File: react1.f

package info (click to toggle)
mopac7 1.15-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 3,716 kB
  • ctags: 5,768
  • sloc: fortran: 35,321; sh: 9,052; ansic: 417; makefile: 89
file content (387 lines) | stat: -rw-r--r-- 12,983 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
      SUBROUTINE REACT1(ESCF)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      REAL PASTOR, PBSTOR
      INCLUDE 'SIZES'
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      DIMENSION GEOA(3,NUMATM), GEOVEC(3,NUMATM),
     1          PASTOR(MPACK),
     2          PBSTOR(MPACK), XOLD(MAXPAR), GROLD(MAXPAR)
      COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
     1                NA(NUMATM), NB(NUMATM), NC(NUMATM)
      COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)
      COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR), IDUMY, XPARAM(MAXPAR)
      COMMON /GRADNT/ GRAD(MAXPAR),GNORM
      COMMON /ISTOPE/ AMS(107)
      COMMON /GRAVEC/ COSINE
      COMMON /KEYWRD/ KEYWRD
      COMMON /MESAGE/ IFLEPO,ISCF
     1       /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
     2                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
     3                NCLOSE,NOPEN,NDUMY,FRACT
      COMMON /REACTN/ STEP, GEOA, GEOVEC,CALCST
      LOGICAL GRADNT, FINISH, XYZ, INT, GOK(2)
      SAVE GRADNT, FINISH, XYZ,INT, GOK
************************************************************************
*
*  REACT1 DETERMINES THE TRANSITION STATE OF A CHEMICAL REACTION.
*
*   REACT WORKS BY USING TWO SYSTEMS SIMULTANEOUSLY, THE HEATS OF
*   FORMATION OF BOTH ARE CALCULATED, THEN THE MORE STABLE ONE
*   IS MOVED IN THE DIRECTION OF THE OTHER. AFTER A STEP THE
*   ENERGIES ARE COMPARED, AND THE NOW LOWER-ENERGY FORM IS MOVED
*   IN THE DIRECTION OF THE HIGHER-ENERGY FORM. THIS IS REPEATED
*   UNTIL THE SADDLE POINT IS REACHED.
*
*   IF ONE FORM IS MOVED 3 TIMES IN SUCCESSION, THEN THE HIGHER ENERGY
*   FORM IS RE-OPTIMIZED WITHOUT SHORTENING THE DISTANCE BETWEEN THE TWO
*   FORMS. THIS REDUCES THE CHANCE OF BEING CAUGHT ON THE SIDE OF A
*   TRANSITION STATE.
*
************************************************************************
      DIMENSION IDUM1(NUMATM), IDUM2(NUMATM), XSTORE(MAXPAR),
     1IDUM3(NUMATM), COORD(3,NUMATM), IROT(2,3)
      DIMENSION IDUMMY(3*NUMATM)
      SAVE IROT
      CHARACTER*241 KEYWRD
      EQUIVALENCE (IDUMMY,COORD)
      DATA IROT/1,2,1,3,2,3/
      GOLD=0.D0
      LINEAR=0
      IFLAG=1
      GOK(1)=.FALSE.
      GOK(2)=.FALSE.
      XYZ=(INDEX(KEYWRD,' XYZ') .NE. 0)
      GRADNT=(INDEX(KEYWRD,'GRAD') .NE. 0)
      I=(INDEX(KEYWRD,' BAR'))
      STEPMX=0.15D0
      IF(I.NE.0) STEPMX=READA(KEYWRD,I)
      MAXSTP=1000
C
C    READ IN THE SECOND GEOMETRY.
C
      IF(XYZ) THEN
         CALL GETGEO(5,LABELS,GEOA,LOC,NA,NB,NC,AMS,NATOMS,INT)
      ELSE
         CALL GETGEO(5,IDUM1,GEOA,IDUMMY,
     1         IDUM1,IDUM2,IDUM3,AMS,NATOMS,INT)
C
C  IF INTERNAL COORDINATES ARE TO BE USED, CHECK THE CONNECTIVITY
C
         L=0
         DO 10 I=1,NATOMS
            IF(IDUM1(I).NE.NA(I))THEN
               L=L+1
               IF(L.EQ.1)WRITE(6,'(10X,''ERRORS DETECTED IN CONNECTIVITY
     1'')')
               WRITE(6,'(A,I3,A,I3,A,I3,A)')' FOR ATOM',I,' THE BOND LAB
     1ELS ARE DIFFERENT:      ',IDUM1(I),' AND',NA(I)
            ENDIF
            IF(IDUM2(I).NE.NB(I))THEN
               L=L+1
               IF(L.EQ.1)WRITE(6,'(10X,''ERRORS DETECTED IN CONNECTIVITY
     1'')')
               WRITE(6,'(A,I3,A,I3,A,I3,A)')' FOR ATOM',I,' THE BOND ANG
     1LE LABELS ARE DIFFERENT:',IDUM2(I),' AND',NB(I)
            ENDIF
            IF(IDUM3(I).NE.NC(I))THEN
               L=L+1
               IF(L.EQ.1)WRITE(6,'(10X,''ERRORS DETECTED IN CONNECTIVITY
     1'')')
               WRITE(6,'(A,I3,A,I3,A,I3,A)')' FOR ATOM',I,' THE DIHEDRAL
     1 LABELS ARE DIFFERENT:  ',IDUM3(I),' AND',NC(I)
            ENDIF
   10    CONTINUE
         IF(L.NE.0)WRITE(6,'(10X,A)')' CORRECT BEFORE RESUBMISSION'
         IF(L.NE.0)STOP
      ENDIF
      TIME0= SECOND()
C
C  SWAP FIRST AND SECOND GEOMETRIES AROUND
C  SO THAT GEOUT CAN OUTPUT DATA ON SECOND GEOMETRY.
C
      NUMAT2=0
      DO 20 I=1,NATOMS
         IF(LABELS(I).NE.99) NUMAT2=NUMAT2+1
         X=GEOA(1,I)
         GEOA(1,I)=GEO(1,I)
         GEO(1,I)=X
         X=GEOA(2,I)*0.0174532925D0
         GEOA(2,I)=GEO(2,I)
         GEO(2,I)=X
         X=GEOA(3,I)*0.0174532925D0
         GEOA(3,I)=GEO(3,I)
         GEO(3,I)=X
   20 CONTINUE
      IF(NUMAT2.NE.NUMAT) THEN
         WRITE(6,'(//10X,'' NUMBER OF ATOMS IN SECOND SYSTEM IS '',
     1''INCORRECT'',/)')
         WRITE(6,'('' NUMBER OF ATOMS IN FIRST  SYSTEM ='',I4)')NUMAT
         WRITE(6,'('' NUMBER OF ATOMS IN SECOND SYSTEM ='',I4)')NUMAT2
         GOTO 280
      ENDIF
      WRITE(6,'(//10X,'' GEOMETRY OF SECOND SYSTEM'',/)')
      IF(NDEP.NE.0) CALL SYMTRY
      CALL GEOUT(1)
C
C     CONVERT TO CARTESIAN, IF NECESSARY
C
      IF(   XYZ   )THEN
         CALL GMETRY(GEO,COORD)
         SUMX=0.D0
         SUMY=0.D0
         SUMZ=0.D0
         DO 30 J=1,NUMAT
            SUMX=SUMX+COORD(1,J)
            SUMY=SUMY+COORD(2,J)
   30    SUMZ=SUMZ+COORD(3,J)
         SUMX=SUMX/NUMAT
         SUMY=SUMY/NUMAT
         SUMZ=SUMZ/NUMAT
         DO 40 J=1,NUMAT
            GEO(1,J)=COORD(1,J)-SUMX
            GEO(2,J)=COORD(2,J)-SUMY
   40    GEO(3,J)=COORD(3,J)-SUMZ
         WRITE(6,'(//,''  CARTESIAN GEOMETRY OF FIRST SYSTEM'',//)')
         WRITE(6,'(3F14.5)')((GEO(J,I),J=1,3),I=1,NUMAT)
         SUMX=0.D0
         SUMY=0.D0
         SUMZ=0.D0
         DO 50 J=1,NUMAT
            SUMX=SUMX+GEOA(1,J)
            SUMY=SUMY+GEOA(2,J)
   50    SUMZ=SUMZ+GEOA(3,J)
         SUM=0.D0
         SUMX=SUMX/NUMAT
         SUMY=SUMY/NUMAT
         SUMZ=SUMZ/NUMAT
         DO 60 J=1,NUMAT
            GEOA(1,J)=GEOA(1,J)-SUMX
            GEOA(2,J)=GEOA(2,J)-SUMY
            GEOA(3,J)=GEOA(3,J)-SUMZ
            SUM=SUM+(GEO(1,J)-GEOA(1,J))**2
     1           +(GEO(2,J)-GEOA(2,J))**2
     2           +(GEO(3,J)-GEOA(3,J))**2
   60    CONTINUE
         DO 110 L=3,1,-1
C
C     DOCKING IS DONE IN STEPS OF 16, 4, AND 1 DEGREES AT A TIME.
C
            CA=COS(4.D0**(L-1)*0.01745329D0)
            SA=SQRT(ABS(1.D0-CA**2))
            DO 100 J=1,3
               IR=IROT(1,J)
               JR=IROT(2,J)
               DO 90 I=1,10
                  SUMM=0.D0
                  DO 70 K=1,NUMAT
                     X         = CA*GEOA(IR,K)+SA*GEOA(JR,K)
                     GEOA(JR,K)=-SA*GEOA(IR,K)+CA*GEOA(JR,K)
                     GEOA(IR,K)=X
                     SUMM=SUMM+(GEO(1,K)-GEOA(1,K))**2
     1                         +(GEO(2,K)-GEOA(2,K))**2
     2                         +(GEO(3,K)-GEOA(3,K))**2
   70             CONTINUE
                  IF(SUMM.GT.SUM) THEN
                     IF(I.GT.1)THEN
                        SA=-SA
                        DO 80 K=1,NUMAT
                           X         = CA*GEOA(IR,K)+SA*GEOA(JR,K)
                           GEOA(JR,K)=-SA*GEOA(IR,K)+CA*GEOA(JR,K)
                           GEOA(IR,K)=X
   80                   CONTINUE
                        GOTO 100
                     ENDIF
                     SA=-SA
                  ENDIF
   90          SUM=SUMM
  100       CONTINUE
  110    CONTINUE
         WRITE(6,'(//,''  CARTESIAN GEOMETRY OF SECOND SYSTEM'',//)')
         WRITE(6,'(3F14.5)')((GEOA(J,I),J=1,3),I=1,NUMAT)
         WRITE(6,'(//,''   "DISTANCE":'',F13.6)')SUM
         WRITE(6,'(//,''  REACTION COORDINATE VECTOR'',//)')
         WRITE(6,'(3F14.5)')((GEOA(J,I)-GEO(J,I),J=1,3),I=1,NUMAT)
         NA(1)=99
         J=0
         NVAR=0
         DO 130 I=1,NATOMS
            IF(LABELS(I).NE.99)THEN
               J=J+1
               DO 120 K=1,3
                  NVAR=NVAR+1
                  LOC(2,NVAR)=K
  120          LOC(1,NVAR)=J
               LABELS(J)=LABELS(I)
            ENDIF
  130    CONTINUE
         NATOMS=NUMAT
      ENDIF
C
C   XPARAM HOLDS THE VARIABLE PARAMETERS FOR GEOMETRY IN GEO
C   XOLD   HOLDS THE VARIABLE PARAMETERS FOR GEOMETRY IN GEOA
C
      IF(NVAR.EQ.0)THEN
         WRITE(6,'(///10X,''THERE ARE NO VARIABLES IN THE SADDLE'',
     1'' CALCULATION!'')')
         STOP
      ENDIF
      SUM=0.D0
      DO 140 I=1,NVAR
         GROLD(I)=1.D0
         XPARAM(I)=GEO(LOC(2,I),LOC(1,I))
         XOLD(I)=GEOA(LOC(2,I),LOC(1,I))
  140 SUM=SUM+(XPARAM(I)-XOLD(I))**2
      STEP0=SQRT(SUM)
      IF(STEP0.LT.1.D-5)THEN
         WRITE(6,'(//,3(5X,A,/))')' BOTH GEOMETRIES ARE IDENTICAL',
     1' A SADDLE CALCULATION INVOLVES A REACTANT AND A PRODUCT',
     2' THESE MUST BE DIFFERENT GEOMETRIES'
         STOP
      ENDIF
      ONE=1.D0
      DELL=0.1D0
      EOLD=-2000.D0
      TIME1=SECOND()
      SWAP=0
      DO 240 ILOOP=1,MAXSTP
         WRITE(6,'('' '',40(''*+''))')
C
C   THIS METHOD OF CALCULATING 'STEP' IS QUITE ARBITARY, AND NEEDS
C   TO BE IMPROVED BY INTELLIGENT GUESSWORK!
C
         IF (GNORM.LT.1.D-3)GNORM=1.D-3
         STEP=MIN(SWAP,0.5D0, 6.D0/GNORM, DELL,STEPMX*STEP0+0.005D0)
         STEP=MIN(0.2D0,STEP/STEP0)*STEP0
         SWAP=SWAP+1.D0
         DELL=DELL+0.1D0
         WRITE(6,'(''  BAR SHORTENED BY'',F12.7,'' PERCENT'')')
     1STEP/STEP0*100.D0
         STEP0=STEP0-STEP
         IF(STEP0.LT.0.01D0) GOTO 250
         STEP=STEP0
         DO 150 I=1,NVAR
  150    XSTORE(I)=XPARAM(I)
         CALL FLEPO(XPARAM, NVAR, ESCF)
         IF(LINEAR.EQ.0)THEN
            LINEAR=(NORBS*(NORBS+1))/2
            DO 160 I=1,LINEAR
               PASTOR(I)=PA(I)
  160       PBSTOR(I)=PB(I)
         ENDIF
         DO 170 I=1,NVAR
  170    XPARAM(I)=GEO(LOC(2,I),LOC(1,I))
         IF(IFLAG.EQ.1)THEN
            WRITE(6,'(//10X,''FOR POINT'',I3,'' SECOND STRUCTURE'')')ILO
     1OP
         ELSE
            WRITE(6,'(//10X,''FOR POINT'',I3,'' FIRST  STRUCTURE'')')ILO
     1OP
         ENDIF
         WRITE(6,'('' DISTANCE A - B  '',F12.6)')STEP
C
C   NOW TO CALCULATE THE "CORRECT" GRADIENTS, SWITCH OFF 'STEP'.
C
         STEP=0.D0
         DO 180 I=1,NVAR
  180    GRAD(I)=GROLD(I)
         CALL COMPFG (XPARAM, .TRUE., FUNCT1,.TRUE.,GRAD,.TRUE.)
         DO 190 I=1,NVAR
  190    GROLD(I)=GRAD(I)
         IF (GRADNT) THEN
            WRITE(6,'(''  ACTUAL GRADIENTS OF THIS POINT'')')
            WRITE(6,'(8F10.4)')(GRAD(I),I=1,NVAR)
         ENDIF
         WRITE(6,'('' HEAT            '',F12.6)')FUNCT1
         GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
         WRITE(6,'('' GRADIENT NORM   '',F12.6)')GNORM
         COSINE=COSINE*ONE
         WRITE(6,'('' DIRECTION COSINE'',F12.6)')COSINE
         CALL GEOUT(6)
         IF(SWAP.GT.2.9D0 .OR. ILOOP .GT. 3 .AND. COSINE .LT. 0.D0
     1  .OR. ESCF .GT. EOLD)
     2  THEN
            IF(SWAP.GT.2.9D0)THEN
               SWAP=0.D0
            ELSE
               SWAP=0.5D0
            ENDIF
C
C   SWAP REACTANT AND PRODUCT AROUND
C
            FINISH=(GOK(1).AND.GOK(2) .AND. COSINE .LT. 0.D0)
            IF(FINISH) THEN
               WRITE(6,'(//10X,'' BOTH SYSTEMS ARE ON THE SAME SIDE OF T
     1HE '',''TRANSITION STATE -'',/10X,'' GEOMETRIES OF THE SYSTEMS'',
     2'' ON EACH SIDE OF THE T.S. ARE AS FOLLOWS'')')
               DO 200 I=1,NVAR
  200          XPARAM(I)=XSTORE(I)
               CALL COMPFG (XPARAM, .TRUE., FUNCT1,.TRUE.,GRAD,.TRUE.)
               WRITE(6,'(//10X,'' GEOMETRY ON ONE SIDE OF THE TRANSITION
     1'','' STATE'')')
               CALL WRITMO(TIME0,FUNCT1)
            ENDIF
            TIME2=SECOND()
            WRITE(6,'('' TIME='',F9.2)')TIME2-TIME1
            TIME1=TIME2
            WRITE(6,'(''  REACTANTS AND PRODUCTS SWAPPED AROUND'')')
            IFLAG=1-IFLAG
            ONE=-1.D0
            EOLD=ESCF
            SUM=GOLD
            GOLD=GNORM
            I=1.7D0+ONE*0.5D0
            IF(GNORM.GT.10.D0)GOK(I)=.TRUE.
            GNORM=SUM
            DO 210 I=1,NATOMS
               DO 210 J=1,3
                  X=GEO(J,I)
                  GEO(J,I)=GEOA(J,I)
  210       GEOA(J,I)=X
            DO 220 I=1,NVAR
               X=XOLD(I)
               XOLD(I)=XPARAM(I)
  220       XPARAM(I)=X
C
C
C    SWAP AROUND THE DENSITY MATRICES.
C
            DO 230 I=1,LINEAR
               X=PASTOR(I)
               PASTOR(I)=PA(I)
               PA(I)=X
               X=PBSTOR(I)
               PBSTOR(I)=PB(I)
               PB(I)=X
               P(I)=PA(I)+PB(I)
  230       CONTINUE
            IF(FINISH) GOTO 250
         ELSE
            ONE=1.D0
         ENDIF
  240 CONTINUE
  250 CONTINUE
      WRITE(6,'('' AT END OF REACTION'')')
      GOLD=SQRT(DOT(GRAD,GRAD,NVAR))
      CALL COMPFG (XPARAM, .TRUE., FUNCT1,.TRUE.,GRAD,.TRUE.)
      GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
      DO 260 I=1,NVAR
  260 GROLD(I)=XPARAM(I)
      CALL WRITMO(TIME0,FUNCT1)
*
* THE GEOMETRIES HAVE (A) BEEN OPTIMIZED CORRECTLY, OR
*                     (B) BOTH ENDED UP ON THE SAME SIDE OF THE T.S.
*
*  TRANSITION STATE LIES BETWEEN THE TWO GEOMETRIES
*
      C1=GOLD/(GOLD+GNORM)
      C2=1.D0-C1
      WRITE(6,'('' BEST ESTIMATE GEOMETRY OF THE TRANSITION STATE'')')
      WRITE(6,'(//10X,'' C1='',F8.3,''C2='',F8.3)')C1,C2
      DO 270 I=1,NVAR
  270 XPARAM(I)=C1*GROLD(I)+C2*XOLD(I)
      STEP=0.D0
      CALL COMPFG (XPARAM, .TRUE., FUNCT1,.TRUE.,GRAD,.TRUE.)
      CALL WRITMO(TIME0,FUNCT1)
  280 RETURN
      END