a subtree.
          if (their_slotval == our_slotval)
            note_subtree_shared_with_peer(*our_node, slot);

          // Send subqueries when you have a different subtree
          // and you're answering a query message.
          else if (ty == refinement_query)
            send_subquery(*our_node, slot);
        }
    }

  if (ty == refinement_response)
    {
      E((queries_in_flight > 0),
        F("underflow on query-in-flight counter"));
      --queries_in_flight;

      // Possibly this signals the end of refinement.
      if (voice == client_voice && queries_in_flight == 0)
        {
          string typestr;          
          netcmd_item_type_to_string(their_node.type, typestr);
          calculate_items_to_send();
          // L(FL("client sending [done %s %d]") % typestr % items_to_send.size());
          cb.queue_done_cmd(type, items_to_send.size());
        }
    }
  else
    {
      // Always reply to every query with the current node.
      I(ty == refinement_query);
      // L(FL("%s queueing response to query on %d\n") % voicestr() % our_node->level);
      cb.queue_refine_cmd(refinement_response, *our_node);
    }
}

#ifdef BUILD_UNIT_TESTS
#include "randomizer.hh"
#include "unit_tests.hh"

#include <deque>
#include <boost/shared_ptr.hpp>

using std::deque;
using boost::shared_ptr;

struct 
refiner_pair
{
  // This structure acts as a mock netsync session. It's only purpose is to
  // construct two refiners that are connected to one another, and route
  // refinement calls back and forth between them.

  struct 
  refiner_pair_callbacks : refiner_callbacks
  {
    refiner_pair & p;
    bool is_client;
    refiner_pair_callbacks(refiner_pair & p, bool is_client) 
      : p(p), is_client(is_client) 
    {}

    virtual void queue_refine_cmd(refinement_type ty,
                                  merkle_node const & our_node)
    {
      p.events.push_back(shared_ptr<msg>(new msg(is_client, ty, our_node)));
    }

    virtual void queue_done_cmd(netcmd_item_type ty,
                                size_t n_items)
    {
      p.events.push_back(shared_ptr<msg>(new msg(is_client, n_items)));
    }
    virtual ~refiner_pair_callbacks() {}
  };

  refiner_pair_callbacks client_cb;
  refiner_pair_callbacks server_cb;
  refiner client;
  refiner server;
  
  struct msg
  {
    msg(bool is_client, refinement_type ty, merkle_node const & node)
      : op(refine),
        ty(ty),
        send_to_client(!is_client),
        node(node)
    {}

    msg(bool is_client, size_t items) 
      : op(done),
        send_to_client(!is_client),
        n_items(items) 
    {}

    enum { refine, done } op;
    refinement_type ty;
    bool send_to_client;
    size_t n_items;
    merkle_node node;
  };

  deque<shared_ptr<msg> > events;
  size_t n_msgs;

  void crank() 
  {
    
    shared_ptr<msg> m = events.front();
    events.pop_front();
    ++n_msgs;

    switch (m->op) 
      {

      case msg::refine:
        if (m->send_to_client)
          client.process_refinement_command(m->ty, m->node);
        else
          server.process_refinement_command(m->ty, m->node);
        break;

      case msg::done:
        if (m->send_to_client)
          client.process_done_command(m->n_items);
        else
          server.process_done_command(m->n_items);
        break;
      }
  }

  refiner_pair(set<id> const & client_items,
               set<id> const & server_items) : 
    client_cb(*this, true),
    server_cb(*this, false),
    // The item type here really doesn't matter.
    client(file_item, client_voice, client_cb),
    server(file_item, server_voice, server_cb),
    n_msgs(0)
  {
    for (set<id>::const_iterator i = client_items.begin();
         i != client_items.end(); ++i)
      client.note_local_item(*i);

    for (set<id>::const_iterator i = server_items.begin();
         i != server_items.end(); ++i)
      server.note_local_item(*i);

    client.reindex_local_items();
    server.reindex_local_items();
    client.begin_refinement();

    while (! events.empty())
      crank();
    
    // Refinement should have completed by here.
    BOOST_CHECK(client.done);
    BOOST_CHECK(server.done);

    check_set_differences("client", client);
    check_set_differences("server", server);
    check_no_redundant_sends("client->server", 
                             client.items_to_send, 
                             server.get_local_items());
    check_no_redundant_sends("server->client", 
                             server.items_to_send, 
                             client.get_local_items());
    BOOST_CHECK(client.items_to_send.size() == server.items_to_receive);
    BOOST_CHECK(server.items_to_send.size() == client.items_to_receive);
    L(FL("stats: %d total, %d cs, %d sc, %d msgs") 
      % (server.items_to_send.size() + client.get_local_items().size())
      % client.items_to_send.size()
      % server.items_to_send.size()
      % n_msgs);
  }

  void print_if_unequal(char const * context,
                        char const * name1,
                        set<id> const & set1,
                        char const * name2,
                        set<id> const & set2)
  {
    if (set1 != set2)
      {
        L(FL("WARNING: Unequal sets in %s!") % context);
        for (set<id>::const_iterator i = set1.begin(); i != set1.end(); ++i)
          {
            hexenc<id> hid;
            encode_hexenc(*i, hid);
            L(FL("%s: %s") % name1 % hid);
          }

        for (set<id>::const_iterator i = set2.begin(); i != set2.end(); ++i)
          {
            hexenc<id> hid;
            encode_hexenc(*i, hid);
            L(FL("%s: %s") % name2 % hid);
          }
        L(FL("end of unequal sets"));
      }
  }

  void check_no_redundant_sends(char const * context, 
                                set<id> const & src,
                                set<id> const & dst)
  {
    for (set<id>::const_iterator i = src.begin(); i != src.end(); ++i)
      {
        set<id>::const_iterator j = dst.find(*i);
        if (j != dst.end()) 
          {
            hexenc<id> hid;
            encode_hexenc(*i, hid);            
            L(FL("WARNING: %s transmission will send redundant item %s")
              % context % hid);
          }
        BOOST_CHECK(j == dst.end());
      }
  }

  void check_set_differences(char const * context, refiner const & r)
  {
    set<id> tmp;
    set_difference(r.get_local_items().begin(), r.get_local_items().end(),
                   r.get_peer_items().begin(), r.get_peer_items().end(),
                   inserter(tmp, tmp.begin()));
    print_if_unequal(context,
                     "diff(local,peer)", tmp, 
                     "items_to_send", r.items_to_send);

    BOOST_CHECK(tmp == r.items_to_send);
  }
};


void
check_combinations_of_sets(set<id> const & s0, 
                           set<id> const & a,
                           set<id> const & b)
{
  // Having composed our two input sets s0 and s1, we now construct the 2
  // auxilary union-combinations of them -- {} and {s0 U s1} -- giving 4
  // basic input sets. We then run 9 "interesting" pairwise combinations
  // of these input sets.

  set<id> e, u, v;
  set_union(s0.begin(), s0.end(), a.begin(), a.end(), inserter(u, u.begin()));
  set_union(s0.begin(), s0.end(), b.begin(), b.end(), inserter(v, v.begin()));

  { refiner_pair x(e, u); }   // a large initial transfer
  { refiner_pair x(u, e); }   // a large initial transfer

  { refiner_pair x(s0, u); }  // a mostly-shared superset/subset
  { refiner_pair x(u, s0); }  // a mostly-shared superset/subset

  { refiner_pair x(a, u); }   // a mostly-unshared superset/subset
  { refiner_pair x(u, a); }   // a mostly-unshared superset/subset

  { refiner_pair x(u, v); }   // things to send in both directions
  { refiner_pair x(v, u); }   // things to send in both directions

  { refiner_pair x(u, u); }   // a large no-op
}


void 
build_random_set(set<id> & s, size_t sz, bool clumpy, randomizer & rng)
{
  while (s.size() < sz)
    {
      string str(constants::merkle_hash_length_in_bytes, ' ');
      for (size_t i = 0; i < constants::merkle_hash_length_in_bytes; ++i)
        str[i] = static_cast<char>(rng.uniform(0xff));
      s.insert(id(str));
      if (clumpy && rng.flip())
        {
          size_t clumpsz = rng.uniform(7) + 1;
          size_t pos = rng.flip() ? str.size() - 1 : rng.uniform(str.size());
          for (size_t i = 0; s.size() < sz && i < clumpsz; ++i)
            {
              char c = str[pos];
              if (c == static_cast<char>(0xff))
                break;
              ++c;
              str[pos] = c;
              s.insert(id(str));
            }          
        }
    }
}

size_t 
perturbed(size_t n, randomizer & rng)
{
  // we sometimes perturb sizes to deviate a bit from natural word-multiple sizes
  if (rng.flip())
    return n + rng.uniform(5);
  return n;
}

size_t
modulated_size(size_t base_set_size, size_t i)
{
  if (i < 3)
    return i+1;
  else
    return static_cast<size_t>((static_cast<double>(i - 2) / 5.0)
                               * static_cast<double>(base_set_size));
}


void 
check_with_count(size_t base_set_size, randomizer & rng)
{
  if (base_set_size == 0) 
    return;

  L(FL("running refinement check with base set size %d") % base_set_size);

  // Our goal here is to construct a base set of a given size, and two
  // secondary sets which will be combined with the base set in various
  // ways. 
  //
  // The secondary sets will be built at the following sizes:
  //
  // 1 element
  // 2 elements
  // 3 elements
  // 0.2 * size of base set
  // 0.4 * size of base set
  // 0.8 * size of base set
  //
  // The base set is constructed in both clumpy and non-clumpy forms,
  // making 6 * 6 * 2 = 72 variations.
  // 
  // Since each group of sets creates 9 sync scenarios, each "size" creates
  // 648 sync scenarios.
  
  for (size_t c = 0; c < 2; ++c)
    {
      set<id> s0;
      build_random_set(s0, perturbed(base_set_size, rng), c == 0, rng);

      for (size_t a = 0; a < 6; ++a)
        {
          set<id> sa;
          build_random_set(sa, modulated_size(perturbed(base_set_size, rng), a), false, rng);
          
          for (size_t b = 0; b < 6; ++b)
            {
              set<id> sb;
              build_random_set(sb, modulated_size(perturbed(base_set_size, rng), b), false, rng);
              check_combinations_of_sets(s0, sa, sb);
            }
        }
    }          
}

UNIT_TEST(refiner, various_counts)
{
  { 
    // Once with zero-zero, for good measure.
    set<id> s0;
    refiner_pair x(s0, s0); 
  }

  // We run 3 primary counts, giving 1944 tests. Note that there is some
  // perturbation within the test, so we're not likely to feel side effects
  // of landing on such pleasant round numbers.

  randomizer rng;
  check_with_count(1, rng); 
  check_with_count(128, rng); 
  check_with_count(1024, rng); 
}

#endif

// Local Variables:
// mode: C++
// fill-column: 76
// c-file-style: "gnu"
// indent-tabs-mode: nil
// End:
// vim: et:sw=2:sts=2:ts=2:cino=>2s,{s,\:s,+s,t0,g0,^-2,e-2,n-2,p2s,(0,=s: