1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
|
SUBROUTINE EF(XPARAM, NVAR, FUNCT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION LAMDA,LAMDA0
INCLUDE 'SIZES'
DIMENSION XPARAM(MAXPAR)
**********************************************************************
*
* EF IS A QUASI NEWTON RAPHSON OPTIMIZATION ROUTINE BASED ON
* Jacs Simons P-RFO algorithm as implemented by Jon Baker
* (J.COMP.CHEM. 7, 385). Step scaling to keep length within
* trust radius is taken from Culot et al. (Theo. Chim. Acta 82, 189)
* The trust radius can be updated dynamically according to Fletcher.
* Safeguards on valid step for TS searches based on actual/predicted
* function change and change in TS mode are own modifications
*
* ON ENTRY XPARAM = VALUES OF PARAMETERS TO BE OPTIMISED.
* NVAR = NUMBER OF PARAMETERS TO BE OPTIMISED.
*
* ON EXIT XPARAM = OPTIMISED PARAMETERS.
* FUNCT = HEAT OF FORMATION IN KCAL/MOL.
*
* Current version implementing combined NR, P-RFO and QA algorithm
* together with thrust radius update and step rejection was
* made october 1992 by F.Jensen, Odense, DK
*
**********************************************************************
C
COMMON /MESAGE/ IFLEPO,ISCF
COMMON /GEOVAR/ NDUM,LOC(2,MAXPAR), IDUMY, XARAM(MAXPAR)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)
COMMON /ISTOPE/ AMS(107)
COMMON /LAST / LAST
COMMON /KEYWRD/ KEYWRD
C ***** Modified by Jiro Toyoda at 1994-05-25 *****
C COMMON /TIME / TIME0
COMMON /TIMEC / TIME0
C ***************************** at 1994-05-25 *****
COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /NUMCAL/ NUMCAL
COMMON /TIMDMP/ TLEFT, TDUMP
COMMON /SIGMA2/ GNEXT1(MAXPAR), GMIN1(MAXPAR)
CONVEX COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
CONVEX 1PMAT(MAXPAR*MAXPAR)
COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
1PMAT(MAXPAR**2)
CONVEX COMMON /SCRACH/ PVEC
COMMON /SCFTYP/ EMIN, LIMSCF
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
COMMON/THREADS/NUM_THREADS
C ***** Modified by Jiro Toyoda at 1994-05-25 *****
C COMMON/FLUSH/NFLUSH
COMMON/FLUSHC/NFLUSH
C ***************************** at 1994-05-25 *****
DIMENSION IPOW(9), EIGVAL(MAXPAR),TVEC(MAXPAR),SVEC(MAXPAR),
1FX(MAXPAR),HESSC(MAXHES),UC(MAXPAR**2),oldfx(maxpar),
1oldeig(maxpar),
$oldhss(maxpar,maxpar),oldu(maxpar,maxpar),ooldf(maxpar)
DIMENSION BB(MAXPAR,MAXPAR)
LOGICAL RESTRT,SCF1,LIMSCF,LOG
LOGICAL LUPD,lts,lrjk,lorjk,rrscal,donr,gnmin
CHARACTER KEYWRD*241
EQUIVALENCE(IPOW(1),IHESS)
DATA ICALCN,ZERO,ONE,TWO /0,0.D0,1.D0,2.D0/
DATA tmone /1.0d-1/, TMTWO/1.0D-2/, TMSIX/1.0D-06/
data three/3.0d0/, four/4.0d0/,
1pt25/0.25d0/, pt5/0.50d0/, pt75/0.75d0/
data demin/2.0d-2/, gmin/5.0d0/
C GET ALL INITIALIZATION DATA
IF(ICALCN.NE.NUMCAL)
1CALL EFSTR(XPARAM,FUNCT,IHESS,NTIME,ILOOP,IGTHES,
$MXSTEP,IRECLC,IUPD,DMAX,DDMAX,dmin,TOL2,TOTIME,TIME1,TIME2,nvar,
$SCF1,LUPD,ldump,log,rrscal,donr,gnmin)
lts=.false.
if (negreq.eq.1) lts=.true.
lorjk=.false.
c osmin is smallest step for which a ts-mode overlap less than omin
c will be rejected. for updated hessians there is little hope of
c better overlap by reducing the step below 0.005. for exact hessian
c the overlap should go toward one as the step become smaller, but
c don't allow very small steps
osmin=0.005d0
if(ireclc.eq.1)osmin=0.001d0
IF (SCF1) THEN
GNFINA=SQRT(DOT(GRAD,GRAD,NVAR))
IFLEPO=1
RETURN
ENDIF
C CHECK THAT GEOMETRY IS NOT ALREADY OPTIMIZED
RMX=SQRT(DOT(GRAD,GRAD,NVAR))
IF (RMX.LT.TOL2) THEN
IFLEPO=2
LAST=1
RETURN
ENDIF
C GET INITIAL HESSIAN. IF ILOOP IS .LE.0 THIS IS AN OPTIMIZATION RESTART
C AND HESSIAN SHOULD ALREADY BE AVAILABLE
IF (ILOOP .GT. 0) CALL GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME)
C START OF MAIN LOOP
C WE NOW HAVE GRADIENTS AND A HESSIAN. IF THIS IS THE FIRST
C TIME THROUGH DON'T UPDATE THE HESSIAN. FOR LATER LOOPS ALSO
C CHECK IF WE NEED TO RECALCULATE THE HESSIAN
IFLEPO=0
itime=0
10 CONTINUE
c store various things for possibly omin rejection
do 30 i=1,nvar
oldfx(i)=fx(i)
ooldf(i)=oldf(i)
oldeig(i)=eigval(i)
do 20 j=1,nvar
oldhss(i,j)=hess(i,j)
oldu(i,j)=u(i,j)
20 continue
30 continue
IF (IHESS.GE.IRECLC.AND.IFLEPO.NE.15) THEN
ILOOP=1
IHESS=0
if (igthes.ne.3)IGTHES=1
CALL GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME)
ENDIF
IF (IHESS.GT.0) CALL UPDHES(SVEC,TVEC,NVAR,IUPD)
IF(IPRNT.GE.2) call geout(6)
IF(IPRNT.GE.2) THEN
WRITE(6,'('' XPARAM '')')
WRITE(6,'(5(2I3,F10.4))')(LOC(1,I),LOC(2,I),XPARAM(I),I=1,NV
1AR)
WRITE(6,'('' GRADIENTS'')')
WRITE(6,'(3X,8F9.3)')(GRAD(I),I=1,NVAR)
ENDIF
C
C PRINT RESULTS IN CYCLE
GNFINA=SQRT(DOT(GRAD,GRAD,NVAR))
TIME2=SECOND()
if (itime.eq.0) time1=time0
TSTEP=TIME2-TIME1
IF (TSTEP.LT.ZERO)TSTEP=ZERO
TLEFT=TLEFT-TSTEP
TIME1=TIME2
itime=itime+1
IF (TLEFT .LT. TSTEP*TWO) GOTO 280
IF(LDUMP.EQ.0)THEN
WRITE(6,40)NSTEP+1,MIN(TSTEP,9999.99D0),
1MIN(TLEFT,9999999.9D0),MIN(GNFINA,999999.999D0),FUNCT
IF(LOG)WRITE(11,40)NSTEP+1,MIN(TSTEP,9999.99D0),
1MIN(TLEFT,9999999.9D0),MIN(GNFINA,999999.999D0),FUNCT
40 FORMAT(' CYCLE:',I4,' TIME:',F7.2,' TIME LEFT:',F9.1,
1' GRAD.:',F10.3,' HEAT:',G13.7)
IF ( NFLUSH.NE.0 ) THEN
IF ( MOD(NSTEP+1,NFLUSH).EQ.0) THEN
call flush(6)
call flush(11)
ENDIF
ENDIF
ELSE
WRITE(6,50)MIN(TLEFT,9999999.9D0),
1MIN(GNFINA,999999.999D0),FUNCT
IF(LOG)WRITE(11,50)MIN(TLEFT,9999999.9D0),
1MIN(GNFINA,999999.999D0),FUNCT
50 FORMAT(' RESTART FILE WRITTEN, TIME LEFT:',F9.1,
1' GRAD.:',F10.3,' HEAT:',G13.7)
IF ( NFLUSH.NE.0 ) THEN
IF ( MOD(NSTEP+1,NFLUSH).EQ.0) THEN
call flush(6)
call flush(11)
ENDIF
ENDIF
ENDIF
IHESS=IHESS+1
NSTEP=NSTEP+1
C
C TEST FOR CONVERGENCE
C
RMX=SQRT(DOT(GRAD,GRAD,NVAR))
IF (RMX.LT.TOL2)GOTO 250
OLDE = FUNCT
oldgn = rmx
DO 60 I=1,NVAR
OLDF(I)=GRAD(I)
60 CONTINUE
C
C if the optimization is in cartesian coordinates, we should remove
C translation and rotation modes. Possible problem if run is in
C internal but with exactly 3*natoms variable (i.e. dummy atoms
C are also optimized).
if (nvar.eq.3*numat) then
if (nstep.eq.1) write(6,70)
70 format(1x,'WARNING! EXACTLY 3N VARIABLES. EF ASSUMES THIS IS',
$ ' A CARTESIAN OPTIMIZATION.',/,1x,'IF THE OPTIMIZATION IS',
$ ' IN INTERNAL COORDINATES, EF WILL NOT WORK')
call prjfc(hess,xparam,nvar)
endif
IJ=0
DO 80 I=1,NVAR
DO 80 J=1,I
IJ=IJ+1
HESSC(IJ)=HESS(J,I)
80 CONTINUE
CONVEX CALL HQRII(HESSC,NVAR,NVAR,EIGVAL,UC)
CALL RSP(HESSC,NVAR,NVAR,EIGVAL,UC)
IJ=0
DO 90 I=1,NVAR
IF (ABS(EIGVAL(I)).LT.TMSIX) EIGVAL(I)=ZERO
DO 90 J=1,NVAR
IJ=IJ+1
U(J,I)=UC(IJ)
90 CONTINUE
IF (IPRNT.GE.3) CALL PRTHES(EIGVAL,NVAR)
IF (MXSTEP.EQ.0) nstep=0
IF (MXSTEP.EQ.0) GOTO 280
NEG=0
DO 100 I=1,NVAR
IF (EIGVAL(I) .LT. ZERO)NEG=NEG+1
100 CONTINUE
IF (IPRNT.GE.1)WRITE(6,110)NEG,(eigval(i),i=1,neg)
110 FORMAT(/,10X,'HESSIAN HAS',I3,' NEGATIVE EIGENVALUE(S)',6f7.1,/)
c if an eigenvalue has been zero out it is probably one of the T,R modes
c in a cartesian optimization. zero corresponding fx to allow formation
c of step without these contributions. a more safe criteria for deciding
c whether this actually is a cartesian optimization should be put in
c some day...
DO 120 I=1,NVAR
FX(I)=DOT(U(1,I),GRAD,NVAR)
if (abs(eigval(i)).eq.zero) fx(i)=zero
120 CONTINUE
c form geometry step d
130 CALL FORMD(EIGVAL,FX,NVAR,DMAX,osmin,LTS,lrjk,lorjk,rrscal,donr)
c if lorjk is true, then ts mode overlap is less than omin, reject prev step
if (lorjk) then
if (iprnt.ge.1)write(6,*)' Now undoing previous step'
dmax=odmax
dd=odd
olde=oolde
do i=1,nvar
fx(i)=oldfx(i)
oldf(i)=ooldf(i)
eigval(i)=oldeig(i)
do j=1,nvar
hess(i,j)=oldhss(i,j)
u(i,j)=oldu(i,j)
enddo
enddo
DO 140 I=1,NVAR
XPARAM(I)=XPARAM(I)-D(I)
K=LOC(1,I)
L=LOC(2,I)
GEO(L,K)=XPARAM(I)
140 CONTINUE
IF(NDEP.NE.0) CALL SYMTRY
dmax=min(dmax,dd)/two
odmax=dmax
odd=dd
nstep=nstep-1
if (dmax.lt.dmin) goto 230
if (iprnt.ge.1)write(6,*)
1' Finish undoing, now going for new step'
goto 130
endif
C
C FORM NEW TRIAL XPARAM AND GEO
C
DO 150 I=1,NVAR
XPARAM(I)=XPARAM(I)+D(I)
K=LOC(1,I)
L=LOC(2,I)
GEO(L,K)=XPARAM(I)
150 CONTINUE
IF(NDEP.NE.0) CALL SYMTRY
C
C COMPARE PREDICTED E-CHANGE WITH ACTUAL
C
depre=zero
imode=1
if (mode.ne.0)imode=mode
do 160 i=1,nvar
xtmp=xlamd
if (lts .and. i.eq.imode) xtmp=xlamd0
if (abs(xtmp-eigval(i)).lt.tmtwo) then
ss=zero
else
ss=skal*fx(i)/(xtmp-eigval(i))
endif
frodo=ss*fx(i) + pt5*ss*ss*eigval(i)
c write(6,88)i,fx(i),ss,xtmp,eigval(i),frodo
depre=depre+frodo
160 continue
c88 format(i3,f10.3,f10.6,f10.3,4f10.6)
C
C GET GRADIENT FOR NEW GEOMETRY
C
CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)
if(gnmin)gntest=sqrt(dot(grad,grad,nvar))
DEACT = FUNCT-OLDE
RATIO = DEACT/DEPRE
if(iprnt.ge.1)WRITE(6,170)DEACT,DEPRE,RATIO
170 FORMAT(5X,'ACTUAL, PREDICTED ENERGY CHANGE, RATIO',2F10.3,F10.5)
lrjk=.false.
C if this is a minimum search, don't allow the energy to raise
if (.not.lts .and. funct.gt.olde) then
if (iprnt.ge.1)write(6,180)funct,min(dmax,dd)/two
180 format(1x,'energy raises ',f10.4,' rejecting step, ',
$ 'reducing dmax to',f7.4)
lrjk=.true.
endif
if (gnmin .and. gntest.gt.oldgn) then
if (iprnt.ge.1)write(6,181)gntest,min(dmax,dd)/two
181 format(1x,'gradient norm raises ',f10.4,' rejecting step, ',
$ 'reducing dmax to',f7.4)
lrjk=.true.
endif
if (lts .and. (ratio.lt.rmin .or. ratio.gt.rmax) .and.
$(abs(depre).gt.demin .or. abs(deact).gt.demin)) then
if (iprnt.ge.1)write(6,190)min(dmax,dd)/two
190 format(1x,'unacceptable ratio,',
$ ' rejecting step, reducing dmax to',f7.4)
lrjk=.true.
endif
if (lrjk) then
DO 200 I=1,NVAR
XPARAM(I)=XPARAM(I)-D(I)
K=LOC(1,I)
L=LOC(2,I)
GEO(L,K)=XPARAM(I)
200 CONTINUE
IF(NDEP.NE.0) CALL SYMTRY
dmax=min(dmax,dd)/two
if (dmax.lt.dmin) goto 230
goto 130
endif
IF(IPRNT.GE.1)WRITE(6,210)DD
210 FORMAT(5X,'STEPSIZE USED IS',F9.5)
IF(IPRNT.GE.2) THEN
WRITE(6,'('' CALCULATED STEP'')')
WRITE(6,'(3X,8F9.5)')(D(I),I=1,NVAR)
ENDIF
C
C POSSIBLE USE DYNAMICAL TRUST RADIUS
odmax=dmax
odd=dd
oolde=olde
IF (LUPD .and. ( (RMX.gt.gmin) .or.
$ (abs(depre).gt.demin .or. abs(deact).gt.demin) ) ) THEN
c Fletcher recommend dmax=dmax/4 and dmax=dmax*2
c these are are a little more conservative since hessian is being updated
c don't reduce trust radius due to ratio for min searches
if (lts .and. ratio.le.tmone .or. ratio.ge.three)
$ dmax=min(dmax,dd)/two
if (lts .and. ratio.ge.pt75 .and. ratio.le.(four/three)
$ .and. dd.gt.(dmax-tmsix))
$ dmax=dmax*sqrt(two)
c allow wider limits for increasing trust radius for min searches
if (.not.lts .and. ratio.ge.pt5
$ .and. dd.gt.(dmax-tmsix))
$ dmax=dmax*sqrt(two)
c be brave if 0.90 < ratio < 1.10 ...
if (abs(ratio-one).lt.tmone) dmax=dmax*sqrt(two)
dmax=max(dmax,dmin-tmsix)
dmax=min(dmax,ddmax)
ENDIF
c allow stepsize up to 0.1 in the end-game where changes are less
c than demin and gradient is less than gmin
IF (LUPD .and. RMX.lt.gmin .and.
$ (abs(depre).lt.demin .and. abs(deact).lt.demin) )
$ dmax=max(dmax,tmone)
if(iprnt.ge.1)WRITE(6,220)DMAX
220 FORMAT(5X,'CURRENT TRUST RADIUS = ',F7.5)
230 if (dmax.lt.dmin) then
write(6,240)dmin
240 format(/,5x,'TRUST RADIUS NOW LESS THAN ',F7.5,' OPTIMIZATION',
$ ' TERMINATING',/,5X,
1' GEOMETRY MAY NOT BE COMPLETELY OPTIMIZED')
goto 270
endif
C CHECK STEPS AND ENOUGH TIME FOR ANOTHER PASS
if (nstep.ge.mxstep) goto 280
C IN USER UNFRIENDLY ENVIROMENT, SAVE RESULTS EVERY 1 CPU HRS
ITTEST=AINT((TIME2-TIME0)/TDUMP)
IF (ITTEST.GT.NTIME) THEN
LDUMP=1
NTIME=MAX(ITTEST,(NTIME+1))
IPOW(9)=2
TT0=SECOND()-TIME0
CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
1POW)
ELSE
LDUMP=0
ENDIF
C RETURN FOR ANOTHER CYCLE
GOTO 10
C
C ****** OPTIMIZATION TERMINATION ******
C
250 CONTINUE
WRITE(6,260)RMX,TOL2
260 FORMAT(/,5X,'RMS GRADIENT =',F9.5,' IS LESS THAN CUTOFF =',
1F9.5,//)
270 IFLEPO=15
LAST=1
C SAVE HESSIAN ON FILE 9
IPOW(9)=2
TT0=SECOND()-TIME0
CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
1POW)
C CALL COMPFG TO CALCULATE ENERGY FOR FIXING MO-VECTOR BUG
CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .FALSE.)
RETURN
280 CONTINUE
C WE RAN OUT OF TIME or too many iterations. DUMP RESULTS
IF (TLEFT .LT. TSTEP*TWO) THEN
WRITE(6,290)
290 FORMAT(/,5X,'NOT ENOUGH TIME FOR ANOTHER CYCLE')
ENDIF
IF (nstep.ge.mxstep) THEN
WRITE(6,300)
300 FORMAT(/,5X,'EXCESS NUMBER OF OPTIMIZATION CYCLES')
ENDIF
IPOW(9)=1
TT0=SECOND()-TIME0
CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
1POW)
STOP
END
SUBROUTINE EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,IL,JL,BMAT,IPOW)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
CHARACTER ELEMNT*2, KEYWRD*241, KOMENT*81, TITLE*81
DIMENSION HESS(MAXPAR,*),GRAD(*),BMAT(MAXPAR,*),IPOW(9),
1 XPARAM(*), PMAT(*)
**********************************************************************
*
* EFSAV STORES AND RETRIEVE DATA USED IN THE EF GEOMETRY
* OPTIMISATION. VERY SIMILAR TO POWSAV.
*
* ON INPUT HESS = HESSIAN MATRIX, PARTIAL OR WHOLE.
* GRAD = GRADIENTS.
* XPARAM = CURRENT STATE OF PARAMETERS.
* IL = INDEX OF HESSIAN,
* JL = CYCLE NUMBER REACHED SO-FAR.
* BMAT = "B" MATRIX!
* IPOW = INDICES AND FLAGS.
* IPOW(9)= 0 FOR RESTORE, 1 FOR DUMP, 2 FOR SILENT DUMP
*
**********************************************************************
COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR), IDUMY, DUMY(MAXPAR)
COMMON /ELEMTS/ ELEMNT(107)
COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),
1 LOCDEP(MAXPAR)
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
COMMON /TITLES/ KOMENT,TITLE
COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
1 NA(NUMATM),NB(NUMATM),NC(NUMATM)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /LOCVAR/ LOCVAR(2,MAXPAR)
COMMON /NUMSCF/ NSCF
COMMON /KEYWRD/ KEYWRD
COMMON /VALVAR/ VALVAR(MAXPAR),NUMVAR
COMMON /DENSTY/ P(MPACK), PA(MPACK), PB(MPACK)
COMMON /ALPARM/ ALPARM(3,MAXPAR),X0, X1, X2, JLOOP
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /PATH / LATOM,LPARAM,REACT(200)
OPEN(UNIT=9,FILE='FOR009',STATUS='UNKNOWN',FORM='UNFORMATTED')
REWIND 9
OPEN(UNIT=10,FILE='FOR010',STATUS='UNKNOWN',FORM='UNFORMATTED')
REWIND 10
IR=9
IF(IPOW(9) .EQ. 1 .OR. IPOW(9) .EQ. 2) THEN
FUNCT1=SQRT(DOT(GRAD,GRAD,NVAR))
IF(IPOW(9).EQ.1)THEN
WRITE(6,'(//10X,''CURRENT VALUE OF GRADIENT NORM =''
1 ,F12.6)')FUNCT1
WRITE(6,'(/10X,''CURRENT VALUE OF GEOMETRY'',/)')
CALL GEOUT(6)
ENDIF
C
C IPOW(1) AND IPOW(9) ARE USED ALREADY, THE REST ARE FREE FOR USE
C
IPOW(8)=NSCF
WRITE(IR)IPOW,IL,JL,FUNCT,TT0
WRITE(IR)(XPARAM(I),I=1,NVAR)
WRITE(IR)( GRAD(I),I=1,NVAR)
WRITE(IR)((HESS(J,I),J=1,NVAR),I=1,NVAR)
WRITE(IR)((BMAT(J,I),J=1,NVAR),I=1,NVAR)
WRITE(IR)(OLDF(I),I=1,NVAR),(D(I),I=1,NVAR),(VMODE(I),I=1,NVAR)
WRITE(IR)DD,MODE,NSTEP,NEGREQ
LINEAR=(NVAR*(NVAR+1))/2
WRITE(IR)(PMAT(I),I=1,LINEAR)
LINEAR=(NORBS*(NORBS+1))/2
WRITE(10)(PA(I),I=1,LINEAR)
IF(NALPHA.NE.0)WRITE(10)(PB(I),I=1,LINEAR)
IF(LATOM .NE. 0) THEN
WRITE(IR)((ALPARM(J,I),J=1,3),I=1,NVAR)
WRITE(IR)JLOOP,X0, X1, X2
ENDIF
CLOSE(9)
CLOSE(10)
RETURN
ELSE
C# WRITE(6,'(//10X,'' READING DATA FROM DISK''/)')
READ(IR,END=10,ERR=10)IPOW,IL,JL,FUNCT,TT0
NSCF=IPOW(8)
I=TT0/1000000
TT0=TT0-I*1000000
WRITE(6,'(//10X,''TOTAL TIME USED SO FAR:'',
1 F13.2,'' SECONDS'')')TT0
WRITE(6,'( 10X,'' FUNCTION:'',F17.6)')FUNCT
READ(IR)(XPARAM(I),I=1,NVAR)
READ(IR)( GRAD(I),I=1,NVAR)
READ(IR)((HESS(J,I),J=1,NVAR),I=1,NVAR)
READ(IR)((BMAT(J,I),J=1,NVAR),I=1,NVAR)
READ(IR)(OLDF(I),I=1,NVAR),(D(I),I=1,NVAR),(VMODE(I),I=1,NVAR)
READ(IR)DD,MODE,NSTEP,NEGREQ
LINEAR=(NVAR*(NVAR+1))/2
READ(IR)(PMAT(I),I=1,LINEAR)
LINEAR=(NORBS*(NORBS+1))/2
C READ DENSITY MATRIX
READ(10)(PA(I),I=1,LINEAR)
IF(NALPHA.NE.0)READ(10)(PB(I),I=1,LINEAR)
IF(LATOM.NE.0) THEN
READ(IR)((ALPARM(J,I),J=1,3),I=1,NVAR)
READ(IR)JLOOP,X0, X1, X2
IL=IL+1
ENDIF
CLOSE(9)
CLOSE(10)
RETURN
10 WRITE(6,'(//10X,''NO RESTART FILE EXISTS!'')')
STOP
ENDIF
END
SUBROUTINE EFSTR(XPARAM,FUNCT,IHESS,NTIME,ILOOP,IGTHES,MXSTEP,
$IRECLC,IUPD,DMAX,DDMAX,dmin,TOL2,TOTIME,TIME1,TIME2,nvar,
$SCF1,LUPD,ldump,log,rrscal,donr,gnmin)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION XPARAM(*)
C
COMMON /ISTOPE/ AMS(107)
COMMON /LAST / LAST
COMMON /KEYWRD/ KEYWRD
COMMON /TIMEX / TIME0
COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /NUMCAL/ NUMCAL
COMMON /SCFTYP/ EMIN, LIMSCF
COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
*PMAT(MAXPAR**2)
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
DIMENSION IPOW(9)
LOGICAL RESTRT,SCF1,LDUM,LUPD,log,rrscal,donr,gnmin
C ***** Added by Jiro Toyoda at 1994-05-25 *****
LOGICAL LIMSCF
C ***************************** at 1994-05-25 *****
CHARACTER*241 KEYWRD,LINE
CHARACTER CHDOT*1,ZERO*1,NINE*1,CH*1
DATA CHDOT,ZERO,NINE /'.','0','9'/
DATA ICALCN,ZZERO /0,0.D0/
C GET ALL INITIALIZATION DATA
NVAR=ABS(NVAR)
LDUMP=0
ICALCN=NUMCAL
LUPD=(INDEX(KEYWRD,' NOUPD') .EQ. 0)
RESTRT=(INDEX(KEYWRD,'RESTART') .NE. 0)
LOG = INDEX(KEYWRD,'NOLOG').EQ.0
SCF1=(INDEX(KEYWRD,'1SCF') .NE. 0)
NSTEP=0
IHESS=0
LAST=0
NTIME=0
ILOOP=1
IMIN=INDEX(KEYWRD,' EF')
IF(IMIN.NE.0) THEN
MODE=0
IGTHES=0
IUPD =2
NEGREQ=0
ddmax=0.5d0
ENDIF
LIMSCF=.FALSE.
ITS=INDEX(KEYWRD,' TS')
IF(ITS.NE.0) THEN
MODE=1
IGTHES=1
IUPD =1
NEGREQ=1
rmin=0.0d0
rmax=4.0d0
omin=0.8d0
ddmax=0.3d0
ENDIF
rrscal=.false.
I=INDEX(KEYWRD,' RSCAL')
IF(I.NE.0) rrscal=.true.
donr=.true.
I=INDEX(KEYWRD,' NONR')
IF(I.NE.0) donr=.false.
gnmin=.false.
I=INDEX(KEYWRD,' GNMIN')
IF(I.NE.0) gnmin=.true.
IPRNT=0
IP=INDEX(KEYWRD,' PRNT=')
IF(IP.NE.0) IPRNT=READA(KEYWRD,IP)
IF(IPRNT.GT.5)IPRNT=5
IF(IPRNT.LT.0)IPRNT=0
MXSTEP=100
I=INDEX(KEYWRD,' CYCLES=')
IF(I.NE.0) MXSTEP=READA(KEYWRD,I)
IF (I.NE.0 .AND. MXSTEP.EQ.0 .AND. IP.EQ.0) IPRNT=3
IRECLC=999999
I=INDEX(KEYWRD,' RECALC=')
IF(I.NE.0) IRECLC=READA(KEYWRD,I)
I=INDEX(KEYWRD,' IUPD=')
IF(I.NE.0) IUPD=READA(KEYWRD,I)
I=INDEX(KEYWRD,' MODE=')
IF(I.NE.0) MODE=READA(KEYWRD,I)
DMIN=1.0D-3
I=INDEX(KEYWRD,' DDMIN=')
IF(I.NE.0) DMIN=READA(KEYWRD,I)
DMAX=0.2D0
I=INDEX(KEYWRD,' DMAX=')
IF(I.NE.0) DMAX=READA(KEYWRD,I)
I=INDEX(KEYWRD,' DDMAX=')
IF(I.NE.0) DDMAX=READA(KEYWRD,I)
TOL2=1.D+0
C------- modified by I. Cserny, June 21, 1995 -------
IF(INDEX(KEYWRD,' PREC') .NE. 0) TOL2=1.D-2
C----------------------------------------------------
I=INDEX(KEYWRD,' GNORM=')
IF(I.NE.0) TOL2=READA(KEYWRD,I)
IF(INDEX(KEYWRD,' LET').EQ.0.AND.TOL2.LT.0.01D0)THEN
WRITE(6,'(/,A)')' GNORM HAS BEEN SET TOO LOW, RESET TO 0
1.01. SPECIFY LET AS KEYWORD TO ALLOW GNORM LESS THAN 0.01'
TOL2=0.01D0
ENDIF
I=INDEX(KEYWRD,' HESS=')
IF(I.NE.0) IGTHES=READA(KEYWRD,I)
I=INDEX(KEYWRD,' RMIN=')
IF(I.NE.0) RMIN=READA(KEYWRD,I)
I=INDEX(KEYWRD,' RMAX=')
IF(I.NE.0) RMAX=READA(KEYWRD,I)
I=INDEX(KEYWRD,' OMIN=')
IF(I.NE.0) OMIN=READA(KEYWRD,I)
TIME1=TIME0
TIME2=TIME1
C DONE WITH ALL INITIALIZING STUFF.
C CHECK THAT OPTIONS REQUESTED ARE RESONABLE
IF(NVAR.GT.(3*NUMAT-6) .and. numat.ge.3)WRITE(6,25)
25 FORMAT(/,'*** WARNING! MORE VARIABLES THAN DEGREES OF FREEDOM',
1/)
IF((ITS.NE.0).AND.(IUPD.EQ.2))THEN
WRITE(6,*)' TS SEARCH AND BFGS UPDATE WILL NOT WORK'
STOP
ENDIF
IF((ITS.NE.0).AND.(IGTHES.EQ.0))THEN
WRITE(6,*)' TS SEARCH REQUIRE BETTER THAN DIAGONAL HESSIAN'
STOP
ENDIF
IF((IGTHES.LT.0).OR.(IGTHES.GT.3))THEN
WRITE(6,*)' UNRECOGNIZED HESS OPTION',IGTHES
STOP
ENDIF
IF((OMIN.LT.0.d0).OR.(OMIN.GT.1.d0))THEN
WRITE(6,*)' OMIN MUST BE BETWEEN 0 AND 1',OMIN
STOP
ENDIF
IF (RESTRT) THEN
C
C RESTORE DATA. I INDICATES (HESSIAN RESTART OR OPTIMIZATION
C RESTART). IF I .GT. 0 THEN HESSIAN RESTART AND I IS LAST
C STEP CALCULATED IN THE HESSIAN. IF I .LE. 0 THEN J (NSTEP)
C IN AN OPTIMIZATION HAS BEEN DONE.
C
IPOW(9)=0
mtmp=mode
CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,I,J,BMAT,IPOW)
mode=mtmp
K=TT0/1000000.D0
TIME0=TIME0-TT0+K*1000000.D0
ILOOP=I
IF (I .GT. 0) THEN
IGTHES=4
NSTEP=J
WRITE(6,'(10X,''RESTARTING HESSIAN AT POINT'',I4)')ILOOP
IF(NSTEP.NE.0)WRITE(6,'(10X,''IN OPTIMIZATION STEP'',I4)'
1)NSTEP
ELSE
NSTEP=J
WRITE(6,'(//10X,''RESTARTING OPTIMIZATION AT STEP'',I4)')
1NSTEP
DO 26 I=1,NVAR
26 GRAD(I)=ZZERO
CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)
ENDIF
ELSE
C NOT A RESTART, WE NEED TO GET THE GRADIENTS
DO 30 I=1,NVAR
30 GRAD(I)=ZZERO
CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)
ENDIF
return
end
SUBROUTINE FORMD(EIGVAL,FX,NVAR,DMAX,
1osmin,ts,lrjk,lorjk,rrscal,donr)
C This version forms geometry step by either pure NR, P-RFO or QA
C algorithm, under the condition that the steplength is less than dmax
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DOUBLE PRECISION LAMDA,lamda0
INCLUDE 'SIZES'
logical ts,rscal,frodo1,frodo2,lrjk,lorjk,rrscal,donr
DIMENSION EIGVAL(MAXPAR),FX(MAXPAR)
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
DATA ZERO/0.0D0/, HALF/0.5D0/, TWO/2.0D+00/, TOLL/1.0D-8/
DATA STEP/5.0D-02/, TEN/1.0D+1/, ONE/1.0D+0/, BIG/1.0D+3/
DATA FOUR/4.0D+00/
DATA TMTWO/1.0D-2/, TMSIX/1.0D-06/, SFIX/1.0D+01/, EPS/1.0D-12/
C
MAXIT=999
NUMIT=0
SKAL=ONE
rscal=rrscal
it=0
jt=1
if (ts) then
IF(MODE.NE.0) THEN
CALL OVERLP(dmax,osmin,NEWMOD,NVAR,lorjk)
if (lorjk) return
C
C ON RETURN FROM OVERLP, NEWMOD IS THE TS MODE
C
IF(NEWMOD.NE.MODE .and. iprnt.ge.1) WRITE(6,1000) MODE,NEWMOD
1000 FORMAT(5X,'WARNING! MODE SWITCHING. WAS FOLLOWING MODE ',I3,
$ ' NOW FOLLOWING MODE ',I3)
MODE=NEWMOD
IT=MODE
ELSE
IT=1
ENDIF
eigit=eigval(it)
IF (IPRNT.GE.1) THEN
WRITE(6,900)IT,EIGIT
WRITE(6,910)(U(I,IT),I=1,NVAR)
900 FORMAT(/,5X,'TS MODE IS NUMBER',I3,' WITH EIGENVALUE',F9.1,/,
*5X,'AND COMPONENTS',/)
910 FORMAT(5X,8F9.4)
ENDIF
endif
if (it.eq.1) jt=2
eone=eigval(jt)
ssmin=max(abs(eone)*eps,(ten*eps))
ssmax=max(big,abs(eone))
ssmax=ssmax*big
sstoll=toll
d2max=dmax*dmax
c write(6,*)'from formd, eone, ssmin, ssmax, sstoll',
c $eone,ssmin,ssmax,sstoll
C SOLVE ITERATIVELY FOR LAMDA
C INITIAL GUESS FOR LAMDA IS ZERO EXCEPT NOTE THAT
C LAMDA SHOULD BE LESS THAN EIGVAL(1)
C START BY BRACKETING ROOT, THEN HUNT IT DOWN WITH BRUTE FORCE BISECT.
C
frodo1=.false.
frodo2=.false.
LAMDA=ZERO
lamda0=zero
if (ts .and. eigit.lt.zero .and. eone.ge.zero .and. donr) then
if (iprnt.ge.1) then
write(6,*)' ts search, correct hessian, trying pure NR step'
endif
goto 776
endif
if (.not.ts .and. eone.ge.zero .and. donr) then
if (iprnt.ge.1) then
write(6,*)' min search, correct hessian, trying pure NR step'
endif
goto 776
endif
5 if (ts) then
lamda0=eigval(it)+sqrt(eigval(it)**2+four*fx(it)**2)
lamda0=lamda0*half
if (iprnt.ge.1)WRITE(6,1030) LAMDA0
endif
SSTEP = STEP
IF(EONE.LE.ZERO) LAMDA=EONE-SSTEP
IF(EONE.GT.ZERO) SSTEP=EONE
BL = LAMDA - SSTEP
BU = LAMDA + SSTEP*HALF
20 FL = ZERO
FU = ZERO
DO 30 I = 1,NVAR
if (i.eq.it) goto 30
FL = FL + (FX(I)*FX(I))/(BL-EIGVAL(I))
FU = FU + (FX(I)*FX(I))/(BU-EIGVAL(I))
30 CONTINUE
FL = FL - BL
FU = FU - BU
c write(6,*)'bl,bu,fl,fu from brack'
c write(6,668)bl,bu,fl,fu
c668 format(6f20.15)
IF (FL*FU .LT. ZERO) GOTO 40
BL = BL - (EONE-BL)
BU = BU + HALF*(EONE-BU)
IF (BL.LE.-SSMAX) then
BL = -SSMAX
frodo1=.true.
endif
IF (abs(eone-bu).le.ssmin) then
BU = EONE-SSMIN
frodo2=.true.
endif
IF (frodo1.and.frodo2) THEN
WRITE(6,*)'NUMERICAL PROBLEMS IN BRACKETING LAMDA',
$ EONE,BL,BU,FL,FU
write(6,*)' going for fixed step size....'
goto 450
ENDIF
GOTO 20
40 CONTINUE
NCNT = 0
XLAMDA = ZERO
50 CONTINUE
FL = ZERO
FU = ZERO
FM = ZERO
LAMDA = HALF*(BL+BU)
DO 60 I = 1,NVAR
if (i.eq.it) goto 60
FL = FL + (FX(I)*FX(I))/(BL-EIGVAL(I))
FU = FU + (FX(I)*FX(I))/(BU-EIGVAL(I))
FM = FM + (FX(I)*FX(I))/(LAMDA-EIGVAL(I))
60 CONTINUE
FL = FL - BL
FU = FU - BU
FM = FM - LAMDA
c write(6,*)'bl,bu,lamda,fl,fu,fm from search'
c write(6,668)bl,bu,lamda,fl,fu,fm
IF (ABS(XLAMDA-LAMDA).LT.sstoll) GOTO 776
NCNT = NCNT + 1
IF (NCNT.GT.1000) THEN
WRITE(6,*)'TOO MANY ITERATIONS IN LAMDA BISECT',
$ BL,BU,LAMDA,FL,FU
STOP
ENDIF
XLAMDA = LAMDA
IF (FM*FU.LT.ZERO) BL = LAMDA
IF (FM*FL.LT.ZERO) BU = LAMDA
GOTO 50
C
776 if (iprnt.ge.1) WRITE(6,1031) LAMDA
C
C CALCULATE THE STEP
C
DO 310 I=1,NVAR
D(I)=ZERO
310 CONTINUE
DO 330 I=1,NVAR
if (lamda.eq.zero .and. abs(eigval(i)).lt.tmtwo) then
temp=zero
else
TEMP=FX(I)/(LAMDA-EIGVAL(I))
endif
if (i.eq.it) then
TEMP=FX(IT)/(LAMDA0-EIGVAL(IT))
endif
if (iprnt.ge.5) write(6,*)'formd, delta step',i,temp
DO 320 J=1,NVAR
D(J)=D(J)+TEMP*U(J,I)
320 CONTINUE
330 CONTINUE
dd=sqrt(dot(d,d,nvar))
if(lamda.eq.zero .and. lamda0.eq.zero .and.iprnt.ge.1)
1 write(6,777)dd
777 format(1x,'pure NR-step has length',f10.5)
if(lamda.ne.zero .and. lamda0.ne.-lamda .and.iprnt.ge.1)
1write(6,778)dd
778 format(1x,'P-RFO-step has length',f10.5)
if (dd.lt.(dmax+tmsix)) then
xlamd=lamda
xlamd0=lamda0
return
endif
if (lamda.eq.zero .and. lamda0.eq.zero) goto 5
if (rscal) then
SKAL=DMAX/DD
DO 160 I=1,NVAR
D(I)=D(I)*SKAL
160 CONTINUE
DD=SQRT(DOT(D,D,NVAR))
IF(IPRNT.GE.1)WRITE(6,170)SKAL
170 FORMAT(5X,'CALCULATED STEP SIZE TOO LARGE, SCALED WITH',F9.5)
xlamd=lamda
xlamd0=lamda0
return
endif
450 LAMDA=ZERO
frodo1=.false.
frodo2=.false.
SSTEP = STEP
IF(EONE.LE.ZERO) LAMDA=EONE-SSTEP
if (ts .and. -eigit.lt.eone) lamda=-eigit-sstep
IF(EONE.GT.ZERO) SSTEP=EONE
BL = LAMDA - SSTEP
BU = LAMDA + SSTEP*HALF
520 FL = ZERO
FU = ZERO
DO 530 I = 1,NVAR
if (i.eq.it) goto 530
FL = FL + (FX(I)/(BL-EIGVAL(I)))**2
FU = FU + (FX(I)/(BU-EIGVAL(I)))**2
530 CONTINUE
if (ts) then
FL = FL + (FX(IT)/(BL+EIGVAL(IT)))**2
FU = FU + (FX(IT)/(BU+EIGVAL(IT)))**2
endif
FL = FL - d2max
FU = FU - d2max
c write(6,*)'bl,bu,fl,fu from brack2'
c write(6,668)bl,bu,fl,fu
IF (FL*FU .LT. ZERO) GOTO 540
BL = BL - (EONE-BL)
BU = BU + HALF*(EONE-BU)
IF (BL.LE.-SSMAX) then
BL = -SSMAX
frodo1=.true.
endif
IF (abs(eone-bu).le.ssmin) then
BU = EONE-SSMIN
frodo2=.true.
endif
IF (frodo1.and.frodo2) THEN
WRITE(6,*)'NUMERICAL PROBLEMS IN BRACKETING LAMDA',
$ EONE,BL,BU,FL,FU
write(6,*)' going for fixed level shifted NR step...'
c both lamda searches failed, go for fixed level shifted nr
c this is unlikely to produce anything useful, but maybe we're lucky
lamda=eone-sfix
lamda0=eigit+sfix
rscal=.true.
goto 776
ENDIF
GOTO 520
540 CONTINUE
NCNT = 0
XLAMDA = ZERO
550 CONTINUE
FL = ZERO
FU = ZERO
FM = ZERO
LAMDA = HALF*(BL+BU)
DO 560 I = 1,NVAR
if (i.eq.it) goto 560
FL = FL + (FX(I)/(BL-EIGVAL(I)))**2
FU = FU + (FX(I)/(BU-EIGVAL(I)))**2
FM = FM + (FX(I)/(LAMDA-EIGVAL(I)))**2
560 CONTINUE
if (ts) then
FL = FL + (FX(IT)/(BL+EIGVAL(IT)))**2
FU = FU + (FX(IT)/(BU+EIGVAL(IT)))**2
FM = FM + (FX(IT)/(LAMDA+EIGVAL(IT)))**2
endif
FL = FL - d2max
FU = FU - d2max
FM = FM - d2max
c write(6,*)'bl,bu,lamda,fl,fu,fm from search2'
c write(6,668)bl,bu,lamda,fl,fu,fm
IF (ABS(XLAMDA-LAMDA).LT.sstoll) GOTO 570
NCNT = NCNT + 1
IF (NCNT.GT.1000) THEN
WRITE(6,*)'TOO MANY ITERATIONS IN LAMDA BISECT',
$ BL,BU,LAMDA,FL,FU
STOP
ENDIF
XLAMDA = LAMDA
IF (FM*FU.LT.ZERO) BL = LAMDA
IF (FM*FL.LT.ZERO) BU = LAMDA
GOTO 550
C
570 CONTINUE
lamda0=-lamda
rscal=.true.
goto 776
C
1030 FORMAT(1X,'lamda that maximizes along ts modes = ',F15.5)
1031 FORMAT(1X,'lamda that minimizes along all modes = ',F15.5)
END
SUBROUTINE GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C GET THE HESSIAN. DEPENDING ON IGTHES WE GET IT FROM :
C
C 0 : DIAGONAL MATRIX, DGHSX*I (DEFAULT FOR MIN-SEARCH)
C 1 : CALCULATE IT NUMERICALLY (DEFAULT FOR TS-SEARCH)
C 2 : READ IN FROM FTN009
C 3 : CALCULATE IT BY DOUBLE NUMERICAL DIFFERENTIATION
C 4 : READ IN FROM FTN009 (DURING RESTART, PARTLY OR WHOLE,
C ALREADY DONE AT THIS POINT)
COMMON /GEOVAR/ NDUM,LOC(2,MAXPAR), IDUMY, XARAM(MAXPAR)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)
COMMON /LAST / LAST
COMMON /KEYWRD/ KEYWRD
COMMON /TIMEX / TIME0
COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /NUMCAL/ NUMCAL
COMMON /SIGMA2/ GNEXT1(MAXPAR), GMIN1(MAXPAR)
COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
*PMAT(MAXPAR**2)
COMMON /SCRACH/ PVEC(MAXPAR**2)
COMMON /TIMDMP/ TLEFT, TDUMP
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
DIMENSION IPOW(9), EIGVAL(MAXPAR),TVEC(MAXPAR),SVEC(MAXPAR),
*FX(MAXPAR),HESSC(MAXHES),UC(MAXPAR**2)
DIMENSION XPARAM(*),tmp(150,150)
LOGICAL RESTRT,SCF1,LDUM
CHARACTER*241 KEYWRD,LINE
CHARACTER CHDOT*1,ZERO*1,NINE*1,CH*1
DATA CHDOT,ZERO,NINE /'.','0','9'/
DATA ICALCN,ZZERO,ONE,TWO /0,0.D0,1.D0,2.D0/
C
DATA DGHSS,DGHSA,DGHSD /1000.d0,500.d0,200.d0/
DATA XINC /1.d-3/
C DGHSX IS HESSIAN DIAGONAL FOR IGTHES=0 (STRETCHING, ANGLE,
C DIHEDRAL). THE VALUES SHOULD BE 'OPTIMUM' FOR CYCLOHEXANONE
C XINC IS STEPSIZE FOR HESSIAN CALCULATION. TESTS SHOWS THAT IT SHOULD
C BE IN THE RANGE 10(-2) TO 10(-4). 10(-3) APPEARS TO BE
C A REASONABLE COMPROMISE BETWEEN ACCURACY AND NUMERICAL PROBLEMS
IF (IGTHES.EQ.0) THEN
WRITE(6,60)
60 FORMAT(/,10X,'DIAGONAL MATRIX USED AS START HESSIAN',/)
DO 70 I=1,NVAR
DO 70 J=1,NVAR
HESS(I,J)=ZZERO
70 CONTINUE
IJ=1
DO 80 J=1,NUMATM
DO 80 I=1,3
IF (LOC(2,IJ).EQ.I.AND.LOC(1,IJ).EQ.J)THEN
IF (I.EQ.1)HESS(IJ,IJ)=DGHSS
IF (I.EQ.2)HESS(IJ,IJ)=DGHSA
IF (I.EQ.3)HESS(IJ,IJ)=DGHSD
IJ=IJ+1
ENDIF
80 CONTINUE
IJ=IJ-1
IF(IJ.NE.NVAR)WRITE(*,*)'ERROR IN IGTHES=0,IJ,NVAR',IJ,NVAR
ENDIF
C
IF (IGTHES.EQ.2) THEN
WRITE(6,100)
100 FORMAT(/,10X,'HESSIAN READ FROM DISK',/)
IPOW(9)=0
C USE DUMMY ARRAY FOR CALL EXCEPT FOR HESSIAN
C TEMPORARY SET NALPHA = 0, THEN WE CAN READ HESSIAN FROM RHF
C RUN FOR USE IN SAY UHF RUNS
C ALSO SAVE MODE, TO ALLOW FOLLOWING A DIFFERENT MODE THAN THE ONE
C CURRENTLY ON RESTART FILE
nxxx=nalpha
nalpha=0
mtmp=mode
CALL EFSAV(TDM,HESS,FDMY,GNEXT1,GMIN1,PMAT,IIDUM,J,BMAT,IPOW)
nalpha=nxxx
mode=mtmp
nstep=0
ENDIF
IF((IGTHES.EQ.1).OR.(IGTHES.EQ.3).OR.(IGTHES.EQ.4))THEN
C IF IGTHES IS .EQ. 4, THEN THIS IS A HESSIAN RESTART.
C USE GNEXT1 AND DUMMY FOR CALLS TO COMPFG DURING HESSIAN
C CALCULATION
IF (IGTHES.EQ.1)WRITE(6,190)
190 FORMAT(/,10X,'HESSIAN CALCULATED NUMERICALLY',/)
IF (IGTHES.EQ.3)WRITE(6,191)
191 FORMAT(/,10X,'HESSIAN CALCULATED DOUBLE NUMERICALLY',/)
IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
1 0,(Grad(IF),IF=1,NVAR)
TIME1=SECOND()
TSTORE=TIME1
DO 210 I=ILOOP,NVAR
XPARAM(I)=XPARAM(I) + XINC
CALL COMPFG(XPARAM, .TRUE., DUMMY, .TRUE., GNEXT1, .TRUE.)
IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
1 I,(GNEXT1(IF),IF=1,NVAR)
XPARAM(I)=XPARAM(I) - XINC
if (igthes.eq.3) then
XPARAM(I)=XPARAM(I) - XINC
CALL COMPFG(XPARAM, .TRUE., DUMMY, .TRUE., GMIN1, .TRUE.)
IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
1 -I,(GMIN1(IF),IF=1,NVAR)
XPARAM(I)=XPARAM(I) + XINC
DO 199 J=1,NVAR
199 HESS(I,J)= (GNEXT1(J)-GMIN1(J))/(XINC+XINC)
else
DO 200 J=1,NVAR
200 HESS(I,J)= (GNEXT1(J)-GRAD(J))/XINC
endif
TIME2=SECOND()
TSTEP=TIME2-TIME1
TLEFT=TLEFT-TSTEP
TIME1=TIME2
IF( TLEFT .LT. TSTEP*TWO) THEN
C
C STORE PARTIAL HESSIAN PATRIX
C STORE GRADIENTS FOR GEOMETRY AND ILOOP AS POSITIVE
WRITE(6,'(A)')' NOT ENOUGH TIME TO COMPLETE HESSIAN'
WRITE(6,'(A,I4)')' STOPPING IN HESSIAN AT COORDINATE:',I
IPOW(9)=1
TT0=SECOND()-TIME0
CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,I,NSTEP,BMAT,
1IPOW)
STOP
ENDIF
210 CONTINUE
C fix last entry in geo array, this is currently at value-xinc
K=LOC(1,nvar)
L=LOC(2,nvar)
GEO(L,K)=XPARAM(nvar)
IF(NDEP.NE.0) CALL SYMTRY
c add all time used back to tleft, this will then be subtracted
c again in main ef routine
TIME2=SECOND()
TSTEP=TIME2-TSTORE
TLEFT=TLEFT+TSTEP
ENDIF
C
C SYMMETRIZE HESSIAN
DO 220 I=1,NVAR
C$DIR NO_RECURRENCE
DO 220 J=1,I-1
HESS(I,J)=(HESS(I,J)+HESS(J,I))/TWO
HESS(J,I)=HESS(I,J)
220 CONTINUE
RETURN
END
C*MODULE BLAS1 *DECK IDAMAX
INTEGER FUNCTION IDAMAX(N,DX,INCX)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION DX(1)
C
C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
C JACK DONGARRA, LINPACK, 3/11/78.
C
IDAMAX = 0
IF( N .LT. 1 ) RETURN
IDAMAX = 1
IF(N.EQ.1)RETURN
IF(INCX.EQ.1)GO TO 20
C
C CODE FOR INCREMENT NOT EQUAL TO 1
C
IX = 1
RMAX = ABS(DX(1))
IX = IX + INCX
DO 10 I = 2,N
IF(ABS(DX(IX)).LE.RMAX) GO TO 5
IDAMAX = I
RMAX = ABS(DX(IX))
5 IX = IX + INCX
10 CONTINUE
RETURN
C
C CODE FOR INCREMENT EQUAL TO 1
C
20 RMAX = ABS(DX(1))
DO 30 I = 2,N
IF(ABS(DX(I)).LE.RMAX) GO TO 30
IDAMAX = I
RMAX = ABS(DX(I))
30 CONTINUE
RETURN
END
SUBROUTINE OVERLP(dmax,osmin,NEWMOD,NVAR,lorjk)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
dimension xo(maxpar)
logical lorjk,first
data first/.true./
C
C ON THE FIRST STEP SIMPLY DETERMINE WHICH MODE TO FOLLOW
C
c IF(NSTEP.EQ.1) THEN
IF(first) THEN
first=.false.
IF(MODE.GT.NVAR)THEN
WRITE(6,*)'ERROR!! MODE IS LARGER THAN NVAR',MODE
STOP
ENDIF
IT=MODE
if (iprnt.ge.1) WRITE(6,40) MODE
40 FORMAT(5X,'HESSIAN MODE FOLLOWING SWITCHED ON'/
1 ' FOLLOWING MODE ',I3)
C
ELSE
C
C ON SUBSEQUENT STEPS DETERMINE WHICH HESSIAN EIGENVECTOR HAS
C THE GREATEST OVERLAP WITH THE MODE WE ARE FOLLOWING
C
IT=1
lorjk=.false.
TOVLP=DOT(U(1,1),VMODE,NVAR)
TOVLP=ABS(TOVLP)
c xo(1)=tovlp
DO 10 I=2,NVAR
OVLP=DOT(U(1,I),VMODE,NVAR)
OVLP=ABS(OVLP)
c xo(i)=ovlp
IF(OVLP.GT.TOVLP) THEN
TOVLP=OVLP
IT=I
ENDIF
10 CONTINUE
C
if (iprnt.ge.5) then
do j=1,5
xxx=0.d0
do i=1,nvar
if (xo(i).gt.xxx)ix=i
if (xo(i).gt.xxx)xxx=xo(i)
enddo
xo(ix)=0.d0
write(6,*)'overlaps',ix,xxx
enddo
endif
if(iprnt.ge.1)WRITE(6,30) IT,TOVLP
if (tovlp.lt.omin) then
if (dmax.gt.osmin) then
lorjk=.true.
if (iprnt.ge.1)write(6,31)omin
return
else
if (iprnt.ge.1)write(6,32)omin,dmax,osmin
endif
endif
ENDIF
30 FORMAT(5X,'OVERLAP OF CURRENT MODE',I3,' WITH PREVIOUS MODE IS ',
$ F6.3)
31 FORMAT(5X,'OVERLAP LESS THAN OMIN',
1F6.3,' REJECTING PREVIOUS STEP')
32 FORMAT(5X,'OVERLAP LESS THAN OMIN',F6.3,' BUT TRUST RADIUS',F6.3,
$ ' IS LESS THAN',F6.3,/,5X,' ACCEPTING STEP')
C
C SAVE THE EIGENVECTOR IN VMODE
C
DO 20 I=1,NVAR
VMODE(I)=U(I,IT)
20 CONTINUE
C
NEWMOD=IT
RETURN
C
END
SUBROUTINE PRJFC(F,xparam,nvar)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INCLUDE 'SIZES'
C
C CALCULATES PROJECTED FORCE CONSTANT MATRIX (F).
C THIS ROUTINE CAME ORIGINALLY FROM POLYRATE. IT IS USED BY PERMISSION
C OF D. TRUHLAR. THE CURRENT VERSION IS LIFTED FROM GAMESS AND
C ADAPTED BY F.JENSEN, ODENSE, DK
C IF WE ARE AT A STATIONARY POINT (STPT=.T.), I.E. GNORM .LT. 10,
C THEN THE ROTATIONAL AND TRANSLATIONAL MODES ARE PROJECTED OUT
C AND THEIR FREQUENCIES BECOME IDENTICAL ZERO. IF NOT AT A STATIONARY
C POINT THEN THE MASS-WEIGHTED GRADIENT IS ALSO PROJECTED OUT AND
C THE CORRESPONDING FREQUENCY BECOME ZERO.
C ************************************************
C X : MASS-WEIGHTED COORDINATE
C DX: NORMALIZED MASS-WEIGHTED GRADIENT VECTOR
C F : MASS-WEIGHTED FORCE CONSTANT MATRIX
C RM: INVERSION OF SQUARE ROOT OF MASS
C P, COF: BUFFER
C
COMMON /ATMASS/ ATMASS(NUMATM)
DIMENSION X(MAXPAR),RM(MAXPAR),F(MAXPAR,MAXPAR),
* P(MAXPAR,MAXPAR),COF(MAXPAR,MAXPAR)
DIMENSION TENS(3,3,3),ROT(3,3),SCR(3,3),ISCR(6),CMASS(3)
dimension coord(3,numatm),dx(maxpar),xparam(maxpar)
DIMENSION DETX(2)
EQUIVALENCE (DET,DETX(1))
PARAMETER (ZERO=0.0d+00, ONE=1.0d+00, EPS=1.0d-14,
* CUT5=1.0d-05, CUT8=1.0d-08)
C
C TOTALLY ASYMMETRIC CARTESIAN TENSOR.
DATA TENS/ 0.0d+00, 0.0d+00, 0.0d+00,
X 0.0d+00, 0.0d+00, -1.0d+00,
X 0.0d+00, 1.0d+00, 0.0d+00,
Y 0.0d+00, 0.0d+00, 1.0d+00,
Y 0.0d+00, 0.0d+00, 0.0d+00,
Y -1.0d+00, 0.0d+00, 0.0d+00,
Z 0.0d+00, -1.0d+00, 0.0d+00,
Z 1.0d+00, 0.0d+00, 0.0d+00,
Z 0.0d+00, 0.0d+00, 0.0d+00 /
C
natm=nvar/3
nc1=nvar
ij=1
do 2 i=1,natm
coord(1,i)=xparam(ij)
coord(2,i)=xparam(ij+1)
coord(3,i)=xparam(ij+2)
ij=ij+3
2 continue
C CALCULATE 1/SQRT(MASS)
L=0
DO 3 I=1,NATM
TMP=ONE/SQRT(ATMASS(I))
DO 3 J=1,3
L=L+1
3 RM(L)=TMP
C PREPARE GRADIENT
DO 4 I=1,NC1
4 DX(I)=ZERO
C FIND CMS AND CALCULATED MASS WEIGHTED COORDINATES
totm=zero
cmass(1)=zero
cmass(2)=zero
cmass(3)=zero
DO 6 I=1,NATM
TOTM=TOTM+ATMASS(I)
DO 6 J=1,3
CMASS(J)=CMASS(J)+ATMASS(I)*COORD(J,I)
6 CONTINUE
DO 7 J=1,3
7 CMASS(J)=CMASS(J)/TOTM
L=0
DO 8 I=1,NATM
DO 8 J=1,3
TMP=SQRT(ATMASS(I))
L=L+1
X(L)=TMP*(COORD(J,I)-CMASS(J))
8 CONTINUE
c WRITE(6,9020)
c CALL prsq(f,nc1,nc1,maxpar,1)
c9020 FORMAT(/1X,'ENTER THE SUBROUTINE <PRJFC>'//
c * 1X,'UNPROJECTED FORCE CONSTANT MATRIX (HARTREE/BOHR**2)')
c WRITE(6,*)' MASS-WEIGHTED COORDINATES AND CORRESPONDING GRADIENT'
c DO 9 I=1,NC1
c9 WRITE(6,*)X(I),DX(I)
C
C 2. COMPUTE INERTIA TENSOR.
DO 10 I=1,3
DO 10 J=1,3
10 ROT(I,J)=ZERO
DO 20 I=1,NATM
L=3*(I-1)+1
ROT(1,1)=ROT(1,1)+X(L+1)**2+X(L+2)**2
ROT(1,2)=ROT(1,2)-X(L)*X(L+1)
ROT(1,3)=ROT(1,3)-X(L)*X(L+2)
ROT(2,2)=ROT(2,2)+X(L)**2+X(L+2)**2
ROT(2,3)=ROT(2,3)-X(L+1)*X(L+2)
20 ROT(3,3)=ROT(3,3)+X(L)**2+X(L+1)**2
ROT(2,1)=ROT(1,2)
ROT(3,1)=ROT(1,3)
ROT(3,2)=ROT(2,3)
C
CHECK THE INERTIA TENSOR.
CHK=ROT(1,1)*ROT(2,2)*ROT(3,3)
IF(ABS(CHK).GT.CUT8) GO TO 21
c WRITE(6,23)
c 23 FORMAT(/1X,'MATRIX OF INERTIA MOMENT')
c CALL PRSQ(ROT,3,3,3,3)
IF(ABS(ROT(1,1)).GT.CUT8) GO TO 11
C X=0
IF(ABS(ROT(2,2)).GT.CUT8) GO TO 12
C X,Y=0
IF(ABS(ROT(3,3)).GT.CUT8) GO TO 13
WRITE(6,14) ROT(1,1),ROT(2,2),ROT(3,3)
14 FORMAT(1X,'EVERY DIAGONAL ELEMENTS ARE ZERO ?',3F20.10)
RETURN
C
C* 1. X,Y=0 BUT Z.NE.0
13 ROT(3,3)=ONE/ROT(3,3)
GO TO 22
C Y.NE.0
12 IF(ABS(ROT(3,3)).GT.CUT8) GO TO 15
C* 2. X,Z=0 BUT Y.NE.0
ROT(2,2)=ONE/ROT(2,2)
GO TO 22
C X.NE.0
11 IF(ABS(ROT(2,2)).GT.CUT8) GO TO 16
IF(ABS(ROT(3,3)).GT.CUT8) GO TO 17
C* 3. Y,Z=0 BUT X.NE.0
ROT(1,1)=ONE/ROT(1,1)
GO TO 22
C* 4. X,Y.NE.0 BUT Z=0
16 DET=ROT(1,1)*ROT(2,2)-ROT(1,2)*ROT(2,1)
TRP=ROT(1,1)
ROT(1,1)=ROT(2,2)/DET
ROT(2,2)=TRP/DET
ROT(1,2)=-ROT(1,2)/DET
ROT(2,1)=-ROT(2,1)/DET
GO TO 22
C* 5. X,Z.NE.0 BUT Y=0
17 DET=ROT(1,1)*ROT(3,3)-ROT(1,3)*ROT(3,1)
TRP=ROT(1,1)
ROT(1,1)=ROT(3,3)/DET
ROT(3,3)=TRP/DET
ROT(1,3)=-ROT(1,3)/DET
ROT(3,1)=-ROT(3,1)/DET
GO TO 22
C* 6. Y,Z.NE.0 BUT X=0
15 DET=ROT(3,3)*ROT(2,2)-ROT(3,2)*ROT(2,3)
TRP=ROT(3,3)
ROT(3,3)=ROT(2,2)/DET
ROT(2,2)=TRP/DET
ROT(3,2)=-ROT(3,2)/DET
ROT(2,3)=-ROT(2,3)/DET
GO TO 22
21 CONTINUE
C
C.DEBUG.
c CALL PRSQ(TENS(1,1,1),3,3,3,3)
c CALL PRSQ(TENS(1,1,2),3,3,3,3)
c CALL PRSQ(TENS(1,1,3),3,3,3,3)
c CALL PRSQ(ROT,3,3,3,3)
C
C 4. COMPUTE INVERSION MATRIX OF ROT.
C CALL MXLNEQ(ROT,3,3,DET,JRNK,EPS,SCR,+0)
C IF(JRNK.LT.3) STOP 1
INFO=0
CALL DGEFA(ROT,3,3,ISCR,INFO)
IF(INFO.NE.0) STOP
DET=ZERO
CALL DGEDI(ROT,3,3,ISCR,DETX,SCR,1)
C
22 CONTINUE
c WRITE (6,702)
c 702 FORMAT(/1X,'INVERSE MATRIX OF MOMENT OF INERTIA.')
c CALL PRSQ(ROT,3,3,3,3)
C
C 5. TOTAL MASS ---> TOTM.
C
C 6. COMPUTE P MATRIX
C ----------------
DO 100 IP=1,NATM
INDX=3*(IP-1)
DO 100 JP=1,IP
JNDX=3*(JP-1)
DO 70 IC=1,3
JEND=3
IF(JP.EQ.IP) JEND=IC
DO 70 JC=1,JEND
SUM=ZERO
DO 50 IA=1,3
DO 50 IB=1,3
IF(TENS(IA,IB,IC).EQ.0) GO TO 50
DO 30 JA=1,3
DO 30 JB=1,3
IF(TENS(JA,JB,JC).EQ.0) GO TO 30
SUM=SUM+TENS(IA,IB,IC)*TENS(JA,JB,JC)*ROT(IA,JA)*
& X(INDX+IB)*X(JNDX+JB)
30 CONTINUE
50 CONTINUE
II=INDX+IC
JJ=JNDX+JC
P(II,JJ)=SUM+DX(II)*DX(JJ)
IF(IC.EQ.JC) P(II,JJ)=P(II,JJ)+ONE/(RM(II)*RM(JJ)*TOTM)
70 CONTINUE
100 CONTINUE
C
C 7. COMPUTE DELTA(I,J)-P(I,J)
DO 110 I=1,NC1
DO 110 J=1,I
P(I,J)=-P(I,J)
IF(I.EQ.J) P(I,J) = ONE +P(I,J)
110 CONTINUE
C
C 8. NEGLECT SMALLER VALUES THAN 10**-8.
DO 120 I=1,NC1
DO 120 J=1,I
IF(ABS(P(I,J)).LT.CUT8) P(I,J)=ZERO
P(J,I)=P(I,J)
120 CONTINUE
C
C.DEBUG.
c WRITE(6,703)
c 703 FORMAT(/1X,'PROJECTION MATRIX')
c CALL PRSQ(P,NC1,NC1,NC1)
c CALL PRSQ(P,NC1,NC1,maxpar,3)
C
C 10. POST AND PREMULTIPLY F BY P.
C USE COF FOR SCRATCH.
DO 150 I=1,NC1
DO 150 J=1,NC1
SUM=ZERO
DO 140 K=1,NC1
140 SUM=SUM+F(I,K)*P(K,J)
150 COF(I,J)=SUM
C
C 11. COMPUTE P*F*P.
DO 200 I=1,NC1
DO 200 J=1,NC1
SUM=ZERO
DO 190 K=1,NC1
190 SUM=SUM+P(I,K)*COF(K,J)
200 F(I,J)=SUM
C
c WRITE(6,9030)
c CALL prsq(f,nc1,nc1,maxpar,1)
c9030 FORMAT(/1X,'LEAVE THE SUBROUTINE <PRJFC>'//
c * 1X,'PROJECTED FORCE CONSTANT MATRIX (HARTREE/BOHR**2)')
RETURN
END
SUBROUTINE PRTHES(EIGVAL,NVAR)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
*PMAT(MAXPAR**2)
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
DIMENSION EIGVAL(MAXPAR)
IF (IPRNT.GE.4) THEN
WRITE(6,*)' '
WRITE(6,*)' HESSIAN MATRIX'
LOW=1
NUP=8
540 NUP=MIN(NUP,NVAR)
WRITE(6,1000) (I,I=LOW,NUP)
DO 550 I=1,NVAR
WRITE(6,1010) I,(HESS(I,J),J=LOW,NUP)
550 CONTINUE
NUP=NUP+8
LOW=LOW+8
IF(LOW.LE.NVAR) GOTO 540
ENDIF
WRITE(6,*)' '
WRITE(6,*)' HESSIAN EIGENVALUES AND -VECTORS'
LOW=1
NUP=8
560 NUP=MIN(NUP,NVAR)
WRITE(6,1000) (I,I=LOW,NUP)
WRITE(6,1020) (EIGVAL(I),I=LOW,NUP)
DO 570 I=1,NVAR
WRITE(6,1030) I,(U(I,J),J=LOW,NUP)
570 CONTINUE
NUP=NUP+8
LOW=LOW+8
IF(LOW.LE.NVAR) GOTO 560
1000 FORMAT(/,3X,8I9)
1010 FORMAT(1X,I3,8F9.1)
1020 FORMAT(/,4X,8F9.1,/)
1030 FORMAT(1X,I3,8F9.4)
RETURN
END
SUBROUTINE UPDHES(SVEC,TVEC,NVAR,IUPD)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION TVEC(*),SVEC(*)
LOGICAL FIRST
COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
$U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
$MODE,NSTEP,NEGREQ,IPRNT
CONVEX COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR*3)
COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR), BMAT(MAXPAR,MAXPAR),
. PMAT(MAXPAR**2)
COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
C
DATA ZERO/0.0D0/
C
C UPDATING OF THE HESSIAN
C DEPENDS ON CURRENT GRADIENTS, OLD GRADIENTS AND THE
C CORRECTION VECTOR USED ON THE LAST CYCLE
C SVEC & TVEC ARE FOR TEMPORARY STORAGE
C
C 2 UPDATING PROCEDURES ARE POSSIBLE
C (I) THE POWELL UPDATE
C THIS PRESERVES THE SYMMETRIC CHARACTER OF THE HESSIAN
C WHILST ALLOWING ITS EIGENVALUE STRUCTURE TO CHANGE.
C IT IS THE DEFAULT UPDATE FOR A TRANSITION STATE SEARCH
C (II) THE BFGS UPDATE
C THIS UPDATE HAS THE IMPORTANT CHARACTERISTIC OF RETAINING
C POSITIVE DEFINITENESS (NOTE: THIS IS NOT RIGOROUSLY
C GUARANTEED, BUT CAN BE CHECKED FOR BY THE PROGRAM).
C IT IS THE DEFAULT UPDATE FOR A MINIMUM SEARCH
C
C SWITCH : IUPD
C IUPD = 0 : SKIP UPDATE
C IUPD = 1 : POWELL
C IUPD = 2 : BFGS
C
IF (.NOT. FIRST) THEN
FIRST=.TRUE.
IF(IPRNT.GE.2) THEN
IF (IUPD.EQ.0)WRITE(6,90)
IF (IUPD.EQ.1)WRITE(6,80)
IF (IUPD.EQ.2)WRITE(6,120)
ENDIF
ENDIF
IF(IUPD.EQ.0) RETURN
CONVEX DO 10 I=1,NVAR
CONVEX TVEC(I)=ZERO
CONVEX DO 10 J=1,NVAR
CONVEX TVEC(I)=TVEC(I) + HESS(I,J)*D(J)
CONVEX 10 CONTINUE
DO 5 I=1,NVAR
TVEC(I)=ZERO
5 CONTINUE
DO 10 J=1,NVAR
DO 10 I=1,NVAR
TVEC(I)=TVEC(I) + HESS(I,J)*D(J)
10 CONTINUE
C
IF(IUPD.EQ.1) THEN
C
C (I) POWELL UPDATE
C
DO 20 I=1,NVAR
TVEC(I)=GRAD(I)-OLDF(I)-TVEC(I)
sVEC(I)=GRAD(I)-OLDF(I)
20 CONTINUE
DDS=DD*DD
DDTD=DOT(TVEC,D,NVAR)
DDTD=DDTD/DDS
C
CONVEX DO 40 I=1,NVAR
CONVEX DO 30 J=1,I
CONVEX TEMP=TVEC(I)*D(J) + D(I)*TVEC(J) - D(I)*DDTD*D(J)
CONVEX HESS(I,J)=HESS(I,J)+TEMP/DDS
CONVEX HESS(J,I)=HESS(I,J)
CONVEX 30 CONTINUE
CONVEX 40 CONTINUE
DO 40 I=2,NVAR
C$DIR NO_RECURRENCE
DO 30 J=1,I-1
TEMP=TVEC(I)*D(J) + D(I)*TVEC(J) - D(I)*DDTD*D(J)
HESS(I,J)=HESS(I,J)+TEMP/DDS
HESS(J,I)=HESS(I,J)
30 CONTINUE
40 CONTINUE
DO 45 I=1,NVAR
TEMP=D(I)*(2.0D0*TVEC(I) - D(I)*DDTD)
HESS(I,I)=HESS(I,I)+TEMP/DDS
45 CONTINUE
C
ENDIF
IF (IUPD.EQ.2) THEN
C
C (II) BFGS UPDATE
C
DO 50 I=1,NVAR
SVEC(I)=GRAD(I)-OLDF(I)
50 CONTINUE
DDS=DOT(SVEC,D,NVAR)
C
C IF DDS IS NEGATIVE, RETENTION OF POSITIVE DEFINITENESS IS NOT
C GUARANTEED. PRINT A WARNING AND SKIP UPDATE THIS CYCLE.
C
cfrj With the current level shift technique I think the Hessian should
cfrj be allowed to aquire negative eigenvalues. Without updating the
cfrj optimization has the potential of stalling
cfrj IF(DDS.LT.ZERO) THEN
cfrj WRITE(6,100)
cfrj WRITE(6,110)
cfrj RETURN
cfrj ENDIF
C
DDTD=DOT(D,TVEC,NVAR)
C
CONVEX DO 70 I=1,NVAR
CONVEX DO 60 J=1,I
CONVEX TEMP= (SVEC(I)*SVEC(J))/DDS - (TVEC(I)*TVEC(J))/DDTD
CONVEX HESS(I,J)=HESS(I,J)+TEMP
CONVEX HESS(J,I)=HESS(I,J)
CONVEX 60 CONTINUE
CONVEX 70 CONTINUE
DO 70 I=2,NVAR
C$DIR NO_RECURRENCE
DO 60 J=1,I-1
TEMP= (SVEC(I)*SVEC(J))/DDS - (TVEC(I)*TVEC(J))/DDTD
HESS(I,J)=HESS(I,J)+TEMP
HESS(J,I)=HESS(I,J)
60 CONTINUE
70 CONTINUE
DO 75 I=1,NVAR
TEMP= (SVEC(I)*SVEC(I))/DDS - (TVEC(I)*TVEC(I))/DDTD
HESS(I,I)=HESS(I,I)+TEMP
75 CONTINUE
ENDIF
C
RETURN
C
80 FORMAT(/,5X,'HESSIAN IS BEING UPDATED USING THE POWELL UPDATE',/)
90 FORMAT(/,5X,'HESSIAN IS NOT BEING UPDATED',/)
c 100 FORMAT(5X,'WARNING! HEREDITARY POSITIVE DEFINITENESS ENDANGERED')
c 110 FORMAT(5X,'UPDATE SKIPPED THIS CYCLE')
120 FORMAT(/,5X,'HESSIAN IS BEING UPDATED USING THE BFGS UPDATE',/)
END
C*MODULE BLAS1 *DECK DAXPY
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION DX(1),DY(1)
C
C CONSTANT TIMES A VECTOR PLUS A VECTOR.
C DY(I) = DY(I) + DA * DX(I)
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C
IF(N.LE.0)RETURN
IF (DA .EQ. 0.0D+00) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C
20 M = MOD(N,4)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTINUE
IF( N .LT. 4 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
50 CONTINUE
RETURN
END
C ***********************************************************************
c below are math routines needed for prjfc. they are basicly just
c matrix diagonalization routines and should at some point be replaced
c with the diagonalization routine used in the rest of the program.
c the routines below have been lifted from GAMESS
C ***********************************************************************
SUBROUTINE DGEDI(A,LDA,N,IPVT,DET,WORK,JOB)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION A(LDA,1),DET(2),WORK(1),IPVT(1)
C
C DGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX
C USING THE FACTORS COMPUTED BY DGECO OR DGEFA.
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA, N)
C THE OUTPUT FROM DGECO OR DGEFA.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C IPVT INTEGER(N)
C THE PIVOT VECTOR FROM DGECO OR DGEFA.
C
C WORK DOUBLE PRECISION(N)
C WORK VECTOR. CONTENTS DESTROYED.
C
C JOB INTEGER
C = 11 BOTH DETERMINANT AND INVERSE.
C = 01 INVERSE ONLY.
C = 10 DETERMINANT ONLY.
C
C ON RETURN
C
C A INVERSE OF ORIGINAL MATRIX IF REQUESTED.
C OTHERWISE UNCHANGED.
C
C DET DOUBLE PRECISION(2)
C DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
C OTHERWISE NOT REFERENCED.
C DETERMINANT = DET(1) * 10.0**DET(2)
C WITH 1.0 .LE. ABS(DET(1)) .LT. 10.0
C OR DET(1) .EQ. 0.0 .
C
C ERROR CONDITION
C
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C AND IF DGECO HAS SET RCOND .GT. 0.0 OR DGEFA HAS SET
C INFO .EQ. 0 .
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS DAXPY,DSCAL,DSWAP
C FORTRAN ABS,MOD
C
C COMPUTE DETERMINANT
C
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0D+00
DET(2) = 0.0D+00
TEN = 10.0D+00
DO 50 I = 1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET(1) = A(I,I)*DET(1)
C ...EXIT
IF (DET(1) .EQ. 0.0D+00) GO TO 60
10 IF (ABS(DET(1)) .GE. 1.0D+00) GO TO 20
DET(1) = TEN*DET(1)
DET(2) = DET(2) - 1.0D+00
GO TO 10
20 CONTINUE
30 IF (ABS(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/TEN
DET(2) = DET(2) + 1.0D+00
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE(U)
C
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = 1.0D+00/A(K,K)
T = -A(K,K)
CALL DSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = 0.0D+00
CALL DAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FORM INVERSE(U)*INVERSE(L)
C
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = KP1, N
WORK(I) = A(I,K)
A(I,K) = 0.0D+00
110 CONTINUE
DO 120 J = KP1, N
T = WORK(J)
CALL DAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL DSWAP(N,A(1,K),1,A(1,L),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END
SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION A(LDA,1),IPVT(1)
C
C DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION.
C
C DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
C (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) .
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA, N)
C THE MATRIX TO BE FACTORED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C WHICH WERE USED TO OBTAIN IT.
C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
C
C IPVT INTEGER(N)
C AN INTEGER VECTOR OF PIVOT INDICES.
C
C INFO INTEGER
C = 0 NORMAL VALUE.
C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
C CONDITION FOR THIS SUBROUTINE, BUT IT DOES
C INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO
C IF CALLED. USE RCOND IN DGECO FOR A RELIABLE
C INDICATION OF SINGULARITY.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS DAXPY,DSCAL,IDAMAX
C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
C
C FIND L = PIVOT INDEX
C
L = IDAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
C
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C
IF (A(L,K) .EQ. 0.0D+00) GO TO 40
C
C INTERCHANGE IF NECESSARY
C
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
C
C COMPUTE MULTIPLIERS
C
T = -1.0D+00/A(K,K)
CALL DSCAL(N-K,T,A(K+1,K),1)
C
C ROW ELIMINATION WITH COLUMN INDEXING
C
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (A(N,N) .EQ. 0.0D+00) INFO = N
RETURN
END
C*MODULE BLAS1 *DECK DSCAL
SUBROUTINE DSCAL(N,DA,DX,INCX)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION DX(*)
C
C SCALES A VECTOR BY A CONSTANT.
C DX(I) = DA * DX(I)
C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C
IF(N.LE.0)RETURN
IF(INCX.EQ.1)GO TO 20
C
C CODE FOR INCREMENT NOT EQUAL TO 1
C
NINCX = N*INCX
DO 10 I = 1,NINCX,INCX
DX(I) = DA*DX(I)
10 CONTINUE
RETURN
C
C CODE FOR INCREMENT EQUAL TO 1
C
C
C CLEAN-UP LOOP
C
20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DX(I) = DA*DX(I)
30 CONTINUE
IF( N .LT. 5 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,5
DX(I) = DA*DX(I)
DX(I + 1) = DA*DX(I + 1)
DX(I + 2) = DA*DX(I + 2)
DX(I + 3) = DA*DX(I + 3)
DX(I + 4) = DA*DX(I + 4)
50 CONTINUE
RETURN
END
C*MODULE BLAS1 *DECK DSWAP
SUBROUTINE DSWAP (N,DX,INCX,DY,INCY)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION DX(*),DY(*)
C
C INTERCHANGES TWO VECTORS.
C DX(I) <==> DY(I)
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C
IF(N.LE.0)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C TO 1
C
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DTEMP = DX(IX)
DX(IX) = DY(IY)
DY(IY) = DTEMP
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C
20 M = MOD(N,3)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
30 CONTINUE
IF( N .LT. 3 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,3
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
DTEMP = DX(I + 1)
DX(I + 1) = DY(I + 1)
DY(I + 1) = DTEMP
DTEMP = DX(I + 2)
DX(I + 2) = DY(I + 2)
DY(I + 2) = DTEMP
50 CONTINUE
RETURN
END
|