File: rsp.f

package info (click to toggle)
mopac7 1.15-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 3,716 kB
  • ctags: 5,768
  • sloc: fortran: 35,321; sh: 9,052; ansic: 417; makefile: 89
file content (581 lines) | stat: -rw-r--r-- 17,632 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
      SUBROUTINE RSP(A,N,MATZ,W,Z)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION A(*),  W(N), Z(N,N)
*******************************************************************
*
*   EISPACK DIAGONALIZATION ROUTINES: TO FIND THE EIGENVALUES AND
*           EIGENVECTORS (IF DESIRED) OF A REAL SYMMETRIC PACKED MATRIX.
* ON INPUT-      N  IS THE ORDER OF THE MATRIX  A,
*                A  CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
*                   PACKED MATRIX STORED ROW-WISE,
*             MATZ  IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF ONLY
*                   EIGENVALUES ARE DESIRED,  OTHERWISE IT IS SET TO
*                   ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND
*                   EIGENVECTORS.
* ON OUTPUT-     W  CONTAINS THE EIGENVALUES IN ASCENDING ORDER,
*                Z  CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO,
*
*******************************************************************
* THIS SUBROUTINE WAS CHOSEN AS BEING THE MOST RELIABLE. (JJPS)
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
      DIMENSION FV1(MAXHEV*4+MAXLIT*3),FV2(MAXHEV*4+MAXLIT*3)
      SAVE FIRST, EPS, ETA, NV
      LOGICAL FIRST
      DATA FIRST /.TRUE./
      IF (FIRST) THEN
         FIRST=.FALSE.
         CALL EPSETA(EPS,ETA)
      ENDIF
      NV=(N*(N+1))/2
      NM=N
      CALL  TRED3(N,NV,A,W,FV1,FV2,EPS,EPS)
      IF (MATZ .NE. 0) GO TO 10
C     ********** FIND EIGENVALUES ONLY **********
      CALL  TQLRAT(N,W,FV2,IERR,EPS)
      GO TO 40
C     ********** FIND BOTH EIGENVALUES AND EIGENVECTORS **********
   10 DO 30    I = 1, N
C
         DO 20    J = 1, N
            Z(J,I)=0.0D0
   20    CONTINUE
C
         Z(I,I)=1.0D0
   30 CONTINUE
C
      CALL  TQL2(NM,N,W,FV1,Z,IERR,EPS)
      IF (IERR .NE. 0) GO TO 40
      CALL  TRBAK3(NM,N,NV,A,N,Z)
C     ********** LAST CARD OF RSP **********
   40 RETURN
      END
      SUBROUTINE EPSETA(EPS,ETA)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C     COMPUTE AND RETURN ETA, THE SMALLEST REPRESENTABLE NUMBER,
C     AND EPS IS THE SMALLEST NUMBER FOR WHICH 1+EPS.NE.1.
C
C
      ETA = 1.D0
   10 IF((ETA/2.D0).EQ.0.D0) GOTO 20
      IF(ETA.LT.1.D-38) GOTO 20
      ETA = ETA / 2.D0
      GOTO 10
   20 EPS = 1.D0
   30 IF((1.D0+(EPS/2.D0)).EQ.1.D0) GOTO 40
      IF(EPS.LT.1.D-17) GOTO 40
      EPS = EPS / 2.D0
      GOTO 30
   40 RETURN
      END
      SUBROUTINE TQL2(NM,N,D,E,Z,IERR,EPS)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C               ===== PROCESSED BY AUGMENT, VERSION 4N =====
C     APPROVED FOR VAX 11/780 ON MAY 6,1980.  J.D.NEECE
C               ----- LOCAL VARIABLES -----
C               ----- GLOBAL VARIABLES -----
      DIMENSION D(N), E(N), Z(NM,N)
C               ----- SUPPORTING PACKAGE FUNCTIONS -----
C               ===== TRANSLATED PROGRAM =====
C
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
C     NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
C     WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C     OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD.
C     THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
C     BE FOUND IF  TRED2  HAS BEEN USED TO REDUCE THIS
C     FULL MATRIX TO TRIDIAGONAL FORM.
C
C     ON INPUT-
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT,
C
C        N IS THE ORDER OF THE MATRIX,
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY,
C
C        Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C          REDUCTION BY  TRED2, IF PERFORMED.  IF THE EIGENVECTORS
C          OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
C          THE IDENTITY MATRIX.
C
C      ON OUTPUT-
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
C          UNORDERED FOR INDICES 1,2,...,IERR-1,
C
C        E HAS BEEN DESTROYED,
C
C        Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
C          TRIDIAGONAL (OR FULL) MATRIX.  IF AN ERROR EXIT IS MADE,
C          Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
C          EIGENVALUES,
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 30 ITERATIONS.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
C
      IERR = 0
      IF (N .EQ. 1) GO TO 160
C
      DO 10   I = 2, N
   10 E(I-1) = E(I)
C
      F=0.0D0
      B=0.0D0
      E(N)=0.0D0
C
      DO 110   L = 1, N
         J = 0
         H=EPS*(ABS (D(L))+ABS (E(L)))
         IF (B .LT. H) B=H
C     ********** LOOK FOR SMALL SUB-DIAGONAL ELEMENT **********
         DO 20   M = L, N
            IF (ABS (E(M)).LE.B)  GO TO 30
C     ********** E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C                THROUGH THE BOTTOM OF THE LOOP **********
   20    CONTINUE
C
   30    IF (M .EQ. L) GO TO 100
   40    IF (J .EQ. 30) GO TO 150
         J = J + 1
C     ********** FORM SHIFT **********
         L1 = L + 1
         G = D(L)
         P=(D(L1)-G)/(2.0D0*E(L))
         R=SQRT (P*P+1.0D0)
         D(L)=E(L)/(P+SIGN (R,P))
         H = G - D(L)
C
         DO 50   I = L1, N
   50    D(I) = D(I) - H
C
         F = F + H
C     ********** QL TRANSFORMATION **********
         P = D(M)
         C=1.0D0
         S=0.0D0
         MML = M - L
C     ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
         DO 90   II = 1, MML
            I = M - II
            G = C * E(I)
            H = C * P
            IF (ABS (P).LT.ABS (E(I)))  GO TO 60
            C = E(I) / P
            R=SQRT (C*C+1.0D0)
            E(I+1) = S * P * R
            S = C / R
            C=1.0D0/R
            GO TO 70
   60       C = P / E(I)
            R=SQRT (C*C+1.0D0)
            E(I+1) = S * E(I) * R
            S=1.0D0/R
            C = C * S
   70       P = C * D(I) - S * G
            D(I+1) = H + S * (C * G + S * D(I))
C     ********** FORM VECTOR **********
            DO 80   K = 1, N
               H = Z(K,I+1)
               Z(K,I+1) = S * Z(K,I) + C * H
               Z(K,I) = C * Z(K,I) - S * H
   80       CONTINUE
C
   90    CONTINUE
C
         E(L) = S * P
         D(L) = C * P
         IF (ABS (E(L)).GT.B)  GO TO 40
  100    D(L) = D(L) + F
  110 CONTINUE
C     ********** ORDER EIGENVALUES AND EIGENVECTORS **********
      DO 140   II = 2, N
         I = II - 1
         K = I
         P = D(I)
C
         DO 120   J = II, N
            IF (D(J) .GE. P) GO TO 120
            K = J
            P = D(J)
  120    CONTINUE
C
         IF (K .EQ. I) GO TO 140
         D(K) = D(I)
         D(I) = P
C
         DO 130   J = 1, N
            P = Z(J,I)
            Z(J,I) = Z(J,K)
            Z(J,K) = P
  130    CONTINUE
C
  140 CONTINUE
C
      GO TO 160
C     ********** SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 30 ITERATIONS **********
  150 IERR = L
  160 RETURN
C     ********** LAST CARD OF TQL2 **********
      END
      SUBROUTINE TQLRAT(N,D,E2,IERR,EPS)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C               ===== PROCESSED BY AUGMENT, VERSION 4N =====
C     APPROVED FOR VAX 11/780 ON MAY 6,1980.  J.D.NEECE
C               ----- LOCAL VARIABLES -----
C               ----- GLOBAL VARIABLES -----
      DIMENSION D(N), E2(N)
C               ----- SUPPORTING PACKAGE FUNCTIONS -----
C               ===== TRANSLATED PROGRAM =====
C
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
C     ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
C     TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.
C
C     ON INPUT-
C
C        N IS THE ORDER OF THE MATRIX,
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
C
C        E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE
C          INPUT MATRIX IN ITS LAST N-1 POSITIONS.  E2(1) IS ARBITRARY.
C
C      ON OUTPUT-
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
C          ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
C          THE SMALLEST EIGENVALUES,
C
C        E2 HAS BEEN DESTROYED,
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 30 ITERATIONS.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
C
      IERR = 0
      IF (N .EQ. 1) GO TO 140
C
      DO 10   I = 2, N
   10 E2(I-1) = E2(I)
C
      F=0.0D0
      B=0.0D0
      E2(N)=0.0D0
C
      DO 120   L = 1, N
         J = 0
         H=EPS*(ABS (D(L))+SQRT (E2(L)))
         IF (B .GT. H) GO TO 20
         B = H
         C = B * B
C     ********** LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT **********
   20    DO 30   M = L, N
            IF (E2(M) .LE. C) GO TO 40
C     ********** E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C                THROUGH THE BOTTOM OF THE LOOP **********
   30    CONTINUE
C
   40    IF (M .EQ. L) GO TO 80
   50    IF (J .EQ. 30) GO TO 130
         J = J + 1
C     ********** FORM SHIFT **********
         L1 = L + 1
         S=SQRT (E2(L))
         G = D(L)
         P=(D(L1)-G)/(2.0D0*S)
         R=SQRT (P*P+1.0D0)
         D(L)=S/(P+SIGN (R,P))
         H = G - D(L)
C
         DO 60   I = L1, N
   60    D(I) = D(I) - H
C
         F = F + H
C     ********** RATIONAL QL TRANSFORMATION **********
         G = D(M)
         IF (G.EQ.0.0D0) G=B
         H = G
         S=0.0D0
         MML = M - L
C     ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
         DO 70   II = 1, MML
            I = M - II
            P = G * H
            R = P + E2(I)
            E2(I+1) = S * R
            S = E2(I) / R
            D(I+1) = H + S * (H + D(I))
            G = D(I) - E2(I) / G
            IF (G.EQ.0.0D0) G=B
            H = G * P / R
   70    CONTINUE
C
         E2(L) = S * G
         D(L) = H
C     ********** GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST **********
         IF (H.EQ.0.0D0)  GO TO 80
         IF (ABS (E2(L)).LE.ABS (C/H))  GO TO 80
         E2(L) = H * E2(L)
         IF (E2(L).NE.0.0D0)  GO TO 50
   80    P = D(L) + F
C     ********** ORDER EIGENVALUES **********
         IF (L .EQ. 1) GO TO 100
C     ********** FOR I=L STEP -1 UNTIL 2 DO -- **********
         DO 90   II = 2, L
            I = L + 2 - II
            IF (P .GE. D(I-1)) GO TO 110
            D(I) = D(I-1)
   90    CONTINUE
C
  100    I = 1
  110    D(I) = P
  120 CONTINUE
C
      GO TO 140
C     ********** SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 30 ITERATIONS **********
  130 IERR = L
  140 RETURN
C     ********** LAST CARD OF TQLRAT **********
      END
      SUBROUTINE TRBAK3(NM,N,NV,A,M,Z)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C               ===== PROCESSED BY AUGMENT, VERSION 4N =====
C     APPROVED FOR VAX 11/780 ON MAY 6,1980.  J.D.NEECE
C               ----- LOCAL VARIABLES -----
C               ----- GLOBAL VARIABLES -----
      DIMENSION A(NV), Z(NM,M)
C               ===== TRANSLATED PROGRAM =====
C
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRBAK3,
C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE FORMS THE EIGENVECTORS OF A REAL SYMMETRIC
C     MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
C     SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY  TRED3.
C
C     ON INPUT-
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT,
C
C        N IS THE ORDER OF THE MATRIX,
C
C        NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
C          AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT,
C
C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANSFORMATIONS
C          USED IN THE REDUCTION BY  TRED3  IN ITS FIRST
C          N*(N+1)/2 POSITIONS,
C
C        M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED,
C
C        Z CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED
C          IN ITS FIRST M COLUMNS.
C
C     ON OUTPUT-
C
C        Z CONTAINS THE TRANSFORMED EIGENVECTORS
C          IN ITS FIRST M COLUMNS.
C
C     NOTE THAT TRBAK3 PRESERVES VECTOR EUCLIDEAN NORMS.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
      IF (M .EQ. 0) GO TO 50
      IF (N .EQ. 1) GO TO 50
C
      DO 40   I = 2, N
         L = I - 1
         IZ = (I * L) / 2
         IK = IZ + I
         H = A(IK)
         IF (H.EQ.0.0D0)  GO TO 40
C
         DO 30   J = 1, M
            S=0.0D0
            IK = IZ
C
            DO 10   K = 1, L
               IK = IK + 1
               S = S + A(IK) * Z(K,J)
   10       CONTINUE
C     ********** DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW **********
            S = (S / H) / H
            IK = IZ
C
            DO 20   K = 1, L
               IK = IK + 1
               Z(K,J) = Z(K,J) - S * A(IK)
   20       CONTINUE
C
   30    CONTINUE
C
   40 CONTINUE
C
   50 RETURN
C     ********** LAST CARD OF TRBAK3 **********
      END
      SUBROUTINE TRED3(N,NV,A,D,E,E2,EPS,ETA)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C               ===== PROCESSED BY AUGMENT, VERSION 4N =====
C     APPROVED FOR VAX 11/780 ON MAY 6,1980.  J.D.NEECE
C               ----- LOCAL VARIABLES -----
C               ----- GLOBAL VARIABLES -----
      DIMENSION A(NV), D(N), E(N), E2(N)
C               ----- SUPPORTING PACKAGE FUNCTIONS -----
C               ===== TRANSLATED PROGRAM =====
C
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED3,
C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX, STORED AS
C     A ONE-DIMENSIONAL ARRAY, TO A SYMMETRIC TRIDIAGONAL MATRIX
C     USING ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT-
C
C        N IS THE ORDER OF THE MATRIX,
C
C        NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
C          AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT,
C
C        A CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
C          INPUT MATRIX, STORED ROW-WISE AS A ONE-DIMENSIONAL
C          ARRAY, IN ITS FIRST N*(N+1)/2 POSITIONS.
C
C     ON OUTPUT-
C
C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL
C          TRANSFORMATIONS USED IN THE REDUCTION,
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX,
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO,
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
C     ********** FOR I=N STEP -1 UNTIL 1 DO -- **********
      DO 100   II = 1, N
         I = N + 1 - II
         L = I - 1
         IZ = ( I * L ) / 2
         H=0.0D0
         SCALE=0.0D0
         DO 10   K = 1, L
            IZ = IZ + 1
            D(K) = A(IZ)
            SCALE=SCALE+ABS( D(K) )
   10    CONTINUE
C
         IF ( SCALE.NE.0.D0 ) GO TO 20
         E(I)=0.0D0
         E2(I)=0.0D0
         GO TO 90
C
   20    DO 30   K = 1, L
            D(K) = D(K) / SCALE
            H = H + D(K) * D(K)
   30    CONTINUE
C
         E2(I) = SCALE * SCALE * H
         F = D(L)
         G=-SIGN (SQRT (H),F)
         E(I) = SCALE * G
         H = H - F * G
         D(L) = F - G
         A(IZ) = SCALE * D(L)
         IF (L .EQ. 1) GO TO 90
         F=0.0D0
C
         DO 70   J = 1, L
            G=0.0D0
            JK = (J * (J-1)) / 2
C     ********** FORM ELEMENT OF A*U **********
            K = 0
   40       K = K + 1
            JK = JK + 1
            G = G + A(JK) * D(K)
            IF ( K .LT. J ) GO TO 40
            IF ( K .EQ. L ) GO TO 60
   50       JK = JK + K
            K = K + 1
            G = G + A(JK) * D(K)
            IF ( K .LT. L ) GO TO 50
C     ********** FORM ELEMENT OF P **********
   60       CONTINUE
            E(J) = G / H
            F = F + E(J) * D(J)
   70    CONTINUE
C
         HH = F / (H + H)
         JK = 0
C     ********** FORM REDUCED A **********
         DO 80   J = 1, L
            F = D(J)
            G = E(J) - HH * F
            E(J) = G
C
            DO 80   K = 1, J
               JK = JK + 1
               A(JK) = A(JK) - F * E(K) - G * D(K)
   80    CONTINUE
C
   90    D(I) = A(IZ+1)
         A(IZ+1)=SCALE*SQRT (H)
  100 CONTINUE
C
      RETURN
C     ********** LAST CARD OF TRED3 **********
      END