1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/****************************************************************************
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multidimensional index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "index.h"
#include <float.h>
#include <math.h>
/* #include <grass/gis.h> */
#define BIG_NUM (FLT_MAX/4.0)
#define Undefined(x) ((x)->boundary[0] > (x)->boundary[NUMDIMS])
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/*-----------------------------------------------------------------------------
| Initialize a rectangle to have all 0 coordinates.
-----------------------------------------------------------------------------*/
void RTreeInitRect(struct Rect *R)
{
register struct Rect *r = R;
register int i;
for (i=0; i<NUMSIDES; i++)
r->boundary[i] = (RectReal)0;
}
/*-----------------------------------------------------------------------------
| Return a rect whose first low side is higher than its opposite side -
| interpreted as an undefined rect.
-----------------------------------------------------------------------------*/
struct Rect RTreeNullRect(void)
{
struct Rect r;
register int i;
r.boundary[0] = (RectReal)1;
r.boundary[NUMDIMS] = (RectReal)-1;
for (i=1; i<NUMDIMS; i++)
r.boundary[i] = r.boundary[i+NUMDIMS] = (RectReal)0;
return r;
}
#if 0
/*-----------------------------------------------------------------------------
| Fills in random coordinates in a rectangle.
| The low side is guaranteed to be less than the high side.
-----------------------------------------------------------------------------*/
void RTreeRandomRect(struct Rect *R)
{
register struct Rect *r = R;
register int i;
register RectReal width;
for (i = 0; i < NUMDIMS; i++)
{
/* width from 1 to 1000 / 4, more small ones
*/
width = drand48() * (1000 / 4) + 1;
/* sprinkle a given size evenly but so they stay in [0,100]
*/
r->boundary[i] = drand48() * (1000-width); /* low side */
r->boundary[i + NUMDIMS] = r->boundary[i] + width; /* high side */
}
}
/*-----------------------------------------------------------------------------
| Fill in the boundaries for a random search rectangle.
| Pass in a pointer to a rect that contains all the data,
| and a pointer to the rect to be filled in.
| Generated rect is centered randomly anywhere in the data area,
| and has size from 0 to the size of the data area in each dimension,
| i.e. search rect can stick out beyond data area.
-----------------------------------------------------------------------------*/
void RTreeSearchRect(struct Rect *Search, struct Rect *Data)
{
register struct Rect *search = Search, *data = Data;
register int i, j;
register RectReal size, center;
assert(search);
assert(data);
for (i=0; i<NUMDIMS; i++)
{
j = i + NUMDIMS; /* index for high side boundary */
if (data->boundary[i] > -BIG_NUM &&
data->boundary[j] < BIG_NUM)
{
size = (drand48() * (data->boundary[j] -
data->boundary[i] + 1)) / 2;
center = data->boundary[i] + drand48() *
(data->boundary[j] - data->boundary[i] + 1);
search->boundary[i] = center - size/2;
search->boundary[j] = center + size/2;
}
else /* some open boundary, search entire dimension */
{
search->boundary[i] = -BIG_NUM;
search->boundary[j] = BIG_NUM;
}
}
}
#endif
/*-----------------------------------------------------------------------------
| Print out the data for a rectangle.
-----------------------------------------------------------------------------*/
void RTreePrintRect(struct Rect *R, int depth)
{
register struct Rect *r = R;
register int i;
assert(r);
RTreeTabIn(depth);
fprintf (stdout, "rect:\n");
for (i = 0; i < NUMDIMS; i++) {
RTreeTabIn(depth+1);
fprintf (stdout, "%f\t%f\n", r->boundary[i], r->boundary[i + NUMDIMS]);
}
}
/*-----------------------------------------------------------------------------
| Calculate the n-dimensional volume of a rectangle
-----------------------------------------------------------------------------*/
RectReal RTreeRectVolume(struct Rect *R)
{
register struct Rect *r = R;
register int i;
register RectReal volume = (RectReal)1;
assert(r);
if (Undefined(r))
return (RectReal)0;
for(i=0; i<NUMDIMS; i++)
volume *= r->boundary[i+NUMDIMS] - r->boundary[i];
assert(volume >= 0.0);
return volume;
}
/*-----------------------------------------------------------------------------
| Define the NUMDIMS-dimensional volume the unit sphere in that dimension into
| the symbol "UnitSphereVolume"
| Note that if the gamma function is available in the math library and if the
| compiler supports static initialization using functions, this is
| easily computed for any dimension. If not, the value can be precomputed and
| taken from a table. The following code can do it either way.
-----------------------------------------------------------------------------*/
#ifdef gamma
/* computes the volume of an N-dimensional sphere. */
/* derived from formule in "Regular Polytopes" by H.S.M Coxeter */
static double sphere_volume(double dimension)
{
double log_gamma, log_volume;
log_gamma = gamma(dimension/2.0 + 1);
log_volume = dimension/2.0 * log(M_PI) - log_gamma;
return exp(log_volume);
}
static const double UnitSphereVolume = sphere_volume(NUMDIMS);
#else
/* Precomputed volumes of the unit spheres for the first few dimensions */
const double UnitSphereVolumes[] = {
0.000000, /* dimension 0 */
2.000000, /* dimension 1 */
3.141593, /* dimension 2 */
4.188790, /* dimension 3 */
4.934802, /* dimension 4 */
5.263789, /* dimension 5 */
5.167713, /* dimension 6 */
4.724766, /* dimension 7 */
4.058712, /* dimension 8 */
3.298509, /* dimension 9 */
2.550164, /* dimension 10 */
1.884104, /* dimension 11 */
1.335263, /* dimension 12 */
0.910629, /* dimension 13 */
0.599265, /* dimension 14 */
0.381443, /* dimension 15 */
0.235331, /* dimension 16 */
0.140981, /* dimension 17 */
0.082146, /* dimension 18 */
0.046622, /* dimension 19 */
0.025807, /* dimension 20 */
};
#if NUMDIMS > 20
# error "not enough precomputed sphere volumes"
#endif
#define UnitSphereVolume UnitSphereVolumes[NUMDIMS]
#endif
/*-----------------------------------------------------------------------------
| Calculate the n-dimensional volume of the bounding sphere of a rectangle
-----------------------------------------------------------------------------*/
#if 0
/*
* A fast approximation to the volume of the bounding sphere for the
* given Rect. By Paul B.
*/
RectReal RTreeRectSphericalVolume(struct Rect *R)
{
register struct Rect *r = R;
register int i;
RectReal maxsize=(RectReal)0, c_size;
assert(r);
if (Undefined(r))
return (RectReal)0;
for (i=0; i<NUMDIMS; i++) {
c_size = r->boundary[i+NUMDIMS] - r->boundary[i];
if (c_size > maxsize)
maxsize = c_size;
}
return (RectReal)(pow(maxsize/2, NUMDIMS) * UnitSphereVolume);
}
#endif
/*
* The exact volume of the bounding sphere for the given Rect.
*/
RectReal RTreeRectSphericalVolume(struct Rect *R)
{
register struct Rect *r = R;
register int i;
register double sum_of_squares=0, radius;
assert(r);
if (Undefined(r))
return (RectReal)0;
for (i=0; i<NUMDIMS; i++) {
double half_extent =
(r->boundary[i+NUMDIMS] - r->boundary[i]) / 2;
sum_of_squares += half_extent * half_extent;
}
radius = sqrt(sum_of_squares);
return (RectReal)(pow(radius, NUMDIMS) * UnitSphereVolume);
}
/*-----------------------------------------------------------------------------
| Calculate the n-dimensional surface area of a rectangle
-----------------------------------------------------------------------------*/
RectReal RTreeRectSurfaceArea(struct Rect *R)
{
register struct Rect *r = R;
register int i, j;
register RectReal sum = (RectReal)0;
assert(r);
if (Undefined(r))
return (RectReal)0;
for (i=0; i<NUMDIMS; i++) {
RectReal face_area = (RectReal)1;
for (j=0; j<NUMDIMS; j++)
/* exclude i extent from product in this dimension */
if(i != j) {
RectReal j_extent =
r->boundary[j+NUMDIMS] - r->boundary[j];
face_area *= j_extent;
}
sum += face_area;
}
return 2 * sum;
}
/*-----------------------------------------------------------------------------
| Combine two rectangles, make one that includes both.
-----------------------------------------------------------------------------*/
struct Rect RTreeCombineRect(struct Rect *R, struct Rect *Rr)
{
register struct Rect *r = R, *rr = Rr;
register int i, j;
struct Rect new_rect;
assert(r && rr);
if (Undefined(r))
return *rr;
if (Undefined(rr))
return *r;
for (i = 0; i < NUMDIMS; i++)
{
new_rect.boundary[i] = MIN(r->boundary[i], rr->boundary[i]);
j = i + NUMDIMS;
new_rect.boundary[j] = MAX(r->boundary[j], rr->boundary[j]);
}
return new_rect;
}
/*-----------------------------------------------------------------------------
| Decide whether two rectangles overlap.
-----------------------------------------------------------------------------*/
int RTreeOverlap(struct Rect *R, struct Rect *S)
{
register struct Rect *r = R, *s = S;
register int i, j;
assert(r && s);
int odebug = 0;
if(odebug)
{
for (i=0; i<NUMDIMS; i++)
{
j = i + NUMDIMS;
printf("%d: %.4f %.4f vs. %.4f %.4f\n",
i, r->boundary[i], r->boundary[j], s->boundary[i], s->boundary[j]);
fflush(stdout);
}
}
for (i=0; i<NUMDIMS; i++)
{
j = i + NUMDIMS; /* index for high sides */
if (r->boundary[i] > s->boundary[j] ||
s->boundary[i] > r->boundary[j])
{
return FALSE;
}
}
return TRUE;
}
/*-----------------------------------------------------------------------------
| Decide whether rectangle r is contained in rectangle s.
-----------------------------------------------------------------------------*/
int RTreeContained(struct Rect *R, struct Rect *S)
{
register struct Rect *r = R, *s = S;
register int i, j, result;
assert((long)r && (long)s);
/* undefined rect is contained in any other */
if (Undefined(r))
return TRUE;
/* no rect (except an undefined one) is contained in an undef rect */
if (Undefined(s))
return FALSE;
result = TRUE;
for (i = 0; i < NUMDIMS; i++)
{
j = i + NUMDIMS; /* index for high sides */
result = result
&& r->boundary[i] >= s->boundary[i]
&& r->boundary[j] <= s->boundary[j];
}
return result;
}
|