1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
  
     | 
    
      /*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the 
** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances.  This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement.  VDBE programs are 
** similar in form to assembly language.  The program consists of
** a linear sequence of operations.  Each operation has an opcode 
** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
** is a null-terminated string.   The P2 operand must be non-negative.
** Opcodes will typically ignore one or more operands.  Many opcodes
** ignore all three operands.
**
** Computation results are stored on a stack.  Each entry on the
** stack is either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value.  An inplicit conversion from one
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.639 2007/07/26 06:50:06 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include <math.h>
#include "vdbeInt.h"
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
** procedures use this information to make sure that indices are
** working correctly.  This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_search_count = 0;
#endif
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
** field of the sqlite3 structure is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only.  It does not function
** in an ordinary build.
*/
#ifdef SQLITE_TEST
int sqlite3_interrupt_count = 0;
#endif
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed.  The test procedures use this information to make sure that
** sorting is occurring or not occuring at appropriate times.   This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_sort_count = 0;
#endif
/*
** The next global variable records the size of the largest MEM_Blob
** or MEM_Str that has appeared on the VDBE stack.  The test procedures
** use this information to make sure that the zero-blob functionality
** is working correctly.   This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_max_blobsize = 0;
#endif
/*
** Release the memory associated with the given stack level.  This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
/*
** Convert the given stack entity into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
     { goto no_mem; }
/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P)
/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header.  It is faster for the common case
** where the integer is a single byte.  It is a little slower when the
** integer is two or more bytes.  But overall it is faster.
**
** The following expressions are equivalent:
**
**     x = sqlite3GetVarint32( A, &B );
**
**     x = GetVarint( A, B );
**
*/
#define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
/*
** Argument pMem points at a memory cell that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
** stack variables.  This routine sets the pMem->enc and pMem->type
** variables used by the sqlite3_value_*() routines.
*/
#define storeTypeInfo(A,B) _storeTypeInfo(A)
static void _storeTypeInfo(Mem *pMem){
  int flags = pMem->flags;
  if( flags & MEM_Null ){
    pMem->type = SQLITE_NULL;
  }
  else if( flags & MEM_Int ){
    pMem->type = SQLITE_INTEGER;
  }
  else if( flags & MEM_Real ){
    pMem->type = SQLITE_FLOAT;
  }
  else if( flags & MEM_Str ){
    pMem->type = SQLITE_TEXT;
  }else{
    pMem->type = SQLITE_BLOB;
  }
}
/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
    Release(pTos);
    pTos--;
  }
  *ppTos = pTos;
}
/*
** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
  Cursor *pCx;
  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
  }
  p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) );
  if( pCx ){
    pCx->iDb = iDb;
  }
  return pCx;
}
/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string
** looks like a number, convert it into a number.  If it does not
** look like a number, leave it alone.
*/
static void applyNumericAffinity(Mem *pRec){
  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
    int realnum;
    sqlite3VdbeMemNulTerminate(pRec);
    if( (pRec->flags&MEM_Str)
         && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
      i64 value;
      sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
      if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
        sqlite3VdbeMemRelease(pRec);
        pRec->u.i = value;
        pRec->flags = MEM_Int;
      }else{
        sqlite3VdbeMemRealify(pRec);
      }
    }
  }
}
/*
** Processing is determine by the affinity parameter:
**
** SQLITE_AFF_INTEGER:
** SQLITE_AFF_REAL:
** SQLITE_AFF_NUMERIC:
**    Try to convert pRec to an integer representation or a 
**    floating-point representation if an integer representation
**    is not possible.  Note that the integer representation is
**    always preferred, even if the affinity is REAL, because
**    an integer representation is more space efficient on disk.
**
** SQLITE_AFF_TEXT:
**    Convert pRec to a text representation.
**
** SQLITE_AFF_NONE:
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(Mem *pRec, char affinity, u8 enc){
  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc);
    }
    pRec->flags &= ~(MEM_Real|MEM_Int);
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    applyNumericAffinity(pRec);
    if( pRec->flags & MEM_Real ){
      sqlite3VdbeIntegerAffinity(pRec);
    }
  }
}
/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
**
** This is an EXPERIMENTAL api and is subject to change or removal.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
  Mem *pMem = (Mem*)pVal;
  applyNumericAffinity(pMem);
  storeTypeInfo(pMem, 0);
  return pMem->type;
}
/*
** Exported version of applyAffinity(). This one works on sqlite3_value*, 
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(sqlite3_value *pVal, u8 affinity, u8 enc){
  applyAffinity((Mem *)pVal, affinity, enc);
}
#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
  char *zCsr = zBuf;
  int f = pMem->flags;
  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
  if( f&MEM_Blob ){
    int i;
    char c;
    if( f & MEM_Dyn ){
      c = 'z';
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
    }else if( f & MEM_Static ){
      c = 't';
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
    }else if( f & MEM_Ephem ){
      c = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      c = 's';
    }
    sqlite3_snprintf(100, zCsr, "%c", c);
    zCsr += strlen(zCsr);
    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
    zCsr += strlen(zCsr);
    for(i=0; i<16 && i<pMem->n; i++){
      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
      zCsr += strlen(zCsr);
    }
    for(i=0; i<16 && i<pMem->n; i++){
      char z = pMem->z[i];
      if( z<32 || z>126 ) *zCsr++ = '.';
      else *zCsr++ = z;
    }
    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
    zCsr += strlen(zCsr);
    if( f & MEM_Zero ){
      sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
      zCsr += strlen(zCsr);
    }
    *zCsr = '\0';
  }else if( f & MEM_Str ){
    int j, k;
    zBuf[0] = ' ';
    if( f & MEM_Dyn ){
      zBuf[1] = 'z';
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
    }else if( f & MEM_Static ){
      zBuf[1] = 't';
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
    }else if( f & MEM_Ephem ){
      zBuf[1] = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      zBuf[1] = 's';
    }
    k = 2;
    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
    k += strlen(&zBuf[k]);
    zBuf[k++] = '[';
    for(j=0; j<15 && j<pMem->n; j++){
      u8 c = pMem->z[j];
      if( c>=0x20 && c<0x7f ){
        zBuf[k++] = c;
      }else{
        zBuf[k++] = '.';
      }
    }
    zBuf[k++] = ']';
    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
    k += strlen(&zBuf[k]);
    zBuf[k++] = 0;
  }
}
#endif
#ifdef VDBE_PROFILE
/*
** The following routine only works on pentium-class processors.
** It uses the RDTSC opcode to read the cycle count value out of the
** processor and returns that value.  This can be used for high-res
** profiling.
*/
__inline__ unsigned long long int hwtime(void){
  unsigned long long int x;
  __asm__("rdtsc\n\t"
          "mov %%edx, %%ecx\n\t"
          :"=A" (x));
  return x;
}
#endif
/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite3_interrupt() routine has been called.  If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop.  This test used to be on every single instruction,
** but that meant we more testing that we needed.  By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately.  There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqlite3VdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
int sqlite3VdbeExec(
  Vdbe *p                    /* The VDBE */
){
  int pc;                    /* The program counter */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 encoding = ENC(db);     /* The database encoding */
  Mem *pTos;                 /* Top entry in the operand stack */
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
#ifndef NDEBUG
  Mem *pStackLimit;
#endif
  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
  assert( db->magic==SQLITE_MAGIC_BUSY );
  pTos = p->pTos;
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  if( p->popStack ){
    popStack(&pTos, p->popStack);
    p->popStack = 0;
  }
  p->resOnStack = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
  if( (p->db->flags & SQLITE_VdbeListing)!=0
    || sqlite3OsFileExists("vdbe_explain")
  ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
    }
  }
  if( sqlite3OsFileExists("vdbe_trace") ){
    p->trace = stdout;
  }
#endif
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    assert( pTos<=&p->aStack[pc] );
    if( sqlite3MallocFailed() ) goto no_mem;
#ifdef VDBE_PROFILE
    origPc = pc;
    start = hwtime();
#endif
    pOp = &p->aOp[pc];
    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( p->trace ){
      if( pc==0 ){
        printf("VDBE Execution Trace:\n");
        sqlite3VdbePrintSql(p);
      }
      sqlite3VdbePrintOp(p->trace, pc, pOp);
    }
    if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){
      sqlite3VdbePrintSql(p);
    }
#endif
      
    /* Check to see if we need to simulate an interrupt.  This only happens
    ** if we have a special test build.
    */
#ifdef SQLITE_TEST
    if( sqlite3_interrupt_count>0 ){
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
    /* Call the progress callback if it is configured and the required number
    ** of VDBE ops have been executed (either since this invocation of
    ** sqlite3VdbeExec() or since last time the progress callback was called).
    ** If the progress callback returns non-zero, exit the virtual machine with
    ** a return code SQLITE_ABORT.
    */
    if( db->xProgress ){
      if( db->nProgressOps==nProgressOps ){
        int prc;
        if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
        prc =db->xProgress(db->pProgressArg);
        if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
        if( prc!=0 ){
          rc = SQLITE_INTERRUPT;
          goto vdbe_halt;
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif
#ifndef NDEBUG
    /* This is to check that the return value of static function
    ** opcodeNoPush() (see vdbeaux.c) returns values that match the
    ** implementation of the virtual machine in this file. If
    ** opcodeNoPush() returns non-zero, then the stack is guarenteed
    ** not to grow when the opcode is executed. If it returns zero, then
    ** the stack may grow by at most 1.
    **
    ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not 
    ** available if NDEBUG is defined at build time.
    */ 
    pStackLimit = pTos;
    if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
      pStackLimit++;
    }
#endif
    switch( pOp->opcode ){
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine.  If we follow the usual
** indentation conventions, each case should be indented by 6 spaces.  But
** that is a lot of wasted space on the left margin.  So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important.  The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_".  The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** If a comment on the same line as the "case OP_" construction contains
** the word "no-push", then the opcode is guarenteed not to grow the 
** vdbe stack when it is executed. See function opcode() in
** vdbeaux.c for details.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
**     Formatting is important to scripts that scan this file.
**     Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode:  Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {             /* no-push */
  CHECK_FOR_INTERRUPT;
  pc = pOp->p2 - 1;
  break;
}
/* Opcode:  Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth.  If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {            /* no-push */
  assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
  p->returnStack[p->returnDepth++] = pc+1;
  pc = pOp->p2 - 1;
  break;
}
/* Opcode:  Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {           /* no-push */
  assert( p->returnDepth>0 );
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}
/* Opcode:  Halt P1 P2 P3
**
** Exit immediately.  All open cursors, Fifos, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value.  If P1!=0 then P2 will determine
** whether or not to rollback the current transaction.  Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** If P3 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {            /* no-push */
  p->pTos = pTos;
  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = pOp->p2;
  if( pOp->p3 ){
    sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
  if( rc==SQLITE_BUSY ){
    p->rc = SQLITE_BUSY;
    return SQLITE_BUSY;
  }
  return p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
/* Opcode: Integer P1 * *
**
** The 32-bit integer value P1 is pushed onto the stack.
*/
case OP_Integer: {
  pTos++;
  pTos->flags = MEM_Int;
  pTos->u.i = pOp->p1;
  break;
}
/* Opcode: Int64 * * P3
**
** P3 is a string representation of an integer.  Convert that integer
** to a 64-bit value and push it onto the stack.
*/
case OP_Int64: {
  pTos++;
  assert( pOp->p3!=0 );
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->u.i = sqlite3VdbeIntValue(pTos);
  pTos->flags |= MEM_Int;
  break;
}
/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
case OP_Real: {            /* same as TK_FLOAT, */
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->r = sqlite3VdbeRealValue(pTos);
  pTos->flags |= MEM_Real;
  sqlite3VdbeChangeEncoding(pTos, encoding);
  break;
}
/* Opcode: String8 * * P3
**
** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING */
  assert( pOp->p3!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = strlen(pOp->p3);
  assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
  assert( pOp->p1 < SQLITE_MAX_LENGTH );
#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    pTos++;
    sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
    pTos->flags &= ~(MEM_Dyn);
    pTos->flags |= MEM_Static;
    if( pOp->p3type==P3_DYNAMIC ){
      sqliteFree(pOp->p3);
    }
    pOp->p3type = P3_DYNAMIC;
    pOp->p3 = pTos->z;
    pOp->p1 = pTos->n;
    assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
    break;
  }
#endif
  /* Otherwise fall through to the next case, OP_String */
}
  
/* Opcode: String P1 * P3
**
** The string value P3 of length P1 (bytes) is pushed onto the stack.
*/
case OP_String: {
  assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
  pTos++;
  assert( pOp->p3!=0 );
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = pOp->p1;
  pTos->enc = encoding;
  break;
}
/* Opcode: Null * * *
**
** Push a NULL onto the stack.
*/
case OP_Null: {
  pTos++;
  pTos->flags = MEM_Null;
  pTos->n = 0;
  break;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
/* Opcode: HexBlob * * P3
**
** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
** vdbe stack.
**
** The first time this instruction executes, in transforms itself into a
** 'Blob' opcode with a binary blob as P3.
*/
case OP_HexBlob: {            /* same as TK_BLOB */
  pOp->opcode = OP_Blob;
  pOp->p1 = strlen(pOp->p3)/2;
  assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
  assert( pOp->p1 < SQLITE_MAX_LENGTH );
  if( pOp->p1 ){
    char *zBlob = sqlite3HexToBlob(pOp->p3);
    if( !zBlob ) goto no_mem;
    if( pOp->p3type==P3_DYNAMIC ){
      sqliteFree(pOp->p3);
    }
    pOp->p3 = zBlob;
    pOp->p3type = P3_DYNAMIC;
  }else{
    if( pOp->p3type==P3_DYNAMIC ){
      sqliteFree(pOp->p3);
    }
    pOp->p3type = P3_STATIC;
    pOp->p3 = "";
  }
  /* Fall through to the next case, OP_Blob. */
}
/* Opcode: Blob P1 * P3
**
** P3 points to a blob of data P1 bytes long. Push this
** value onto the stack. This instruction is not coded directly
** by the compiler. Instead, the compiler layer specifies
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P3. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob: {
  pTos++;
  assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
  sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
  pTos->enc = encoding;
  break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */
/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable.  Variables in the SQL string are number from left to
** right beginning with 1.  The values of variables are set using the
** sqlite3_bind() API.
*/
case OP_Variable: {
  int j = pOp->p1 - 1;
  Mem *pVar;
  assert( j>=0 && j<p->nVar );
  pVar = &p->aVar[j];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
  break;
}
/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {            /* no-push */
  assert( pOp->p1>=0 );
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  break;
}
/* Opcode: Dup P1 P2 *
**
** A copy of the P1-th element of the stack 
** is made and pushed onto the top of the stack.
** The top of the stack is element 0.  So the
** instruction "Dup 0 0 0" will make a copy of the
** top of the stack.
**
** If the content of the P1-th element is a dynamically
** allocated string, then a new copy of that string
** is made if P2==0.  If P2!=0, then just a pointer
** to the string is copied.
**
** Also see the Pull instruction.
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
  if( pOp->p2 ){
    Deephemeralize(pTos);
  }
  break;
}
/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {            /* no-push */
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;
  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    assert( (pFrom[1].flags & MEM_Ephem)==0 );
    *pFrom = pFrom[1];
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & (MEM_Str|MEM_Blob) );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }
  }
  *pTos = ts;
  if( pTos->flags & MEM_Short ){
    assert( pTos->flags & (MEM_Str|MEM_Blob) );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}
/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {            /* no-push */
  Mem *pTo = &pTos[-pOp->p1];
  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(pTo, pTos);
  pTos--;
  break;
}
/* Opcode: Callback P1 * *
**
** The top P1 values on the stack represent a single result row from
** a query.  This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.  When the sqlite3_step() function is run again, the top P1
** values will be automatically popped from the stack before the next
** instruction executes.
*/
case OP_Callback: {            /* no-push */
  Mem *pMem;
  Mem *pFirstColumn;
  assert( p->nResColumn==pOp->p1 );
  /* Data in the pager might be moved or changed out from under us
  ** in between the return from this sqlite3_step() call and the
  ** next call to sqlite3_step().  So deephermeralize everything on 
  ** the stack.  Note that ephemeral data is never stored in memory 
  ** cells so we do not have to worry about them.
  */
  pFirstColumn = &pTos[0-pOp->p1];
  for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
    Deephemeralize(pMem);
  }
  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;
  /* Make sure the results of the current row are \000 terminated
  ** and have an assigned type.  The results are deephemeralized as
  ** as side effect.
  */
  for(; pMem<=pTos; pMem++ ){
    sqlite3VdbeMemNulTerminate(pMem);
    storeTypeInfo(pMem, encoding);
  }
  /* Set up the statement structure so that it will pop the current
  ** results from the stack when the statement returns.
  */
  p->resOnStack = 1;
  p->nCallback++;
  p->popStack = pOp->p1;
  p->pc = pc + 1;
  p->pTos = pTos;
  return SQLITE_ROW;
}
/* Opcode: Concat P1 P2 *
**
** Look at the first P1+2 elements of the stack.  Append them all 
** together with the lowest element first.  The original P1+2 elements
** are popped from the stack if P2==0 and retained if P2==1.  If
** any element of the stack is NULL, then the result is NULL.
**
** When P1==1, this routine makes a copy of the top stack element
** into memory obtained from sqliteMalloc().
*/
case OP_Concat: {           /* same as TK_CONCAT */
  char *zNew;
  i64 nByte;
  int nField;
  int i, j;
  Mem *pTerm;
  /* Loop through the stack elements to see how long the result will be. */
  nField = pOp->p1 + 2;
  pTerm = &pTos[1-nField];
  nByte = 0;
  for(i=0; i<nField; i++, pTerm++){
    assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
    if( pTerm->flags&MEM_Null ){
      nByte = -1;
      break;
    }
    ExpandBlob(pTerm);
    Stringify(pTerm, encoding);
    nByte += pTerm->n;
  }
  if( nByte<0 ){
    /* If nByte is less than zero, then there is a NULL value on the stack.
    ** In this case just pop the values off the stack (if required) and
    ** push on a NULL.
    */
    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->flags = MEM_Null;
  }else{
    /* Otherwise malloc() space for the result and concatenate all the
    ** stack values.
    */
    if( nByte+2>SQLITE_MAX_LENGTH ){
      goto too_big;
    }
    zNew = sqliteMallocRaw( nByte+2 );
    if( zNew==0 ) goto no_mem;
    j = 0;
    pTerm = &pTos[1-nField];
    for(i=j=0; i<nField; i++, pTerm++){
      int n = pTerm->n;
      assert( pTerm->flags & (MEM_Str|MEM_Blob) );
      memcpy(&zNew[j], pTerm->z, n);
      j += n;
    }
    zNew[j] = 0;
    zNew[j+1] = 0;
    assert( j==nByte );
    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->n = j;
    pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
    pTos->xDel = 0;
    pTos->enc = encoding;
    pTos->z = zNew;
  }
  break;
}
/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the addition.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Multiply * * *
**
** Pop the top two elements from the stack, multiply them together,
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the multiplication.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Subtract * * *
**
** Pop the top two elements from the stack, subtract the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the subtraction.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Divide * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Remainder * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, no-push */
case OP_Subtract:              /* same as TK_MINUS, no-push */
case OP_Multiply:              /* same as TK_STAR, no-push */
case OP_Divide:                /* same as TK_SLASH, no-push */
case OP_Remainder: {           /* same as TK_REM, no-push */
  Mem *pNos = &pTos[-1];
  int flags;
  assert( pNos>=p->aStack );
  flags = pTos->flags | pNos->flags;
  if( (flags & MEM_Null)!=0 ){
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->flags = MEM_Null;
  }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
    i64 a, b;
    a = pTos->u.i;
    b = pNos->u.i;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0 ) goto divide_by_zero;
        /* Dividing the largest possible negative 64-bit integer (1<<63) by 
        ** -1 returns an integer to large to store in a 64-bit data-type. On
        ** some architectures, the value overflows to (1<<63). On others,
        ** a SIGFPE is issued. The following statement normalizes this
        ** behaviour so that all architectures behave as if integer 
        ** overflow occured.
        */
        if( a==-1 && b==(((i64)1)<<63) ) a = 1;
        b /= a;
        break;
      }
      default: {
        if( a==0 ) goto divide_by_zero;
        if( a==-1 ) a = 1;
        b %= a;
        break;
      }
    }
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->u.i = b;
    pTos->flags = MEM_Int;
  }else{
    double a, b;
    a = sqlite3VdbeRealValue(pTos);
    b = sqlite3VdbeRealValue(pNos);
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0.0 ) goto divide_by_zero;
        b /= a;
        break;
      }
      default: {
        i64 ia = (i64)a;
        i64 ib = (i64)b;
        if( ia==0 ) goto divide_by_zero;
        if( ia==-1 ) ia = 1;
        b = ib % ia;
        break;
      }
    }
    if( sqlite3_isnan(b) ){
      goto divide_by_zero;
    }
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->r = b;
    pTos->flags = MEM_Real;
    if( (flags & MEM_Real)==0 ){
      sqlite3VdbeIntegerAffinity(pTos);
    }
  }
  break;
divide_by_zero:
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->flags = MEM_Null;
  break;
}
/* Opcode: CollSeq * * P3
**
** P3 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {             /* no-push */
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}
/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P2 arguments taken from the stack.  Pop all
** arguments from the stack and push back the result.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep and AggFinal
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n = pOp->p2;
  apVal = p->apArg;
  assert( apVal || n==0 );
  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    apVal[i] = pArg;
    storeTypeInfo(pArg, encoding);
  }
  assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
  if( pOp->p3type==P3_FUNCDEF ){
    ctx.pFunc = (FuncDef*)pOp->p3;
    ctx.pVdbeFunc = 0;
  }else{
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.isError = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( sqlite3MallocFailed() ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    **
    ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
    ** fails also (the if(...) statement above). But if people are
    ** misusing sqlite, they have bigger problems than a leaked value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }
  popStack(&pTos, n);
  /* If any auxilary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p3 = (char *)ctx.pVdbeFunc;
    pOp->p3type = P3_VDBEFUNC;
  }
  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }
  /* Copy the result of the function to the top of the stack */
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  pTos++;
  pTos->flags = 0;
  sqlite3VdbeMemMove(pTos, &ctx.s);
  if( sqlite3VdbeMemTooBig(pTos) ){
    goto too_big;
  }
  break;
}
/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise AND of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: BitOr * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise OR of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the second element shifted
** left by N bits where N is the top element on the stack.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the second element shifted
** right by N bits where N is the top element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, no-push */
case OP_BitOr:                  /* same as TK_BITOR, no-push */
case OP_ShiftLeft:              /* same as TK_LSHIFT, no-push */
case OP_ShiftRight: {           /* same as TK_RSHIFT, no-push */
  Mem *pNos = &pTos[-1];
  i64 a, b;
  assert( pNos>=p->aStack );
  if( (pTos->flags | pNos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    pTos++;
    pTos->flags = MEM_Null;
    break;
  }
  a = sqlite3VdbeIntValue(pNos);
  b = sqlite3VdbeIntValue(pTos);
  switch( pOp->opcode ){
    case OP_BitAnd:      a &= b;     break;
    case OP_BitOr:       a |= b;     break;
    case OP_ShiftLeft:   a <<= b;    break;
    case OP_ShiftRight:  a >>= b;    break;
    default:   /* CANT HAPPEN */     break;
  }
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->u.i = a;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: AddImm  P1 * *
** 
** Add the value P1 to whatever is on top of the stack.  The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {            /* no-push */
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  pTos->u.i += pOp->p1;
  break;
}
/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer.  If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2.  If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {            /* no-push */
  i64 v;
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
    break;
  }
  if( pTos->flags & MEM_Int ){
    v = pTos->u.i + (pOp->p1!=0);
  }else{
    /* FIX ME:  should this not be assert( pTos->flags & MEM_Real ) ??? */
    sqlite3VdbeMemRealify(pTos);
    v = (int)pTos->r;
    if( pTos->r>(double)v ) v++;
    if( pOp->p1 && pTos->r==(double)v ) v++;
  }
  Release(pTos);
  pTos->u.i = v;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: MustBeInt P1 P2 *
** 
** Force the top of the stack to be an integer.  If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {            /* no-push */
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{
      if( pOp->p1 ) popStack(&pTos, 1);
      pc = pOp->p2 - 1;
    }
  }else{
    Release(pTos);
    pTos->flags = MEM_Int;
  }
  break;
}
/* Opcode: RealAffinity * * *
**
** If the top of the stack is an integer, convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity.  Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
case OP_RealAffinity: {                  /* no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Int ){
    sqlite3VdbeMemRealify(pTos);
  }
  break;
}
#ifndef SQLITE_OMIT_CAST
/* Opcode: ToText * * *
**
** Force the value on the top of the stack to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf().  Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  assert( MEM_Str==(MEM_Blob>>3) );
  pTos->flags |= (pTos->flags&MEM_Blob)>>3;
  applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
  rc = ExpandBlob(pTos);
  assert( pTos->flags & MEM_Str );
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
  break;
}
/* Opcode: ToBlob * * *
**
** Force the value on the top of the stack to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  if( (pTos->flags & MEM_Blob)==0 ){
    applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
    assert( pTos->flags & MEM_Str );
    pTos->flags |= MEM_Blob;
  }
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
  break;
}
/* Opcode: ToNumeric * * *
**
** Force the value on the top of the stack to be numeric (either an
** integer or a floating-point number.)
** If the value is text or blob, try to convert it to an using the
** equivalent of atoi() or atof() and store 0 if no such conversion 
** is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, no-push */
  assert( pTos>=p->aStack );
  if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
    sqlite3VdbeMemNumerify(pTos);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: ToInt * * *
**
** Force the value on the top of the stack to be an integer.  If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToInt: {                  /* same as TK_TO_INT, no-push */
  assert( pTos>=p->aStack );
  if( (pTos->flags & MEM_Null)==0 ){
    sqlite3VdbeMemIntegerify(pTos);
  }
  break;
}
#ifndef SQLITE_OMIT_CAST
/* Opcode: ToReal * * *
**
** Force the value on the top of the stack to be a floating point number.
** If The value is currently an integer, convert it.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToReal: {                  /* same as TK_TO_REAL, no-push */
  assert( pTos>=p->aStack );
  if( (pTos->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pTos);
  }
  break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: Eq P1 P2 P3
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If the 0x100 bit of P1 is true and either operand is NULL then take the
** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
** is NULL.
**
** If the 0x200 bit of P1 is set and either operand is NULL then
** both operands are converted to integers prior to comparison.
** NULL operands are converted to zero and non-NULL operands are
** converted to 1.  Thus, for example, with 0x200 set,  NULL==NULL is true
** whereas it would normally be NULL.  Similarly,  NULL==123 is false when
** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
**
** The least significant byte of P1 (mask 0xff) must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both values
** according to the affinity before the comparison is made. If the byte is
** 0x00, then numeric affinity is used.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs, or both are text,
** then memcmp() is used to determine the results of the comparison. If
** both values are numeric, then a numeric comparison is used. If the
** two values are of different types, then they are inequal.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
**
** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
** structure) that defines how to compare text.
*/
/* Opcode: Ne P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the operands from the stack are not equal.  See the Eq opcode for
** additional information.
*/
/* Opcode: Lt P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Le P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is less than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than the top of the stack.
** See the Eq opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no-push */
case OP_Ne:               /* same as TK_NE, no-push */
case OP_Lt:               /* same as TK_LT, no-push */
case OP_Le:               /* same as TK_LE, no-push */
case OP_Gt:               /* same as TK_GT, no-push */
case OP_Ge: {             /* same as TK_GE, no-push */
  Mem *pNos;
  int flags;
  int res;
  char affinity;
  pNos = &pTos[-1];
  flags = pTos->flags|pNos->flags;
  /* If either value is a NULL P2 is not zero, take the jump if the least
  ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
  ** the stack.
  */
  if( flags&MEM_Null ){
    if( (pOp->p1 & 0x200)!=0 ){
      /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
      ** magic SQL value it normally is - treat it as if it were another
      ** integer".
      **
      ** With 0x200 set, if either operand is NULL then both operands
      ** are converted to integers prior to being passed down into the
      ** normal comparison logic below.  NULL operands are converted to
      ** zero and non-NULL operands are converted to 1.  Thus, for example,
      ** with 0x200 set,  NULL==NULL is true whereas it would normally
      ** be NULL.  Similarly,  NULL!=123 is true.
      */
      sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
      sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
    }else{
      /* If the 0x200 bit of P1 is clear and either operand is NULL then
      ** the result is always NULL.  The jump is taken if the 0x100 bit
      ** of P1 is set.
      */
      popStack(&pTos, 2);
      if( pOp->p2 ){
        if( pOp->p1 & 0x100 ){
          pc = pOp->p2-1;
        }
      }else{
        pTos++;
        pTos->flags = MEM_Null;
      }
      break;
    }
  }
  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(pNos, affinity, encoding);
    applyAffinity(pTos, affinity, encoding);
  }
  assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
  ExpandBlob(pNos);
  ExpandBlob(pTos);
  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
  }
  popStack(&pTos, 2);
  if( pOp->p2 ){
    if( res ){
      pc = pOp->p2-1;
    }
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->u.i = res;
  }
  break;
}
/* Opcode: And * * *
**
** Pop two values off the stack.  Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
/* Opcode: Or * * *
**
** Pop two values off the stack.  Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
case OP_And:              /* same as TK_AND, no-push */
case OP_Or: {             /* same as TK_OR, no-push */
  Mem *pNos = &pTos[-1];
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
  assert( pNos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    v1 = 2;
  }else{
    sqlite3VdbeMemIntegerify(pTos);
    v1 = pTos->u.i==0;
  }
  if( pNos->flags & MEM_Null ){
    v2 = 2;
  }else{
    sqlite3VdbeMemIntegerify(pNos);
    v2 = pNos->u.i==0;
  }
  if( pOp->opcode==OP_And ){
    static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
    v1 = and_logic[v1*3+v2];
  }else{
    static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
    v1 = or_logic[v1*3+v2];
  }
  popStack(&pTos, 2);
  pTos++;
  if( v1==2 ){
    pTos->flags = MEM_Null;
  }else{
    pTos->u.i = v1==0;
    pTos->flags = MEM_Int;
  }
  break;
}
/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its additive inverse.  If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:              /* same as TK_UMINUS, no-push */
case OP_AbsValue: {
  assert( pTos>=p->aStack );
  if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
    sqlite3VdbeMemNumerify(pTos);
  }
  if( pTos->flags & MEM_Real ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
    pTos->flags = MEM_Real;
  }else if( pTos->flags & MEM_Int ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
      pTos->u.i = -pTos->u.i;
    }
    pTos->flags = MEM_Int;
  }
  break;
}
/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value.  Replace it
** with its complement.  If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {                /* same as TK_NOT, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  sqlite3VdbeMemIntegerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->u.i = !pTos->u.i;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value.  Replace it
** with its ones-complement.  If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {             /* same as TK_BITNOT, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  sqlite3VdbeMemIntegerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->u.i = ~pTos->u.i;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: Noop * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer.  It is the
** the same as a no-op.  This opcodesnever appears in a real VM program.
*/
case OP_Explain:
case OP_Noop: {            /* no-push */
  break;
}
/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** true, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
/* Opcode: IfNot P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** false, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:                 /* no-push */
case OP_IfNot: {            /* no-push */
  int c;
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    c = pOp->p1;
  }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
    c = sqlite3VdbeIntValue(pTos);
#else
    c = sqlite3VdbeRealValue(pTos)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  Release(pTos);
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}
/* Opcode: IsNull P1 P2 *
**
** Check the top of the stack and jump to P2 if the top of the stack
** is NULL.  If P1 is positive, then pop P1 elements from the stack
** regardless of whether or not the jump is taken.  If P1 is negative,
** pop -P1 elements from the stack only if the jump is taken and leave
** the stack unchanged if the jump is not taken.
*/
case OP_IsNull: {            /* same as TK_ISNULL, no-push */
  if( pTos->flags & MEM_Null ){
    pc = pOp->p2-1;
    if( pOp->p1<0 ){
      popStack(&pTos, -pOp->p1);
    }
  }
  if( pOp->p1>0 ){
    popStack(&pTos, pOp->p1);
  }
  break;
}
/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top abs(P1) values on the stack are all not NULL.  
** Regardless of whether or not the jump is taken, pop the stack
** P1 times if P1 is greater than zero.  But if P1 is negative,
** leave the stack unchanged.
*/
case OP_NotNull: {            /* same as TK_NOTNULL, no-push */
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}
/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
**
** This opcode sets the number of columns for cursor P1 to P2.
**
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
** before this op-code.
*/
case OP_SetNumColumns: {       /* no-push */
  Cursor *pC;
  assert( (pOp->p1)<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pC = p->apCsr[pOp->p1];
  pC->nField = pOp->p2;
  break;
}
/* Opcode: Column P1 P2 P3
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.) Push onto the stack the value
** of the P2-th column contained in the data. If there are less that (P2+1) 
** values in the record, push a NULL onto the stack.
**
** If the KeyAsData opcode has previously executed on this cursor, then the
** field might be extracted from the key rather than the data.
**
** If the column contains fewer than P2 fields, then push a NULL.  Or
** if P3 is of type P3_MEM, then push the P3 value.  The P3 value will
** be default value for a column that has been added using the ALTER TABLE
** ADD COLUMN command.  If P3 is an ordinary string, just push a NULL.
** When P3 is a string it is really just a comment describing the value
** to be pushed, not a default value.
*/
case OP_Column: {
  u32 payloadSize;   /* Number of bytes in the record */
  int p1 = pOp->p1;  /* P1 value of the opcode */
  int p2 = pOp->p2;  /* column number to retrieve */
  Cursor *pC = 0;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  u32 nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem sMem;          /* For storing the record being decoded */
  sMem.flags = 0;
  assert( p1<p->nCursor );
  pTos++;
  pTos->flags = MEM_Null;
  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables
  ** If the record is stored in a cursor, the complete record text
  ** might be available in the  pC->aRow cache.  Or it might not be.
  ** If the data is unavailable,  zRec is set to NULL.
  **
  ** We also compute the number of columns in the record.  For cursors,
  ** the number of columns is stored in the Cursor.nField element.  For
  ** records on the stack, the next entry down on the stack is an integer
  ** which is the number of records.
  */
  pC = p->apCsr[p1];
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 );
#endif
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    /* The record is stored in a B-Tree */
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    zRec = 0;
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheStatus==p->cacheCtr ){
      payloadSize = pC->payloadSize;
      zRec = (char*)pC->aRow;
    }else if( pC->isIndex ){
      i64 payloadSize64;
      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      payloadSize = payloadSize64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &payloadSize);
    }
    nField = pC->nField;
  }else if( pC->pseudoTable ){
    /* The record is the sole entry of a pseudo-table */
    payloadSize = pC->nData;
    zRec = pC->pData;
    pC->cacheStatus = CACHE_STALE;
    assert( payloadSize==0 || zRec!=0 );
    nField = pC->nField;
    pCrsr = 0;
  }else{
    zRec = 0;
    payloadSize = 0;
    pCrsr = 0;
    nField = 0;
  }
  /* If payloadSize is 0, then just push a NULL onto the stack. */
  if( payloadSize==0 ){
    assert( pTos->flags==MEM_Null );
    break;
  }
  if( payloadSize>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  assert( p2<nField );
  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  if( pC && pC->cacheStatus==p->cacheCtr ){
    aType = pC->aType;
    aOffset = pC->aOffset;
  }else{
    u8 *zIdx;        /* Index into header */
    u8 *zEndHdr;     /* Pointer to first byte after the header */
    u32 offset;      /* Offset into the data */
    int szHdrSz;     /* Size of the header size field at start of record */
    int avail;       /* Number of bytes of available data */
    aType = pC->aType;
    if( aType==0 ){
      pC->aType = aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
    }
    if( aType==0 ){
      goto no_mem;
    }
    pC->aOffset = aOffset = &aType[nField];
    pC->payloadSize = payloadSize;
    pC->cacheStatus = p->cacheCtr;
    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;
    }else{
      if( pC->isIndex ){
        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
      }else{
        zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
      }
      /* If KeyFetch()/DataFetch() managed to get the entire payload,
      ** save the payload in the pC->aRow cache.  That will save us from
      ** having to make additional calls to fetch the content portion of
      ** the record.
      */
      if( avail>=payloadSize ){
        zRec = zData;
        pC->aRow = (u8*)zData;
      }else{
        pC->aRow = 0;
      }
    }
    /* The following assert is true in all cases accept when
    ** the database file has been corrupted externally.
    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
    szHdrSz = GetVarint((u8*)zData, offset);
    /* The KeyFetch() or DataFetch() above are fast and will get the entire
    ** record header in most cases.  But they will fail to get the complete
    ** record header if the record header does not fit on a single page
    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
    ** acquire the complete header text.
    */
    if( !zRec && avail<offset ){
      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    zEndHdr = (u8 *)&zData[offset];
    zIdx = (u8 *)&zData[szHdrSz];
    /* Scan the header and use it to fill in the aType[] and aOffset[]
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;
        zIdx += GetVarint(zIdx, aType[i]);
        offset += sqlite3VdbeSerialTypeLen(aType[i]);
      }else{
        /* If i is less that nField, then there are less fields in this
        ** record than SetNumColumns indicated there are columns in the
        ** table. Set the offset for any extra columns not present in
        ** the record to 0. This tells code below to push a NULL onto the
        ** stack instead of deserializing a value from the record.
        */
        aOffset[i] = 0;
      }
    }
    Release(&sMem);
    sMem.flags = MEM_Null;
    /* If we have read more header data than was contained in the header,
    ** or if the end of the last field appears to be past the end of the
    ** record, then we must be dealing with a corrupt database.
    */
    if( zIdx>zEndHdr || offset>payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }
  }
  /* Get the column information. If aOffset[p2] is non-zero, then 
  ** deserialize the value from the record. If aOffset[p2] is zero,
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P3 if P3 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      zData = &zRec[aOffset[p2]];
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,&sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
    pTos->enc = encoding;
  }else{
    if( pOp->p3type==P3_MEM ){
      sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
    }else{
      pTos->flags = MEM_Null;
    }
  }
  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pTos structure.
  ** This prevents a memory copy.
  */
  if( (sMem.flags & MEM_Dyn)!=0 ){
    assert( pTos->flags & MEM_Ephem );
    assert( pTos->flags & (MEM_Str|MEM_Blob) );
    assert( pTos->z==sMem.z );
    assert( sMem.flags & MEM_Term );
    pTos->flags &= ~MEM_Ephem;
    pTos->flags |= MEM_Dyn|MEM_Term;
  }
  /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
  ** can abandon sMem */
  rc = sqlite3VdbeMemMakeWriteable(pTos);
op_column_out:
  break;
}
/* Opcode: MakeRecord P1 P2 P3
**
** Convert the top abs(P1) entries of the stack into a single entry
** suitable for use as a data record in a database table or as a key
** in an index.  The details of the format are irrelavant as long as
** the OP_Column opcode can decode the record later and as long as the
** sqlite3VdbeRecordCompare function will correctly compare two encoded
** records.  Refer to source code comments for the details of the record
** format.
**
** The original stack entries are popped from the stack if P1>0 but
** remain on the stack if P1<0.
**
** If P2 is not zero and one or more of the entries are NULL, then jump
** to the address given by P2.  This feature can be used to skip a
** uniqueness test on indices.
**
** P3 may be a string that is P1 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key (i.e. the first character of P3 corresponds to the
** lowest element on the stack).
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P3 is NULL then all index fields have the affinity NONE.
**
** See also OP_MakeIdxRec
*/
/* Opcode: MakeIdxRec P1 P2 P3
**
** This opcode works just OP_MakeRecord except that it reads an extra
** integer from the stack (thus reading a total of abs(P1+1) entries)
** and appends that extra integer to the end of the record as a varint.
** This results in an index key.
*/
case OP_MakeIdxRec:
case OP_MakeRecord: {
  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from the lowest element of the stack and data(N-1) is
  ** the top of the stack.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  Mem *pRec;             /* The new record */
  Mem *pRowid = 0;       /* Rowid appended to the new record */
  u64 nData = 0;         /* Number of bytes of data space */
  int nHdr = 0;          /* Number of bytes of header space */
  u64 nByte = 0;         /* Data space required for this record */
  int nZero = 0;         /* Number of zero bytes at the end of the record */
  int nVarint;           /* Number of bytes in a varint */
  u32 serial_type;       /* Type field */
  int containsNull = 0;  /* True if any of the data fields are NULL */
  Mem *pData0;           /* Bottom of the stack */
  int leaveOnStack;      /* If true, leave the entries on the stack */
  int nField;            /* Number of fields in the record */
  int jumpIfNull;        /* Jump here if non-zero and any entries are NULL. */
  int addRowid;          /* True to append a rowid column at the end */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] */
  char zTemp[NBFS];      /* Space to hold small records */
  leaveOnStack = ((pOp->p1<0)?1:0);
  nField = pOp->p1 * (leaveOnStack?-1:1);
  jumpIfNull = pOp->p2;
  addRowid = pOp->opcode==OP_MakeIdxRec;
  zAffinity = pOp->p3;
  pData0 = &pTos[1-nField];
  assert( pData0>=p->aStack );
  containsNull = 0;
  file_format = p->minWriteFileFormat;
  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    int len;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Null ){
      containsNull = 1;
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      ExpandBlob(pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    nData += len;
    nHdr += sqlite3VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.
      ** We do not allow blobs with a prefix and a zero-filled tail. */
      nZero += pRec->u.i;
    }else if( len ){
      nZero = 0;
    }
  }
  /* If we have to append a varint rowid to this record, set pRowid
  ** to the value of the rowid and increase nByte by the amount of space
  ** required to store it.
  */
  if( addRowid ){
    pRowid = &pTos[0-nField];
    assert( pRowid>=p->aStack );
    sqlite3VdbeMemIntegerify(pRowid);
    serial_type = sqlite3VdbeSerialType(pRowid, 0);
    nData += sqlite3VdbeSerialTypeLen(serial_type);
    nHdr += sqlite3VarintLen(serial_type);
    nZero = 0;
  }
  /* Add the initial header varint and total the size */
  nHdr += nVarint = sqlite3VarintLen(nHdr);
  if( nVarint<sqlite3VarintLen(nHdr) ){
    nHdr++;
  }
  nByte = nHdr+nData-nZero;
  if( nByte>SQLITE_MAX_LENGTH ){
    goto too_big;
  }
  /* Allocate space for the new record. */
  if( nByte>sizeof(zTemp) ){
    zNewRecord = sqliteMallocRaw(nByte);
    if( !zNewRecord ){
      goto no_mem;
    }
  }else{
    zNewRecord = (u8*)zTemp;
  }
  /* Write the record */
  i = sqlite3PutVarint(zNewRecord, nHdr);
  for(pRec=pData0; pRec<=pTos; pRec++){
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += sqlite3PutVarint(&zNewRecord[i], serial_type);      /* serial type */
  }
  if( addRowid ){
    i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
  }
  for(pRec=pData0; pRec<=pTos; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
  }
  if( addRowid ){
    i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
  }
  assert( i==nByte );
  /* Pop entries off the stack if required. Push the new record on. */
  if( !leaveOnStack ){
    popStack(&pTos, nField+addRowid);
  }
  pTos++;
  pTos->n = nByte;
  if( nByte<=sizeof(zTemp) ){
    assert( zNewRecord==(unsigned char *)zTemp );
    pTos->z = pTos->zShort;
    memcpy(pTos->zShort, zTemp, nByte);
    pTos->flags = MEM_Blob | MEM_Short;
  }else{
    assert( zNewRecord!=(unsigned char *)zTemp );
    pTos->z = (char*)zNewRecord;
    pTos->flags = MEM_Blob | MEM_Dyn;
    pTos->xDel = 0;
  }
  if( nZero ){
    pTos->u.i = nZero;
    pTos->flags |= MEM_Zero;
  }
  pTos->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
  if( jumpIfNull && containsNull ){
    pc = jumpIfNull - 1;
  }
  break;
}
/* Opcode: Statement P1 * *
**
** Begin an individual statement transaction which is part of a larger
** BEGIN..COMMIT transaction.  This is needed so that the statement
** can be rolled back after an error without having to roll back the
** entire transaction.  The statement transaction will automatically
** commit when the VDBE halts.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {       /* no-push */
  int i = pOp->p1;
  Btree *pBt;
  if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0 && !(db->autoCommit) ){
    assert( sqlite3BtreeIsInTrans(pBt) );
    if( !sqlite3BtreeIsInStmt(pBt) ){
      rc = sqlite3BtreeBeginStmt(pBt);
      p->openedStatement = 1;
    }
  }
  break;
}
/* Opcode: AutoCommit P1 P2 *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {       /* no-push */
  u8 i = pOp->p1;
  u8 rollback = pOp->p2;
  assert( i==1 || i==0 );
  assert( i==1 || rollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
  if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
    /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", 
        " transaction - SQL statements in progress", (char*)0);
    rc = SQLITE_ERROR;
  }else if( i!=db->autoCommit ){
    if( pOp->p2 ){
      assert( i==1 );
      sqlite3RollbackAll(db);
      db->autoCommit = 1;
    }else{
      db->autoCommit = i;
      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
        p->pTos = pTos;
        p->pc = pc;
        db->autoCommit = 1-i;
        p->rc = SQLITE_BUSY;
        return SQLITE_BUSY;
      }
    }
    if( p->rc==SQLITE_OK ){
      return SQLITE_DONE;
    }else{
      return SQLITE_ERROR;
    }
  }else{
    sqlite3SetString(&p->zErrMsg,
        (!i)?"cannot start a transaction within a transaction":(
        (rollback)?"cannot rollback - no transaction is active":
                   "cannot commit - no transaction is active"), (char*)0);
         
    rc = SQLITE_ERROR;
  }
  break;
}
/* Opcode: Transaction P1 P2 *
**
** Begin a transaction.  The transaction ends when a Commit or Rollback
** opcode is encountered.  Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started.  Index 0 is the main database file and index 1 is the
** file used for temporary tables.
**
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
** obtained on the database file when a write-transaction is started.  No
** other process can start another write transaction while this transaction is
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {       /* no-push */
  int i = pOp->p1;
  Btree *pBt;
  assert( i>=0 && i<db->nDb );
  pBt = db->aDb[i].pBt;
  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = SQLITE_BUSY;
      p->pTos = pTos;
      return SQLITE_BUSY;
    }
    if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
      goto abort_due_to_error;
    }
  }
  break;
}
/* Opcode: ReadCookie P1 P2 *
**
** Read cookie number P2 from database P1 and push it onto the stack.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** If P1 is negative, then this is a request to read the size of a
** databases free-list. P2 must be set to 1 in this case. The actual
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
  int iMeta;
  int iDb = pOp->p1;
  int iCookie = pOp->p2;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  if( iDb<0 ){
    iDb = (-1*(iDb+1));
    iCookie *= -1;
  }
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  /* The indexing of meta values at the schema layer is off by one from
  ** the indexing in the btree layer.  The btree considers meta[0] to
  ** be the number of free pages in the database (a read-only value)
  ** and meta[1] to be the schema cookie.  The schema layer considers
  ** meta[1] to be the schema cookie.  So we have to shift the index
  ** by one in the following statement.
  */
  rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
  pTos++;
  pTos->u.i = iMeta;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* no-push */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
  if( pOp->p2==0 ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = pTos->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==1 ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = pTos->u.i;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
  }
  break;
}
/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.  
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {       /* no-push */
  int iMeta;
  Btree *pBt;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
  }else{
    rc = SQLITE_OK;
    iMeta = 0;
  }
  if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
    sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0);
    /* If the schema-cookie from the database file matches the cookie 
    ** stored with the in-memory representation of the schema, do
    ** not reload the schema from the database file.
    **
    ** If virtual-tables are in use, this is not just an optimisation.
    ** Often, v-tables store their data in other SQLite tables, which
    ** are queried from within xNext() and other v-table methods using
    ** prepared queries. If such a query is out-of-date, we do not want to
    ** discard the database schema, as the user code implementing the
    ** v-table would have to be ready for the sqlite3_vtab structure itself
    ** to be invalidated whenever sqlite3_step() is called from within 
    ** a v-table method.
    */
    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
      sqlite3ResetInternalSchema(db, pOp->p1);
    }
    sqlite3ExpirePreparedStatements(db);
    rc = SQLITE_SCHEMA;
  }
  break;
}
/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by an 
** integer from the top of the stack.  0 means the main database and
** 1 means the database used for temporary tables.  Give the new 
** cursor an identifier of P1.  The P1 values need not be contiguous
** but all P1 values should be small integers.  It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices.  P3 is NULL for cursors
** that are not pointing to indices.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:          /* no-push */
case OP_OpenWrite: {       /* no-push */
  int i = pOp->p1;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;
  int iDb;
  Cursor *pCur;
  Db *pDb;
  
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  iDb = pTos->u.i;
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  assert( iDb>=0 && iDb<db->nDb );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    sqlite3VdbeMemIntegerify(pTos);
    p2 = pTos->u.i;
    assert( (pTos->flags & MEM_Dyn)==0 );
    pTos--;
    assert( p2>=2 );
  }
  assert( i>=0 );
  pCur = allocateCursor(p, i, iDb);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  if( pX==0 ) break;
  /* We always provide a key comparison function.  If the table being
  ** opened is of type INTKEY, the comparision function will be ignored. */
  rc = sqlite3BtreeCursor(pX, p2, wrFlag,
           sqlite3VdbeRecordCompare, pOp->p3,
           &pCur->pCursor);
  if( pOp->p3type==P3_KEYINFO ){
    pCur->pKeyInfo = (KeyInfo*)pOp->p3;
    pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
    pCur->pKeyInfo->enc = ENC(p->db);
  }else{
    pCur->pKeyInfo = 0;
    pCur->pIncrKey = &pCur->bogusIncrKey;
  }
  switch( rc ){
    case SQLITE_BUSY: {
      p->pc = pc;
      p->rc = SQLITE_BUSY;
      p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
      return SQLITE_BUSY;
    }
    case SQLITE_OK: {
      int flags = sqlite3BtreeFlags(pCur->pCursor);
      /* Sanity checking.  Only the lower four bits of the flags byte should
      ** be used.  Bit 3 (mask 0x08) is unpreditable.  The lower 3 bits
      ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
      ** 2 (zerodata for indices).  If these conditions are not met it can
      ** only mean that we are dealing with a corrupt database file
      */
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      pCur->isTable = (flags & BTREE_INTKEY)!=0;
      pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
      /* If P3==0 it means we are expected to open a table.  If P3!=0 then
      ** we expect to be opening an index.  If this is not what happened,
      ** then the database is corrupt
      */
      if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
       || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto abort_due_to_error;
      }
      break;
    }
    case SQLITE_EMPTY: {
      pCur->isTable = pOp->p3type!=P3_KEYINFO;
      pCur->isIndex = !pCur->isTable;
      rc = SQLITE_OK;
      break;
    }
    default: {
      goto abort_due_to_error;
    }
  }
  break;
}
/* Opcode: OpenEphemeral P1 P2 P3
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The transient or virtual
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the virtual table.
** The cursor points to a BTree table if P3==0 and to a BTree index
** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral: {       /* no-push */
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i, -1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, &pCx->pBt);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p3 ){
      int pgno;
      assert( pOp->p3type==P3_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
            pOp->p3, &pCx->pCursor);
        pCx->pKeyInfo = (KeyInfo*)pOp->p3;
        pCx->pKeyInfo->enc = ENC(p->db);
        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
      pCx->isTable = 1;
      pCx->pIncrKey = &pCx->bogusIncrKey;
    }
  }
  pCx->nField = pOp->p2;
  pCx->isIndex = !pCx->isTable;
  break;
}
/* Opcode: OpenPseudo P1 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.  Also used to hold the a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode.
*/
case OP_OpenPseudo: {       /* no-push */
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i, -1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->pIncrKey = &pCx->bogusIncrKey;
  pCx->isTable = 1;
  pCx->isIndex = 0;
  break;
}
/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {       /* no-push */
  int i = pOp->p1;
  if( i>=0 && i<p->nCursor ){
    sqlite3VdbeFreeCursor(p, p->apCsr[i]);
    p->apCsr[i] = 0;
  }
  break;
}
/* Opcode: MoveGe P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the smallest entry that is greater
** than or equal to the key that was popped ffrom the stack.
** If there are no records greater than or equal to the key and P2 
** is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
*/
/* Opcode: MoveGt P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the smallest entry that is greater
** than the key from the stack.
** If there are no records greater than the key and P2 is not zero,
** then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
*/
/* Opcode: MoveLt P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the largest entry that is less
** than the key from the stack.
** If there are no records less than the key and P2 is not zero,
** then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
*/
/* Opcode: MoveLe P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the largest entry that is less than
** or equal to the key that was popped from the stack.
** If there are no records less than or eqal to the key and P2 is not zero,
** then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
*/
case OP_MoveLt:         /* no-push */
case OP_MoveLe:         /* no-push */
case OP_MoveGe:         /* no-push */
case OP_MoveGt: {       /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    int res, oc;
    oc = pOp->opcode;
    pC->nullRow = 0;
    *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
    if( pC->isTable ){
      i64 iKey;
      sqlite3VdbeMemIntegerify(pTos);
      iKey = intToKey(pTos->u.i);
      if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
        pC->movetoTarget = iKey;
        pC->deferredMoveto = 1;
        assert( (pTos->flags & MEM_Dyn)==0 );
        pTos--;
        break;
      }
      rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->lastRowid = pTos->u.i;
      pC->rowidIsValid = res==0;
    }else{
      assert( pTos->flags & MEM_Blob );
      ExpandBlob(pTos);
      rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->rowidIsValid = 0;
    }
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    *pC->pIncrKey = 0;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
    if( oc==OP_MoveGe || oc==OP_MoveGt ){
      if( res<0 ){
        rc = sqlite3BtreeNext(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        res = 0;
      }
    }else{
      assert( oc==OP_MoveLt || oc==OP_MoveLe );
      if( res>=0 ){
        rc = sqlite3BtreePrevious(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        /* res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        res = sqlite3BtreeEof(pC->pCursor);
      }
    }
    if( res ){
      if( pOp->p2>0 ){
        pc = pOp->p2 - 1;
      }else{
        pC->nullRow = 1;
      }
    }
  }
  Release(pTos);
  pTos--;
  break;
}
/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a record created using MakeRecord.  P1 is a
** cursor on a table that declared as an index.  If that table contains an
** entry that matches the top of the stack fall thru.  If the top of the stack
** matches no entry in P1 then jump to P2.
**
** The cursor is left pointing at the matching entry if it exists.  The
** record on the top of the stack is not popped.
**
** This instruction is similar to NotFound except that this operation
** does not pop the key from the stack.
**
** The instruction is used to implement the DISTINCT operator on SELECT
** statements.  The P1 table is not a true index but rather a record of
** all results that have produced so far.  
**
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: Found P1 P2 *
**
** Top of the stack holds a blob constructed by MakeRecord.  P1 is an index.
** If an entry that matches the top of the stack exists in P1 then
** jump to P2.  If the top of the stack does not match any entry in P1
** then fall thru.  The P1 cursor is left pointing at the matching entry
** if it exists.  The blob is popped off the top of the stack.
**
** This instruction is used to implement the IN operator where the
** left-hand side is a SELECT statement.  P1 is not a true index but
** is instead a temporary index that holds the results of the SELECT
** statement.  This instruction just checks to see if the left-hand side
** of the IN operator (stored on the top of the stack) exists in the
** result of the SELECT statement.
**
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 *
**
** The top of the stack holds a blob constructed by MakeRecord.  P1 is
** an index.  If no entry exists in P1 that matches the blob then jump
** to P2.  If an entry does existing, fall through.  The cursor is left
** pointing to the entry that matches.  The blob is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:       /* no-push */
case OP_NotFound:       /* no-push */
case OP_Found: {        /* no-push */
  int i = pOp->p1;
  int alreadyExists = 0;
  Cursor *pC;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res, rx;
    assert( pC->isTable==0 );
    assert( pTos->flags & MEM_Blob );
    Stringify(pTos, encoding);
    rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
    alreadyExists = rx==SQLITE_OK && res==0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  if( pOp->opcode!=OP_Distinct ){
    Release(pTos);
    pTos--;
  }
  break;
}
/* Opcode: IsUnique P1 P2 *
**
** The top of the stack is an integer record number.  Call this
** record number R.  The next on the stack is an index key created
** using MakeIdxRec.  Call it K.  This instruction pops R from the
** stack but it leaves K unchanged.
**
** P1 is an index.  So it has no data and its key consists of a
** record generated by OP_MakeRecord where the last field is the 
** rowid of the entry that the index refers to.
** 
** This instruction asks if there is an entry in P1 where the
** fields matches K but the rowid is different from R.
** If there is no such entry, then there is an immediate
** jump to P2.  If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* no-push */
  int i = pOp->p1;
  Mem *pNos = &pTos[-1];
  Cursor *pCx;
  BtCursor *pCrsr;
  i64 R;
  /* Pop the value R off the top of the stack
  */
  assert( pNos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  R = pTos->u.i;
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  assert( i>=0 && i<p->nCursor );
  pCx = p->apCsr[i];
  assert( pCx!=0 );
  pCrsr = pCx->pCursor;
  if( pCrsr!=0 ){
    int res;
    i64 v;         /* The record number on the P1 entry that matches K */
    char *zKey;    /* The value of K */
    int nKey;      /* Number of bytes in K */
    int len;       /* Number of bytes in K without the rowid at the end */
    int szRowid;   /* Size of the rowid column at the end of zKey */
    /* Make sure K is a string and make zKey point to K
    */
    assert( pNos->flags & MEM_Blob );
    Stringify(pNos, encoding);
    zKey = pNos->z;
    nKey = pNos->n;
    szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
    len = nKey-szRowid;
    /* Search for an entry in P1 where all but the last four bytes match K.
    ** If there is no such entry, jump immediately to P2.
    */
    assert( pCx->deferredMoveto==0 );
    pCx->cacheStatus = CACHE_STALE;
    rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( res<0 ){
      rc = sqlite3BtreeNext(pCrsr, &res);
      if( res ){
        pc = pOp->p2 - 1;
        break;
      }
    }
    rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); 
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
    if( res>0 ){
      pc = pOp->p2 - 1;
      break;
    }
    /* At this point, pCrsr is pointing to an entry in P1 where all but
    ** the final entry (the rowid) matches K.  Check to see if the
    ** final rowid column is different from R.  If it equals R then jump
    ** immediately to P2.
    */
    rc = sqlite3VdbeIdxRowid(pCrsr, &v);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( v==R ){
      pc = pOp->p2 - 1;
      break;
    }
    /* The final varint of the key is different from R.  Push it onto
    ** the stack.  (The record number of an entry that violates a UNIQUE
    ** constraint.)
    */
    pTos++;
    pTos->u.i = v;
    pTos->flags = MEM_Int;
  }
  break;
}
/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res;
    u64 iKey;
    assert( pTos->flags & MEM_Int );
    assert( p->apCsr[i]->isTable );
    iKey = intToKey(pTos->u.i);
    rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
    pC->lastRowid = pTos->u.i;
    pC->rowidIsValid = res==0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;
    /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
    ** processing is about to abort so we really do not care whether or not
    ** the following jump is taken.  (In other words, do not stress over
    ** the error that valgrind sometimes shows on the next statement when
    ** running ioerr.test and similar failure-recovery test scripts.) */
    if( res!=0 ){
      pc = pOp->p2 - 1;
      pC->rowidIsValid = 0;
    }
  }
  Release(pTos);
  pTos--;
  break;
}
/* Opcode: Sequence P1 * *
**
** Push an integer onto the stack which is the next available
** sequence number for cursor P1.  The sequence number on the
** cursor is incremented after the push.
*/
case OP_Sequence: {
  int i = pOp->p1;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  pTos++;
  pTos->u.i = p->apCsr[i]->seqCount++;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: NewRowid P1 P2 *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is pushed 
** onto the stack.
**
** If P2>0 then P2 is a memory cell that holds the largest previously
** generated record number.  No new record numbers are allowed to be less
** than this value.  When this value reaches its maximum, a SQLITE_FULL
** error is generated.  The P2 memory cell is updated with the generated
** record number.  This P2 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {
  int i = pOp->p1;
  i64 v = 0;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor==0 ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 1000 times.
    **
    ** For a table with less than 2 billion entries, the probability
    ** of not finding a unused rowid is about 1.0e-300.  This is a 
    ** non-zero probability, but it is still vanishingly small and should
    ** never cause a problem.  You are much, much more likely to have a
    ** hardware failure than for this algorithm to fail.
    **
    ** The analysis in the previous paragraph assumes that you have a good
    ** source of random numbers.  Is a library function like lrand48()
    ** good enough?  Maybe. Maybe not. It's hard to know whether there
    ** might be subtle bugs is some implementations of lrand48() that
    ** could cause problems. To avoid uncertainty, SQLite uses its own 
    ** random number generator based on the RC4 algorithm.
    **
    ** To promote locality of reference for repetitive inserts, the
    ** first few attempts at chosing a random rowid pick values just a little
    ** larger than the previous rowid.  This has been shown experimentally
    ** to double the speed of the COPY operation.
    */
    int res, rx=SQLITE_OK, cnt;
    i64 x;
    cnt = 0;
    if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
          BTREE_INTKEY ){
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
#ifdef SQLITE_32BIT_ROWID
#   define MAX_ROWID 0x7fffffff
#else
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
    if( !pC->useRandomRowid ){
      if( pC->nextRowidValid ){
        v = pC->nextRowid;
      }else{
        rc = sqlite3BtreeLast(pC->pCursor, &res);
        if( rc!=SQLITE_OK ){
          goto abort_due_to_error;
        }
        if( res ){
          v = 1;
        }else{
          sqlite3BtreeKeySize(pC->pCursor, &v);
          v = keyToInt(v);
          if( v==MAX_ROWID ){
            pC->useRandomRowid = 1;
          }else{
            v++;
          }
        }
      }
#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p2 ){
        Mem *pMem;
        assert( pOp->p2>0 && pOp->p2<p->nMem );  /* P2 is a valid memory cell */
        pMem = &p->aMem[pOp->p2];
        sqlite3VdbeMemIntegerify(pMem);
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P2) holds an integer */
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
          rc = SQLITE_FULL;
          goto abort_due_to_error;
        }
        if( v<pMem->u.i+1 ){
          v = pMem->u.i + 1;
        }
        pMem->u.i = v;
      }
#endif
      if( v<MAX_ROWID ){
        pC->nextRowidValid = 1;
        pC->nextRowid = v+1;
      }else{
        pC->nextRowidValid = 0;
      }
    }
    if( pC->useRandomRowid ){
      assert( pOp->p2==0 );  /* SQLITE_FULL must have occurred prior to this */
      v = db->priorNewRowid;
      cnt = 0;
      do{
        if( v==0 || cnt>2 ){
          sqlite3Randomness(sizeof(v), &v);
          if( cnt<5 ) v &= 0xffffff;
        }else{
          unsigned char r;
          sqlite3Randomness(1, &r);
          v += r + 1;
        }
        if( v==0 ) continue;
        x = intToKey(v);
        rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
        cnt++;
      }while( cnt<1000 && rx==SQLITE_OK && res==0 );
      db->priorNewRowid = v;
      if( rx==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;
        goto abort_due_to_error;
      }
    }
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pTos++;
  pTos->u.i = v;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: Insert P1 P2 P3
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be an integer.  The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it's unmodified).
**
** Parameter P3 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {         /* no-push */
  Mem *pNos = &pTos[-1];
  int i = pOp->p1;
  Cursor *pC;
  assert( pNos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
    i64 iKey;   /* The integer ROWID or key for the record to be inserted */
    assert( pNos->flags & MEM_Int );
    assert( pC->isTable );
    iKey = intToKey(pNos->u.i);
    if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
    if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
    if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
      pC->nextRowidValid = 0;
    }
    if( pTos->flags & MEM_Null ){
      pTos->z = 0;
      pTos->n = 0;
    }else{
      assert( pTos->flags & (MEM_Blob|MEM_Str) );
    }
    if( pC->pseudoTable ){
      sqliteFree(pC->pData);
      pC->iKey = iKey;
      pC->nData = pTos->n;
      if( pTos->flags & MEM_Dyn ){
        pC->pData = pTos->z;
        pTos->flags = MEM_Null;
      }else{
        pC->pData = sqliteMallocRaw( pC->nData+2 );
        if( !pC->pData ) goto no_mem;
        memcpy(pC->pData, pTos->z, pC->nData);
        pC->pData[pC->nData] = 0;
        pC->pData[pC->nData+1] = 0;
      }
      pC->nullRow = 0;
    }else{
      int nZero;
      if( pTos->flags & MEM_Zero ){
        nZero = pTos->u.i;
      }else{
        nZero = 0;
      }
      rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                              pTos->z, pTos->n, nZero,
                              pOp->p2 & OPFLAG_APPEND);
    }
    
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p3;
      int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
      assert( pC->isTable );
      db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  popStack(&pTos, 2);
  break;
}
/* Opcode: Delete P1 P2 P3
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    i64 iKey;
    /* If the update-hook will be invoked, set iKey to the rowid of the
    ** row being deleted.
    */
    if( db->xUpdateCallback && pOp->p3 ){
      assert( pC->isTable );
      if( pC->rowidIsValid ){
        iKey = pC->lastRowid;
      }else{
        rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
        if( rc ){
          goto abort_due_to_error;
        }
        iKey = keyToInt(iKey);
      }
    }
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    rc = sqlite3BtreeDelete(pC->pCursor);
    pC->nextRowidValid = 0;
    pC->cacheStatus = CACHE_STALE;
    /* Invoke the update-hook if required. */
    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
      const char *zDb = db->aDb[pC->iDb].zName;
      const char *zTbl = pOp->p3;
      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
      assert( pC->iDb>=0 );
    }
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
/* Opcode: ResetCount P1 * *
**
** This opcode resets the VMs internal change counter to 0. If P1 is true,
** then the value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes())
** before it is reset. This is used by trigger programs.
*/
case OP_ResetCount: {        /* no-push */
  if( pOp->p1 ){
    sqlite3VdbeSetChanges(db, p->nChange);
  }
  p->nChange = 0;
  break;
}
/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
/* Opcode: RowKey P1 * *
**
** Push onto the stack the complete row key for cursor P1.
** There is no interpretation of the key.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
  int i = pOp->p1;
  Cursor *pC;
  u32 n;
  /* Note that RowKey and RowData are really exactly the same instruction */
  pTos++;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC->isTable || pOp->opcode==OP_RowKey );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  if( pC->nullRow ){
    pTos->flags = MEM_Null;
  }else if( pC->pCursor!=0 ){
    BtCursor *pCrsr = pC->pCursor;
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      pTos->flags = MEM_Null;
      break;
    }else if( pC->isIndex ){
      i64 n64;
      assert( !pC->isTable );
      sqlite3BtreeKeySize(pCrsr, &n64);
      if( n64>SQLITE_MAX_LENGTH ){
        goto too_big;
      }
      n = n64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &n);
    }
    if( n>SQLITE_MAX_LENGTH ){
      goto too_big;
    }
    pTos->n = n;
    if( n<=NBFS ){
      pTos->flags = MEM_Blob | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( n );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Blob | MEM_Dyn;
      pTos->xDel = 0;
      pTos->z = z;
    }
    if( pC->isIndex ){
      rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
    }else{
      rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
    }
  }else if( pC->pseudoTable ){
    pTos->n = pC->nData;
    assert( pC->nData<=SQLITE_MAX_LENGTH );
    pTos->z = pC->pData;
    pTos->flags = MEM_Blob|MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  pTos->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  break;
}
/* Opcode: Rowid P1 * *
**
** Push onto the stack an integer which is the key of the table entry that
** P1 is currently point to.
*/
case OP_Rowid: {
  int i = pOp->p1;
  Cursor *pC;
  i64 v;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  pTos++;
  if( pC->rowidIsValid ){
    v = pC->lastRowid;
  }else if( pC->pseudoTable ){
    v = keyToInt(pC->iKey);
  }else if( pC->nullRow || pC->pCursor==0 ){
    pTos->flags = MEM_Null;
    break;
  }else{
    assert( pC->pCursor!=0 );
    sqlite3BtreeKeySize(pC->pCursor, &v);
    v = keyToInt(v);
  }
  pTos->u.i = v;
  pTos->flags = MEM_Int;
  break;
}
/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always push 
** a NULL onto the stack.
*/
case OP_NullRow: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  break;
}
/* Opcode: Last P1 P2 *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( (pCrsr = pC->pCursor)!=0 ){
    int res;
    rc = sqlite3BtreeLast(pCrsr, &res);
    pC->nullRow = res;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    if( res && pOp->p2>0 ){
      pc = pOp->p2 - 1;
    }
  }else{
    pC->nullRow = 0;
  }
  break;
}
/* Opcode: Sort P1 P2 *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
**
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_Sort: {        /* no-push */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  int res;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( (pCrsr = pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }else{
    res = 1;
  }
  pC->nullRow = res;
  if( res && pOp->p2>0 ){
    pc = pOp->p2 - 1;
  }
  break;
}
/* Opcode: Next P1 P2 *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:          /* no-push */
case OP_Next: {        /* no-push */
  Cursor *pC;
  BtCursor *pCrsr;
  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  if( (pCrsr = pC->pCursor)!=0 ){
    int res;
    if( pC->nullRow ){
      res = 1;
    }else{
      assert( pC->deferredMoveto==0 );
      rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
                                  sqlite3BtreePrevious(pCrsr, &res);
      pC->nullRow = res;
      pC->cacheStatus = CACHE_STALE;
    }
    if( res==0 ){
      pc = pOp->p2 - 1;
#ifdef SQLITE_TEST
      sqlite3_search_count++;
#endif
    }
  }else{
    pC->nullRow = 1;
  }
  pC->rowidIsValid = 0;
  break;
}
/* Opcode: IdxInsert P1 P2 *
**
** The top of the stack holds a SQL index key made using either the
** MakeIdxRec or MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P2 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pTos);
    if( rc==SQLITE_OK ){
      int nKey = pTos->n;
      const char *zKey = pTos->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  Release(pTos);
  pTos--;
  break;
}
/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the either the
** MakeIdxRec or MakeRecord opcodes.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {        /* no-push */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res;
    rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
    if( rc==SQLITE_OK && res==0 ){
      rc = sqlite3BtreeDelete(pCrsr);
    }
    assert( pC->deferredMoveto==0 );
    pC->cacheStatus = CACHE_STALE;
  }
  Release(pTos);
  pTos--;
  break;
}
/* Opcode: IdxRowid P1 * *
**
** Push onto the stack an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeIdxRec.
*/
case OP_IdxRowid: {
  int i = pOp->p1;
  BtCursor *pCrsr;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  pTos++;
  pTos->flags = MEM_Null;
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    i64 rowid;
    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( pC->nullRow ){
      pTos->flags = MEM_Null;
    }else{
      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pTos->flags = MEM_Int;
      pTos->u.i = rowid;
    }
  }
  break;
}
/* Opcode: IdxGT P1 P2 *
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** The top of the stack might have fewer columns that P1.
**
** If the P1 index entry is greater than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 P3
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This make the opcode work
** like IdxGT except that if the key from the stack is a prefix of
** the key in the cursor, the result is false whereas it would be
** true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3
**
** The top of the stack is an index entry that omits the ROWID.  Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is less than  the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This makes the opcode work
** like IdxLE.
*/
case OP_IdxLT:          /* no-push */
case OP_IdxGT:          /* no-push */
case OP_IdxGE: {        /* no-push */
  int i= pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
 
    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
    assert( pC->deferredMoveto==0 );
    ExpandBlob(pTos);
    *pC->pIncrKey = pOp->p3!=0;
    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
      res++;
    }
    if( res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  Release(pTos);
  pTos--;
  break;
}
/* Opcode: Destroy P1 P2 *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database.  The former
** value of the root page that moved - its value before the move occurred -
** is pushed onto the stack.  If no page movement was required (because
** the table being dropped was already the last one in the database) then
** a zero is pushed onto the stack.  If AUTOVACUUM is disabled
** then a zero is pushed onto the stack.
**
** See also: Clear
*/
case OP_Destroy: {
  int iMoved;
  int iCnt;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Vdbe *pVdbe;
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
  }else{
    assert( iCnt==1 );
    rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
    pTos++;
    pTos->flags = MEM_Int;
    pTos->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
      sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
    }
#endif
  }
  break;
}
/* Opcode: Clear P1 P2 *
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1.  But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {        /* no-push */
  /* For consistency with the way other features of SQLite operate
  ** with a truncate, we will also skip the update callback.
  */
#if 0
  Btree *pBt = db->aDb[pOp->p2].pBt;
  if( db->xUpdateCallback && pOp->p3 ){
    const char *zDb = db->aDb[pOp->p2].zName;
    const char *zTbl = pOp->p3;
    BtCursor *pCur = 0;
    int fin = 0;
    rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    for(
      rc=sqlite3BtreeFirst(pCur, &fin); 
      rc==SQLITE_OK && !fin; 
      rc=sqlite3BtreeNext(pCur, &fin)
    ){
      i64 iKey;
      rc = sqlite3BtreeKeySize(pCur, &iKey);
      if( rc ){
        break;
      }
      iKey = keyToInt(iKey);
      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
    }
    sqlite3BtreeCloseCursor(pCur);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
  }
#endif
  rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
  break;
}
/* Opcode: CreateTable P1 * *
**
** Allocate a new table in the main database file if P2==0 or in the
** auxiliary database file if P2==1.  Push the page number
** for the root page of the new table onto the stack.
**
** The difference between a table and an index is this:  A table must
** have a 4-byte integer key and can have arbitrary data.  An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex P1 * *
**
** Allocate a new index in the main database file if P2==0 or in the
** auxiliary database file if P2==1.  Push the page number of the
** root page of the new index onto the stack.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:
case OP_CreateTable: {
  int pgno;
  int flags;
  Db *pDb;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_LEAFDATA|BTREE_INTKEY;
  }else{
    flags = BTREE_ZERODATA;
  }
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
  pTos++;
  if( rc==SQLITE_OK ){
    pTos->u.i = pgno;
    pTos->flags = MEM_Int;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}
/* Opcode: ParseSchema P1 P2 P3
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P3.  P2 is the "force" flag.   Always do
** the parsing if P2 is true.  If P2 is false, then this routine is a
** no-op if the schema is not currently loaded.  In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a reentrant opcode.
*/
case OP_ParseSchema: {        /* no-push */
  char *zSql;
  int iDb = pOp->p1;
  const char *zMaster;
  InitData initData;
  assert( iDb>=0 && iDb<db->nDb );
  if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
    break;
  }
  zMaster = SCHEMA_TABLE(iDb);
  initData.db = db;
  initData.iDb = pOp->p1;
  initData.pzErrMsg = &p->zErrMsg;
  zSql = sqlite3MPrintf(
     "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
     db->aDb[iDb].zName, zMaster, pOp->p3);
  if( zSql==0 ) goto no_mem;
  sqlite3SafetyOff(db);
  assert( db->init.busy==0 );
  db->init.busy = 1;
  assert( !sqlite3MallocFailed() );
  rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
  if( rc==SQLITE_ABORT ) rc = initData.rc;
  sqliteFree(zSql);
  db->init.busy = 0;
  sqlite3SafetyOn(db);
  if( rc==SQLITE_NOMEM ){
    sqlite3FailedMalloc();
    goto no_mem;
  }
  break;  
}
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
/* Opcode: LoadAnalysis P1 * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table.  This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {        /* no-push */
  int iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  rc = sqlite3AnalysisLoad(db, iDb);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
/* Opcode: DropTable P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the table named P3 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {        /* no-push */
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
  break;
}
/* Opcode: DropIndex P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the index named P3 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {        /* no-push */
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
  break;
}
/* Opcode: DropTrigger P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P3 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {        /* no-push */
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
  break;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 *
**
** Do an analysis of the currently open database.  Push onto the
** stack the text of an error message describing any problems.
** If no problems are found, push a NULL onto the stack.
**
** P1 is the address of a memory cell that contains the maximum
** number of allowed errors.  At most mem[P1] errors will be reported.
** In other words, the analysis stops as soon as mem[P1] errors are 
** seen.  Mem[P1] is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integer
** values on the stack.  This opcode pulls as many integers as it
** can off of the stack and uses those numbers as the root pages.
**
** If P2 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
  int nRoot;
  int *aRoot;
  int j;
  int nErr;
  char *z;
  Mem *pnErr;
  for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
    if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
  }
  assert( nRoot>0 );
  aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  j = pOp->p1;
  assert( j>=0 && j<p->nMem );
  pnErr = &p->aMem[j];
  assert( (pnErr->flags & MEM_Int)!=0 );
  for(j=0; j<nRoot; j++){
    aRoot[j] = (pTos-j)->u.i;
  }
  aRoot[j] = 0;
  popStack(&pTos, nRoot);
  pTos++;
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
                                 pnErr->u.i, &nErr);
  pnErr->u.i -= nErr;
  if( nErr==0 ){
    assert( z==0 );
    pTos->flags = MEM_Null;
  }else{
    pTos->z = z;
    pTos->n = strlen(z);
    pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
    pTos->xDel = 0;
  }
  pTos->enc = SQLITE_UTF8;
  sqlite3VdbeChangeEncoding(pTos, encoding);
  sqliteFree(aRoot);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: FifoWrite * * *
**
** Write the integer on the top of the stack
** into the Fifo.
*/
case OP_FifoWrite: {        /* no-push */
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  break;
}
/* Opcode: FifoRead * P2 *
**
** Attempt to read a single integer from the Fifo
** and push it onto the stack.  If the Fifo is empty
** push nothing but instead jump to P2.
*/
case OP_FifoRead: {
  i64 v;
  CHECK_FOR_INTERRUPT;
  if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
    pc = pOp->p2 - 1;
  }else{
    pTos++;
    pTos->u.i = v;
    pTos->flags = MEM_Int;
  }
  break;
}
#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {        /* no-push */
  int i = p->contextStackTop++;
  Context *pContext;
  assert( i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( i>=p->contextStackDepth ){
    p->contextStackDepth = i+1;
    p->contextStack = sqliteReallocOrFree(p->contextStack,
                                          sizeof(Context)*(i+1));
    if( p->contextStack==0 ) goto no_mem;
  }
  pContext = &p->contextStack[i];
  pContext->lastRowid = db->lastRowid;
  pContext->nChange = p->nChange;
  pContext->sFifo = p->sFifo;
  sqlite3VdbeFifoInit(&p->sFifo);
  break;
}
/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {        /* no-push */
  Context *pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = pContext->lastRowid;
  p->nChange = pContext->nChange;
  sqlite3VdbeFifoClear(&p->sFifo);
  p->sFifo = pContext->sFifo;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {        /* no-push */
  assert( pTos>=p->aStack );
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
  pTos--;
  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
  ** restore the top of the stack to its original value.
  */
  if( pOp->p2 ){
    break;
  }
}
/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location.  If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
  int i = pOp->p1;
  assert( i>=0 && i<p->nMem );
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
  break;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 * *
**
** Set the value of memory cell P1 to the maximum of its current value
** and the value on the top of the stack.  The stack is unchanged.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {        /* no-push */
  int i = pOp->p1;
  Mem *pMem;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  sqlite3VdbeMemIntegerify(pMem);
  sqlite3VdbeMemIntegerify(pTos);
  if( pMem->u.i<pTos->u.i){
    pMem->u.i = pTos->u.i;
  }
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P2 by the value in P1.
**
** It is illegal to use this instruction on a memory cell that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_MemIncr: {        /* no-push */
  int i = pOp->p2;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  pMem->u.i += pOp->p1;
  break;
}
/* Opcode: IfMemPos P1 P2 *
**
** If the value of memory cell P1 is 1 or greater, jump to P2.
**
** It is illegal to use this instruction on a memory cell that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfMemPos: {        /* no-push */
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  if( pMem->u.i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}
/* Opcode: IfMemNeg P1 P2 *
**
** If the value of memory cell P1 is less than zero, jump to P2. 
**
** It is illegal to use this instruction on a memory cell that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfMemNeg: {        /* no-push */
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  if( pMem->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}
/* Opcode: IfMemZero P1 P2 *
**
** If the value of memory cell P1 is exactly 0, jump to P2. 
**
** It is illegal to use this instruction on a memory cell that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfMemZero: {        /* no-push */
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  if( pMem->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}
/* Opcode: MemNull P1 * *
**
** Store a NULL in memory cell P1
*/
case OP_MemNull: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
  break;
}
/* Opcode: MemInt P1 P2 *
**
** Store the integer value P1 in memory cell P2.
*/
case OP_MemInt: {
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
  break;
}
/* Opcode: MemMove P1 P2 *
**
** Move the content of memory cell P2 over to memory cell P1.
** Any prior content of P1 is erased.  Memory cell P2 is left
** containing a NULL.
*/
case OP_MemMove: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
  break;
}
/* Opcode: AggStep P1 P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.  Use memory location
** P1 as the accumulator.
**
** The P2 arguments are popped from the stack.
*/
case OP_AggStep: {        /* no-push */
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  assert( n>=0 );
  pRec = &pTos[1-n];
  assert( pRec>=p->aStack );
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, encoding);
  }
  ctx.pFunc = (FuncDef*)pOp->p3;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
  popStack(&pTos, n);
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }
  sqlite3VdbeMemRelease(&ctx.s);
  break;
}
/* Opcode: AggFinal P1 P2 P3
**
** Execute the finalizer function for an aggregate.  P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P3 is a pointer to the FuncDef for this function.  The P2
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P3 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {        /* no-push */
  Mem *pMem;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  pMem = &p->aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
  if( rc==SQLITE_ERROR ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
  }
  if( sqlite3VdbeMemTooBig(pMem) ){
    goto too_big;
  }
  break;
}
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {        /* no-push */
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  break;
}
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* no-push */
  Btree *pBt;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;
}
#endif
/* Opcode: Expire P1 * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
** (via sqlite3_step()).
** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected. 
*/
case OP_Expire: {        /* no-push */
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }
  break;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled. 
**
** If P1 is not negative, then it is the index of the database
** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
** write-lock is required. In this case the index of the database is the 
** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
** required. 
**
** P2 contains the root-page of the table to lock.
**
** P3 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {        /* no-push */
  int p1 = pOp->p1; 
  u8 isWriteLock = (p1<0);
  if( isWriteLock ){
    p1 = (-1*p1)-1;
  }
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  if( rc==SQLITE_LOCKED ){
    const char *z = (const char *)pOp->p3;
    sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
  }
  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * P3
**
** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method 
** for that table.
*/
case OP_VBegin: {   /* no-push */
  rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * P3
**
** P3 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate: {   /* no-push */
  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * P3
**
** P3 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {   /* no-push */
  p->inVtabMethod = 2;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
  p->inVtabMethod = 0;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {   /* no-push */
  Cursor *pCur = 0;
  sqlite3_vtab_cursor *pVtabCursor = 0;
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  if( SQLITE_OK==rc ){
    /* Initialise sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;
    /* Initialise vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, -1);
    if( pCur ){
      pCur->pVtabCursor = pVtabCursor;
      pCur->pModule = pVtabCursor->pVtab->pModule;
    }else{
      pModule->xClose(pVtabCursor);
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3
**
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
** the filtered result set is empty.
**
** P3 is either NULL or a string that was generated by the xBestIndex
** method of the module.  The interpretation of the P3 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1.  The integer query plan parameter to xFilter is the top of the
** stack.  Next down on the stack is the argc parameter.  Beneath the
** next of stack are argc additional parameters which are passed to
** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
** the stack) becomes argv[argc-1] when passed to xFilter.
**
** The integer query plan parameter, argc, and all argv stack values 
** are popped from the stack before this instruction completes.
**
** A jump is made to P2 if the result set after filtering would be 
** empty.
*/
case OP_VFilter: {   /* no-push */
  int nArg;
  const sqlite3_module *pModule;
  Cursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  pModule = pCur->pVtabCursor->pVtab->pModule;
  /* Grab the index number and argc parameters off the top of the stack. */
  assert( (&pTos[-1])>=p->aStack );
  assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
  nArg = pTos[-1].u.i;
  /* Invoke the xFilter method */
  {
    int res = 0;
    int i;
    Mem **apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pTos[i+1-2-nArg];
      storeTypeInfo(apArg[i], 0);
    }
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    p->inVtabMethod = 1;
    rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
    p->inVtabMethod = 0;
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pCur->pVtabCursor);
    }
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
    if( res ){
      pc = pOp->p2 - 1;
    }
  }
  /* Pop the index number, argc value and parameters off the stack */
  popStack(&pTos, 2+nArg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRowid P1 * *
**
** Push an integer onto the stack which is the rowid of
** the virtual-table that the P1 cursor is pointing to.
*/
case OP_VRowid: {
  const sqlite3_module *pModule;
  Cursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  pModule = pCur->pVtabCursor->pVtab->pModule;
  if( pModule->xRowid==0 ){
    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
    rc = SQLITE_ERROR;
  } else {
    sqlite_int64 iRow;
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
    pTos++;
    pTos->flags = MEM_Int;
    pTos->u.i = iRow;
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 *
**
** Push onto the stack the value of the P2-th column of
** the row of the virtual-table that the P1 cursor is pointing to.
*/
case OP_VColumn: {
  const sqlite3_module *pModule;
  Cursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  pModule = pCur->pVtabCursor->pVtab->pModule;
  if( pModule->xColumn==0 ){
    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
    rc = SQLITE_ERROR;
  } else {
    sqlite3_context sContext;
    memset(&sContext, 0, sizeof(sContext));
    sContext.s.flags = MEM_Null;
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
    /* Copy the result of the function to the top of the stack. We
    ** do this regardless of whether or not an error occured to ensure any
    ** dynamic allocation in sContext.s (a Mem struct) is  released.
    */
    sqlite3VdbeChangeEncoding(&sContext.s, encoding);
    pTos++;
    pTos->flags = 0;
    sqlite3VdbeMemMove(pTos, &sContext.s);
    if( sqlite3SafetyOn(db) ){
      goto abort_due_to_misuse;
    }
    if( sqlite3VdbeMemTooBig(pTos) ){
      goto too_big;
    }
  }
  
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VNext P1 P2 *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2.  Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: {   /* no-push */
  const sqlite3_module *pModule;
  int res = 0;
  Cursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  pModule = pCur->pVtabCursor->pVtab->pModule;
  if( pModule->xNext==0 ){
    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
    rc = SQLITE_ERROR;
  } else {
    /* Invoke the xNext() method of the module. There is no way for the
    ** underlying implementation to return an error if one occurs during
    ** xNext(). Instead, if an error occurs, true is returned (indicating that 
    ** data is available) and the error code returned when xColumn or
    ** some other method is next invoked on the save virtual table cursor.
    */
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    p->inVtabMethod = 1;
    rc = pModule->xNext(pCur->pVtabCursor);
    p->inVtabMethod = 0;
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pCur->pVtabCursor);
    }
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
    if( !res ){
      /* If there is data, jump to P2 */
      pc = pOp->p2 - 1;
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename * * P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** on the top of the stack is popped and passed as the zName argument
** to the xRename method.
*/
case OP_VRename: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
  assert( pVtab->pModule->xRename );
  Stringify(pTos, encoding);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
  rc = pVtab->pModule->xRename(pVtab, pTos->z);
  sqlite3VtabUnlock(db, pVtab);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  popStack(&pTos, 1);
  break;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3
**
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are taken from the stack to pass to the xUpdate invocation. The
** value on the top of the stack corresponds to the p2th element 
** of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to the P2-th element down
** on the stack) is the rowid of a row to delete.  If argv[0] is
** NULL then no deletion occurs.  The argv[1] element is the rowid
** of the new row.  This can be NULL to have the virtual table
** select the new rowid for itself.  The higher elements in the
** stack are the values of columns in the new row.
**
** If P2==1 then no insert is performed.  argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  int nArg = pOp->p2;
  assert( pOp->p3type==P3_VTAB );
  if( pModule->xUpdate==0 ){
    sqlite3SetString(&p->zErrMsg, "read-only table", 0);
    rc = SQLITE_ERROR;
  }else{
    int i;
    sqlite_int64 rowid;
    Mem **apArg = p->apArg;
    Mem *pX = &pTos[1-nArg];
    for(i = 0; i<nArg; i++, pX++){
      storeTypeInfo(pX, 0);
      apArg[i] = pX;
    }
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    sqlite3VtabLock(pVtab);
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    sqlite3VtabUnlock(db, pVtab);
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
    if( pOp->p1 && rc==SQLITE_OK ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = rowid;
    }
  }
  popStack(&pTos, nArg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/* An other opcode is illegal...
*/
default: {
  assert( 0 );
  break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
    }
    /* Make sure the stack limit was not exceeded */
    assert( pTos<=pStackLimit );
#ifdef VDBE_PROFILE
    {
      long long elapse = hwtime() - start;
      pOp->cycles += elapse;
      pOp->cnt++;
#if 0
        fprintf(stdout, "%10lld ", elapse);
        sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
    }
#endif
#ifdef SQLITE_TEST
    /* Keep track of the size of the largest BLOB or STR that has appeared
    ** on the top of the VDBE stack.
    */
    if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
         && pTos->n>sqlite3_max_blobsize ){
      sqlite3_max_blobsize = pTos->n;
    }
#endif
    /* The following code adds nothing to the actual functionality
    ** of the program.  It is only here for testing and debugging.
    ** On the other hand, it does burn CPU cycles every time through
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack. If the previous
    ** instruction was VNoChange, then the flags field of the top
    ** of the stack is set to 0. This is technically invalid for a memory
    ** cell, so avoid calling MemSanity() in this case.
    */
    if( pTos>=p->aStack && pTos->flags ){
      sqlite3VdbeMemSanity(pTos);
      assert( !sqlite3VdbeMemTooBig(pTos) );
    }
    assert( pc>=-1 && pc<p->nOp );
#ifdef SQLITE_DEBUG
    /* Code for tracing the vdbe stack. */
    if( p->trace && pTos>=p->aStack ){
      int i;
      fprintf(p->trace, "Stack:");
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
        if( pTos[i].flags & MEM_Null ){
          fprintf(p->trace, " NULL");
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%lld", pTos[i].u.i);
        }else if( pTos[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%lld", pTos[i].u.i);
        }else if( pTos[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", pTos[i].r);
        }else{
          char zBuf[200];
          sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
          fprintf(p->trace, " ");
          fprintf(p->trace, "%s", zBuf);
        }
      }
      if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
      fprintf(p->trace,"\n");
    }
#endif  /* SQLITE_DEBUG */
#endif  /* NDEBUG */
  }  /* The end of the for(;;) loop the loops through opcodes */
  /* If we reach this point, it means that execution is finished.
  */
vdbe_halt:
  if( rc ){
    p->rc = rc;
    rc = SQLITE_ERROR;
  }else{
    rc = SQLITE_DONE;
  }
  sqlite3VdbeHalt(p);
  p->pTos = pTos;
  return rc;
  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
  rc = SQLITE_TOOBIG;
  goto vdbe_halt;
  /* Jump to here if a malloc() fails.
  */
no_mem:
  sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
  rc = SQLITE_NOMEM;
  goto vdbe_halt;
  /* Jump to here for an SQLITE_MISUSE error.
  */
abort_due_to_misuse:
  rc = SQLITE_MISUSE;
  /* Fall thru into abort_due_to_error */
  /* Jump to here for any other kind of fatal error.  The "rc" variable
  ** should hold the error number.
  */
abort_due_to_error:
  if( p->zErrMsg==0 ){
    if( sqlite3MallocFailed() ) rc = SQLITE_NOMEM;
    sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
  }
  goto vdbe_halt;
  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
  ** flag.
  */
abort_due_to_interrupt:
  assert( db->u1.isInterrupted );
  if( db->magic!=SQLITE_MAGIC_BUSY ){
    rc = SQLITE_MISUSE;
  }else{
    rc = SQLITE_INTERRUPT;
  }
  p->rc = rc;
  sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
  goto vdbe_halt;
}
 
     |