1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
/*
** 2004 May 26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure. A "Mem"
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
int rc;
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
return SQLITE_OK;
}
#ifdef SQLITE_OMIT_UTF16
return SQLITE_ERROR;
#else
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
** then the encoding of the value may not have changed.
*/
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
if( rc==SQLITE_NOMEM ){
/*
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Null;
pMem->z = 0;
*/
}
return rc;
#endif
}
/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(Mem *pMem){
int n = pMem->n;
u8 *z;
if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
return SQLITE_OK;
}
assert( (pMem->flags & MEM_Dyn)==0 );
assert( pMem->flags & (MEM_Str|MEM_Blob) );
z = sqliteMallocRaw( n+2 );
if( z==0 ){
return SQLITE_NOMEM;
}
pMem->flags |= MEM_Dyn|MEM_Term;
pMem->xDel = 0;
memcpy(z, pMem->z, n );
z[n] = 0;
z[n+1] = 0;
pMem->z = (char*)z;
pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
return SQLITE_OK;
}
/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
int n;
u8 *z;
if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
return SQLITE_OK;
}
assert( (pMem->flags & MEM_Dyn)==0 );
assert( pMem->flags & (MEM_Str|MEM_Blob) );
if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
z = (u8*)pMem->zShort;
pMem->flags |= MEM_Short|MEM_Term;
}else{
z = sqliteMallocRaw( n+2 );
if( z==0 ){
return SQLITE_NOMEM;
}
pMem->flags |= MEM_Dyn|MEM_Term;
pMem->xDel = 0;
}
memcpy(z, pMem->z, n );
z[n] = 0;
z[n+1] = 0;
pMem->z = (char*)z;
pMem->flags &= ~(MEM_Ephem|MEM_Static);
assert(0==(1&(int)pMem->z));
return SQLITE_OK;
}
/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
/* In SQLite, a string without a nul terminator occurs when a string
** is loaded from disk (in this case the memory management is ephemeral),
** or when it is supplied by the user as a bound variable or function
** return value. Therefore, the memory management of the string must be
** either ephemeral, static or controlled by a user-supplied destructor.
*/
assert(
!(pMem->flags&MEM_Str) || /* it's not a string, or */
(pMem->flags&MEM_Term) || /* it's nul term. already, or */
(pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */
(pMem->flags&MEM_Dyn && pMem->xDel) /* external management */
);
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
return SQLITE_OK; /* Nothing to do */
}
if( pMem->flags & (MEM_Static|MEM_Ephem) ){
return sqlite3VdbeMemMakeWriteable(pMem);
}else{
char *z = sqliteMalloc(pMem->n+2);
if( !z ) return SQLITE_NOMEM;
memcpy(z, pMem->z, pMem->n);
z[pMem->n] = 0;
z[pMem->n+1] = 0;
pMem->xDel(pMem->z);
pMem->xDel = 0;
pMem->z = z;
}
return SQLITE_OK;
}
/*
** Add MEM_Str to the set of representations for the given Mem. Numbers
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
** is a no-op.
**
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
int rc = SQLITE_OK;
int fg = pMem->flags;
char *z = pMem->zShort;
assert( !(fg&(MEM_Str|MEM_Blob)) );
assert( fg&(MEM_Int|MEM_Real) );
/* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
** string representation of the value. Then, if the required encoding
** is UTF-16le or UTF-16be do a translation.
**
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
*/
if( fg & MEM_Int ){
sqlite3_snprintf(NBFS, z, "%lld", pMem->i);
}else{
assert( fg & MEM_Real );
sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
}
pMem->n = strlen(z);
pMem->z = z;
pMem->enc = SQLITE_UTF8;
pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
sqlite3VdbeChangeEncoding(pMem, enc);
return rc;
}
/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function. The
** result of the aggregate is stored back into pMem.
**
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
** otherwise.
*/
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
int rc = SQLITE_OK;
if( pFunc && pFunc->xFinalize ){
sqlite3_context ctx;
assert( (pMem->flags & MEM_Null)!=0 || pFunc==*(FuncDef**)&pMem->i );
ctx.s.flags = MEM_Null;
ctx.s.z = pMem->zShort;
ctx.pMem = pMem;
ctx.pFunc = pFunc;
ctx.isError = 0;
pFunc->xFinalize(&ctx);
if( pMem->z && pMem->z!=pMem->zShort ){
sqliteFree( pMem->z );
}
*pMem = ctx.s;
if( pMem->flags & MEM_Short ){
pMem->z = pMem->zShort;
}
if( ctx.isError ){
rc = SQLITE_ERROR;
}
}
return rc;
}
/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
if( p->flags & (MEM_Dyn|MEM_Agg) ){
if( p->xDel ){
if( p->flags & MEM_Agg ){
sqlite3VdbeMemFinalize(p, *(FuncDef**)&p->i);
assert( (p->flags & MEM_Agg)==0 );
sqlite3VdbeMemRelease(p);
}else{
p->xDel((void *)p->z);
}
}else{
sqliteFree(p->z);
}
p->z = 0;
p->xDel = 0;
}
}
/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact. If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that. If pMem is NULL, return 0.
**
** If pMem is a string, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){
int flags = pMem->flags;
if( flags & MEM_Int ){
return pMem->i;
}else if( flags & MEM_Real ){
return (i64)pMem->r;
}else if( flags & (MEM_Str|MEM_Blob) ){
i64 value;
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|| sqlite3VdbeMemNulTerminate(pMem) ){
return 0;
}
assert( pMem->z );
sqlite3atoi64(pMem->z, &value);
return value;
}else{
return 0;
}
}
/*
** Return the best representation of pMem that we can get into a
** double. If pMem is already a double or an integer, return its
** value. If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
if( pMem->flags & MEM_Real ){
return pMem->r;
}else if( pMem->flags & MEM_Int ){
return (double)pMem->i;
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
double val = 0.0;
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|| sqlite3VdbeMemNulTerminate(pMem) ){
return 0.0;
}
assert( pMem->z );
sqlite3AtoF(pMem->z, &val);
return val;
}else{
return 0.0;
}
}
/*
** The MEM structure is already a MEM_Real. Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
assert( pMem->flags & MEM_Real );
pMem->i = pMem->r;
if( ((double)pMem->i)==pMem->r ){
pMem->flags |= MEM_Int;
}
}
/*
** Convert pMem to type integer. Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
pMem->i = sqlite3VdbeIntValue(pMem);
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Int;
return SQLITE_OK;
}
/*
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
pMem->r = sqlite3VdbeRealValue(pMem);
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Real;
return SQLITE_OK;
}
/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
sqlite3VdbeMemRealify(pMem);
sqlite3VdbeIntegerAffinity(pMem);
return SQLITE_OK;
}
/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Null;
pMem->type = SQLITE_NULL;
pMem->n = 0;
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
sqlite3VdbeMemRelease(pMem);
pMem->i = val;
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
sqlite3VdbeMemRelease(pMem);
pMem->r = val;
pMem->flags = MEM_Real;
pMem->type = SQLITE_FLOAT;
}
/*
** Make an shallow copy of pFrom into pTo. Prior contents of
** pTo are overwritten. The pFrom->z field is not duplicated. If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
pTo->xDel = 0;
if( pTo->flags & (MEM_Str|MEM_Blob) ){
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
assert( srcType==MEM_Ephem || srcType==MEM_Static );
pTo->flags |= srcType;
}
}
/*
** Make a full copy of pFrom into pTo. Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
int rc;
if( pTo->flags & MEM_Dyn ){
sqlite3VdbeMemRelease(pTo);
}
sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
if( pTo->flags & MEM_Ephem ){
rc = sqlite3VdbeMemMakeWriteable(pTo);
}else{
rc = SQLITE_OK;
}
return rc;
}
/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM
** might be returned if pFrom held ephemeral data and we were unable
** to allocate enough space to make a copy.
*/
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
int rc;
if( pTo->flags & MEM_Dyn ){
sqlite3VdbeMemRelease(pTo);
}
memcpy(pTo, pFrom, sizeof(Mem));
if( pFrom->flags & MEM_Short ){
pTo->z = pTo->zShort;
}
pFrom->flags = MEM_Null;
pFrom->xDel = 0;
if( pTo->flags & MEM_Ephem ){
rc = sqlite3VdbeMemMakeWriteable(pTo);
}else{
rc = SQLITE_OK;
}
return rc;
}
/*
** Change the value of a Mem to be a string or a BLOB.
*/
int sqlite3VdbeMemSetStr(
Mem *pMem, /* Memory cell to set to string value */
const char *z, /* String pointer */
int n, /* Bytes in string, or negative */
u8 enc, /* Encoding of z. 0 for BLOBs */
void (*xDel)(void*) /* Destructor function */
){
sqlite3VdbeMemRelease(pMem);
if( !z ){
pMem->flags = MEM_Null;
pMem->type = SQLITE_NULL;
return SQLITE_OK;
}
pMem->z = (char *)z;
if( xDel==SQLITE_STATIC ){
pMem->flags = MEM_Static;
}else if( xDel==SQLITE_TRANSIENT ){
pMem->flags = MEM_Ephem;
}else{
pMem->flags = MEM_Dyn;
pMem->xDel = xDel;
}
pMem->enc = enc;
pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
pMem->n = n;
assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE
|| enc==SQLITE_UTF16BE );
switch( enc ){
case 0:
pMem->flags |= MEM_Blob;
pMem->enc = SQLITE_UTF8;
break;
case SQLITE_UTF8:
pMem->flags |= MEM_Str;
if( n<0 ){
pMem->n = strlen(z);
pMem->flags |= MEM_Term;
}
break;
#ifndef SQLITE_OMIT_UTF16
case SQLITE_UTF16LE:
case SQLITE_UTF16BE:
pMem->flags |= MEM_Str;
if( pMem->n<0 ){
pMem->n = sqlite3utf16ByteLen(pMem->z,-1);
pMem->flags |= MEM_Term;
}
if( sqlite3VdbeMemHandleBom(pMem) ){
return SQLITE_NOMEM;
}
#endif /* SQLITE_OMIT_UTF16 */
}
if( pMem->flags&MEM_Ephem ){
return sqlite3VdbeMemMakeWriteable(pMem);
}
return SQLITE_OK;
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int rc;
int f1, f2;
int combined_flags;
/* Interchange pMem1 and pMem2 if the collating sequence specifies
** DESC order.
*/
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if( combined_flags&MEM_Null ){
return (f2&MEM_Null) - (f1&MEM_Null);
}
/* If one value is a number and the other is not, the number is less.
** If both are numbers, compare as reals if one is a real, or as integers
** if both values are integers.
*/
if( combined_flags&(MEM_Int|MEM_Real) ){
if( !(f1&(MEM_Int|MEM_Real)) ){
return 1;
}
if( !(f2&(MEM_Int|MEM_Real)) ){
return -1;
}
if( (f1 & f2 & MEM_Int)==0 ){
double r1, r2;
if( (f1&MEM_Real)==0 ){
r1 = pMem1->i;
}else{
r1 = pMem1->r;
}
if( (f2&MEM_Real)==0 ){
r2 = pMem2->i;
}else{
r2 = pMem2->r;
}
if( r1<r2 ) return -1;
if( r1>r2 ) return 1;
return 0;
}else{
assert( f1&MEM_Int );
assert( f2&MEM_Int );
if( pMem1->i < pMem2->i ) return -1;
if( pMem1->i > pMem2->i ) return 1;
return 0;
}
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if( combined_flags&MEM_Str ){
if( (f1 & MEM_Str)==0 ){
return 1;
}
if( (f2 & MEM_Str)==0 ){
return -1;
}
assert( pMem1->enc==pMem2->enc );
assert( pMem1->enc==SQLITE_UTF8 ||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert( !pColl || pColl->xCmp );
if( pColl ){
if( pMem1->enc==pColl->enc ){
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
u8 origEnc = pMem1->enc;
const void *v1, *v2;
int n1, n2;
/* Convert the strings into the encoding that the comparison
** function expects */
v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
n1 = v1==0 ? 0 : pMem1->n;
assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
n2 = v2==0 ? 0 : pMem2->n;
assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
/* Do the comparison */
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
/* Convert the strings back into the database encoding */
sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
return rc;
}
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
if( rc==0 ){
rc = pMem1->n - pMem2->n;
}
return rc;
}
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to. offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data. The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized. Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
int offset, /* Offset from the start of data to return bytes from. */
int amt, /* Number of bytes to return. */
int key, /* If true, retrieve from the btree key, not data. */
Mem *pMem /* OUT: Return data in this Mem structure. */
){
char *zData; /* Data from the btree layer */
int available; /* Number of bytes available on the local btree page */
if( key ){
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
}else{
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
}
pMem->n = amt;
if( offset+amt<=available ){
pMem->z = &zData[offset];
pMem->flags = MEM_Blob|MEM_Ephem;
}else{
int rc;
if( amt>NBFS-2 ){
zData = (char *)sqliteMallocRaw(amt+2);
if( !zData ){
return SQLITE_NOMEM;
}
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
pMem->xDel = 0;
}else{
zData = &(pMem->zShort[0]);
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
}
pMem->z = zData;
pMem->enc = 0;
pMem->type = SQLITE_BLOB;
if( key ){
rc = sqlite3BtreeKey(pCur, offset, amt, zData);
}else{
rc = sqlite3BtreeData(pCur, offset, amt, zData);
}
zData[amt] = 0;
zData[amt+1] = 0;
if( rc!=SQLITE_OK ){
if( amt>NBFS-2 ){
assert( zData!=pMem->zShort );
assert( pMem->flags & MEM_Dyn );
sqliteFree(zData);
} else {
assert( zData==pMem->zShort );
assert( pMem->flags & MEM_Short );
}
return rc;
}
}
return SQLITE_OK;
}
#ifndef NDEBUG
/*
** Perform various checks on the memory cell pMem. An assert() will
** fail if pMem is internally inconsistent.
*/
void sqlite3VdbeMemSanity(Mem *pMem){
int flags = pMem->flags;
assert( flags!=0 ); /* Must define some type */
if( pMem->flags & (MEM_Str|MEM_Blob) ){
int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
assert( x!=0 ); /* Strings must define a string subtype */
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
assert( pMem->z!=0 ); /* Strings must have a value */
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort );
assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort );
/* No destructor unless there is MEM_Dyn */
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
if( (flags & MEM_Str) ){
assert( pMem->enc==SQLITE_UTF8 ||
pMem->enc==SQLITE_UTF16BE ||
pMem->enc==SQLITE_UTF16LE
);
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
** must be the length of the string. (Later:) If the database file
** has been corrupted, '\000' characters might have been inserted
** into the middle of the string. In that case, the strlen() might
** be less.
*/
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
assert( strlen(pMem->z)<=pMem->n );
assert( pMem->z[pMem->n]==0 );
}
}
}else{
/* Cannot define a string subtype for non-string objects */
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
assert( pMem->xDel==0 );
}
/* MEM_Null excludes all other types */
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
|| (pMem->flags&MEM_Null)==0 );
/* If the MEM is both real and integer, the values are equal */
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
|| pMem->r==pMem->i );
}
#endif
/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
**
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
if( !pVal ) return 0;
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
if( pVal->flags&MEM_Null ){
return 0;
}
assert( (MEM_Blob>>3) == MEM_Str );
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
if( pVal->flags&MEM_Str ){
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
return 0;
}
}
}else if( !(pVal->flags&MEM_Blob) ){
sqlite3VdbeMemStringify(pVal, enc);
assert( 0==(1&(int)pVal->z) );
}
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || sqlite3MallocFailed() );
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
return pVal->z;
}else{
return 0;
}
}
/*
** Create a new sqlite3_value object.
*/
sqlite3_value* sqlite3ValueNew(void){
Mem *p = sqliteMalloc(sizeof(*p));
if( p ){
p->flags = MEM_Null;
p->type = SQLITE_NULL;
}
return p;
}
/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
Expr *pExpr,
u8 enc,
u8 affinity,
sqlite3_value **ppVal
){
int op;
char *zVal = 0;
sqlite3_value *pVal = 0;
if( !pExpr ){
*ppVal = 0;
return SQLITE_OK;
}
op = pExpr->op;
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
zVal = sqliteStrNDup((char*)pExpr->token.z, pExpr->token.n);
pVal = sqlite3ValueNew();
if( !zVal || !pVal ) goto no_mem;
sqlite3Dequote(zVal);
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
}else{
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}else if( op==TK_UMINUS ) {
if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
pVal->i = -1 * pVal->i;
pVal->r = -1.0 * pVal->r;
}
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
else if( op==TK_BLOB ){
int nVal;
pVal = sqlite3ValueNew();
zVal = sqliteStrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
if( !zVal || !pVal ) goto no_mem;
sqlite3Dequote(zVal);
nVal = strlen(zVal)/2;
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
sqliteFree(zVal);
}
#endif
*ppVal = pVal;
return SQLITE_OK;
no_mem:
sqliteFree(zVal);
sqlite3ValueFree(pVal);
*ppVal = 0;
return SQLITE_NOMEM;
}
/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
sqlite3_value *v,
int n,
const void *z,
u8 enc,
void (*xDel)(void*)
){
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
}
/*
** Free an sqlite3_value object
*/
void sqlite3ValueFree(sqlite3_value *v){
if( !v ) return;
sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
sqliteFree(v);
}
/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
Mem *p = (Mem*)pVal;
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
return p->n;
}
return 0;
}
|