1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
SUBROUTINE MECID(EIGS,GSE,EIGA,DIAG)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION EIGS(*), EIGA(*), DIAG(*)
************************************************************************
*
* MECID CALCULATES THE EFFECT OF REMOVING THE ELECTRONS INVOLVED IN
* THE C.I. FROM THE GROUND-STATE CONFIGURATION, AND CALCULATES THE
* MICROSTATE ENERGIES OF THE MICROSTATES INVOLVED IN THE C.I.
*
* THE QUANTITIES NMOS, NELEC, AND LAB, AND THE ARRAYS EIGS, OCCA,
* MICROA, AND MICROB ARE USED, BUT UNCHANGED ON EXIT
*
* ON EXIT, GSE IS THE ELECTRONIC ENERGY OF STABILIZATION DUE TO
* REMOVAL OF THE ELECTRONS INVOLVED IN THE C.I.
*
* EIGA HOLDS THE ONE-ELECTRON ENERGY LEVELS RESULTING FROM
* REMOVAL OF THE ELECTRONS INVOLVED IN THE C.I.
*
* DIAG HOLDS THE MICROSTATE ENERGIES OF ALL STATES INVOLVED
* IN THE C.I. THIS CAN BE USED AS THE DIAGONAL OF A C.I.
* MATRIX
*
************************************************************************
COMMON /BASEOC/ OCCA(NMECI)
COMMON /MICROS/ MICROA(NMECI,4*NMECI**2),MICROB(NMECI,4*NMECI**2)
COMMON /CIBITS/ NMOS,LAB,NELEC, NBO(3)
COMMON /XYIJKL/ XY(NMECI,NMECI,NMECI,NMECI)
GSE=0.D0
DO 20 I=1,NMOS
X=0.0D0
DO 10 J=1,NMOS
10 X=X+(2.D0*XY(I,I,J,J)-XY(I,J,I,J))*OCCA(J)
EIGA(I)=EIGS(I+NELEC)-X
GSE=GSE+EIGA(I)*OCCA(I)*2.D0
GSE=GSE+XY(I,I,I,I)*OCCA(I)*OCCA(I)
DO 20 J=I+1,NMOS
20 GSE=GSE+2.D0*(2.D0*XY(I,I,J,J) - XY(I,J,I,J))*OCCA(I)*OCCA(J)
DO 30 I=1,LAB
30 DIAG(I)=DIAGI(MICROA(1,I),MICROB(1,I),EIGA,XY,NMOS)-GSE
RETURN
END
|