1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
SUBROUTINE RSP(A,N,MATZ,W,Z)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION A(*), W(N), Z(N,N)
*******************************************************************
*
* EISPACK DIAGONALIZATION ROUTINES: TO FIND THE EIGENVALUES AND
* EIGENVECTORS (IF DESIRED) OF A REAL SYMMETRIC PACKED MATRIX.
* ON INPUT- N IS THE ORDER OF THE MATRIX A,
* A CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
* PACKED MATRIX STORED ROW-WISE,
* MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF ONLY
* EIGENVALUES ARE DESIRED, OTHERWISE IT IS SET TO
* ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND
* EIGENVECTORS.
* ON OUTPUT- W CONTAINS THE EIGENVALUES IN ASCENDING ORDER,
* Z CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO,
*
*******************************************************************
* THIS SUBROUTINE WAS CHOSEN AS BEING THE MOST RELIABLE. (JJPS)
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C ------------------------------------------------------------------
C
DIMENSION FV1(MAXHEV*4+MAXLIT*3),FV2(MAXHEV*4+MAXLIT*3)
SAVE FIRST, EPS, ETA, NV
LOGICAL FIRST
DATA FIRST /.TRUE./
IF (FIRST) THEN
FIRST=.FALSE.
CALL EPSETA(EPS,ETA)
ENDIF
NV=(N*(N+1))/2
NM=N
CALL TRED3(N,NV,A,W,FV1,FV2,EPS,EPS)
IF (MATZ .NE. 0) GO TO 10
C ********** FIND EIGENVALUES ONLY **********
CALL TQLRAT(N,W,FV2,IERR,EPS)
GO TO 40
C ********** FIND BOTH EIGENVALUES AND EIGENVECTORS **********
10 DO 30 I = 1, N
C
DO 20 J = 1, N
Z(J,I)=0.0D0
20 CONTINUE
C
Z(I,I)=1.0D0
30 CONTINUE
C
CALL TQL2(NM,N,W,FV1,Z,IERR,EPS)
IF (IERR .NE. 0) GO TO 40
CALL TRBAK3(NM,N,NV,A,N,Z)
C ********** LAST CARD OF RSP **********
40 RETURN
END
SUBROUTINE EPSETA(EPS,ETA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C COMPUTE AND RETURN ETA, THE SMALLEST REPRESENTABLE NUMBER,
C AND EPS IS THE SMALLEST NUMBER FOR WHICH 1+EPS.NE.1.
C
C
ETA = 1.D0
10 IF((ETA/2.D0).EQ.0.D0) GOTO 20
IF(ETA.LT.1.D-38) GOTO 20
ETA = ETA / 2.D0
GOTO 10
20 EPS = 1.D0
30 IF((1.D0+(EPS/2.D0)).EQ.1.D0) GOTO 40
IF(EPS.LT.1.D-17) GOTO 40
EPS = EPS / 2.D0
GOTO 30
40 RETURN
END
SUBROUTINE TQL2(NM,N,D,E,Z,IERR,EPS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C ===== PROCESSED BY AUGMENT, VERSION 4N =====
C APPROVED FOR VAX 11/780 ON MAY 6,1980. J.D.NEECE
C ----- LOCAL VARIABLES -----
C ----- GLOBAL VARIABLES -----
DIMENSION D(N), E(N), Z(NM,N)
C ----- SUPPORTING PACKAGE FUNCTIONS -----
C ===== TRANSLATED PROGRAM =====
C
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
C NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
C WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
C
C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD.
C THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
C BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS
C FULL MATRIX TO TRIDIAGONAL FORM.
C
C ON INPUT-
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT,
C
C N IS THE ORDER OF THE MATRIX,
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
C
C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY,
C
C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS
C OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
C THE IDENTITY MATRIX.
C
C ON OUTPUT-
C
C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
C UNORDERED FOR INDICES 1,2,...,IERR-1,
C
C E HAS BEEN DESTROYED,
C
C Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
C TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE,
C Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
C EIGENVALUES,
C
C IERR IS SET TO
C ZERO FOR NORMAL RETURN,
C J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED AFTER 30 ITERATIONS.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C ------------------------------------------------------------------
C
C
IERR = 0
IF (N .EQ. 1) GO TO 160
C
DO 10 I = 2, N
10 E(I-1) = E(I)
C
F=0.0D0
B=0.0D0
E(N)=0.0D0
C
DO 110 L = 1, N
J = 0
H=EPS*(ABS (D(L))+ABS (E(L)))
IF (B .LT. H) B=H
C ********** LOOK FOR SMALL SUB-DIAGONAL ELEMENT **********
DO 20 M = L, N
IF (ABS (E(M)).LE.B) GO TO 30
C ********** E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP **********
20 CONTINUE
C
30 IF (M .EQ. L) GO TO 100
40 IF (J .EQ. 30) GO TO 150
J = J + 1
C ********** FORM SHIFT **********
L1 = L + 1
G = D(L)
P=(D(L1)-G)/(2.0D0*E(L))
R=SQRT (P*P+1.0D0)
D(L)=E(L)/(P+SIGN (R,P))
H = G - D(L)
C
DO 50 I = L1, N
50 D(I) = D(I) - H
C
F = F + H
C ********** QL TRANSFORMATION **********
P = D(M)
C=1.0D0
S=0.0D0
MML = M - L
C ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
DO 90 II = 1, MML
I = M - II
G = C * E(I)
H = C * P
IF (ABS (P).LT.ABS (E(I))) GO TO 60
C = E(I) / P
R=SQRT (C*C+1.0D0)
E(I+1) = S * P * R
S = C / R
C=1.0D0/R
GO TO 70
60 C = P / E(I)
R=SQRT (C*C+1.0D0)
E(I+1) = S * E(I) * R
S=1.0D0/R
C = C * S
70 P = C * D(I) - S * G
D(I+1) = H + S * (C * G + S * D(I))
C ********** FORM VECTOR **********
DO 80 K = 1, N
H = Z(K,I+1)
Z(K,I+1) = S * Z(K,I) + C * H
Z(K,I) = C * Z(K,I) - S * H
80 CONTINUE
C
90 CONTINUE
C
E(L) = S * P
D(L) = C * P
IF (ABS (E(L)).GT.B) GO TO 40
100 D(L) = D(L) + F
110 CONTINUE
C ********** ORDER EIGENVALUES AND EIGENVECTORS **********
DO 140 II = 2, N
I = II - 1
K = I
P = D(I)
C
DO 120 J = II, N
IF (D(J) .GE. P) GO TO 120
K = J
P = D(J)
120 CONTINUE
C
IF (K .EQ. I) GO TO 140
D(K) = D(I)
D(I) = P
C
DO 130 J = 1, N
P = Z(J,I)
Z(J,I) = Z(J,K)
Z(J,K) = P
130 CONTINUE
C
140 CONTINUE
C
GO TO 160
C ********** SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS **********
150 IERR = L
160 RETURN
C ********** LAST CARD OF TQL2 **********
END
SUBROUTINE TQLRAT(N,D,E2,IERR,EPS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C ===== PROCESSED BY AUGMENT, VERSION 4N =====
C APPROVED FOR VAX 11/780 ON MAY 6,1980. J.D.NEECE
C ----- LOCAL VARIABLES -----
C ----- GLOBAL VARIABLES -----
DIMENSION D(N), E2(N)
C ----- SUPPORTING PACKAGE FUNCTIONS -----
C ===== TRANSLATED PROGRAM =====
C
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
C ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.
C
C THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
C TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.
C
C ON INPUT-
C
C N IS THE ORDER OF THE MATRIX,
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
C
C E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE
C INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY.
C
C ON OUTPUT-
C
C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
C ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
C THE SMALLEST EIGENVALUES,
C
C E2 HAS BEEN DESTROYED,
C
C IERR IS SET TO
C ZERO FOR NORMAL RETURN,
C J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED AFTER 30 ITERATIONS.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C ------------------------------------------------------------------
C
C
IERR = 0
IF (N .EQ. 1) GO TO 140
C
DO 10 I = 2, N
10 E2(I-1) = E2(I)
C
F=0.0D0
B=0.0D0
E2(N)=0.0D0
C
DO 120 L = 1, N
J = 0
H=EPS*(ABS (D(L))+SQRT (E2(L)))
IF (B .GT. H) GO TO 20
B = H
C = B * B
C ********** LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT **********
20 DO 30 M = L, N
IF (E2(M) .LE. C) GO TO 40
C ********** E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP **********
30 CONTINUE
C
40 IF (M .EQ. L) GO TO 80
50 IF (J .EQ. 30) GO TO 130
J = J + 1
C ********** FORM SHIFT **********
L1 = L + 1
S=SQRT (E2(L))
G = D(L)
P=(D(L1)-G)/(2.0D0*S)
R=SQRT (P*P+1.0D0)
D(L)=S/(P+SIGN (R,P))
H = G - D(L)
C
DO 60 I = L1, N
60 D(I) = D(I) - H
C
F = F + H
C ********** RATIONAL QL TRANSFORMATION **********
G = D(M)
IF (G.EQ.0.0D0) G=B
H = G
S=0.0D0
MML = M - L
C ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
DO 70 II = 1, MML
I = M - II
P = G * H
R = P + E2(I)
E2(I+1) = S * R
S = E2(I) / R
D(I+1) = H + S * (H + D(I))
G = D(I) - E2(I) / G
IF (G.EQ.0.0D0) G=B
H = G * P / R
70 CONTINUE
C
E2(L) = S * G
D(L) = H
C ********** GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST **********
IF (H.EQ.0.0D0) GO TO 80
IF (ABS (E2(L)).LE.ABS (C/H)) GO TO 80
E2(L) = H * E2(L)
IF (E2(L).NE.0.0D0) GO TO 50
80 P = D(L) + F
C ********** ORDER EIGENVALUES **********
IF (L .EQ. 1) GO TO 100
C ********** FOR I=L STEP -1 UNTIL 2 DO -- **********
DO 90 II = 2, L
I = L + 2 - II
IF (P .GE. D(I-1)) GO TO 110
D(I) = D(I-1)
90 CONTINUE
C
100 I = 1
110 D(I) = P
120 CONTINUE
C
GO TO 140
C ********** SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS **********
130 IERR = L
140 RETURN
C ********** LAST CARD OF TQLRAT **********
END
SUBROUTINE TRBAK3(NM,N,NV,A,M,Z)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C ===== PROCESSED BY AUGMENT, VERSION 4N =====
C APPROVED FOR VAX 11/780 ON MAY 6,1980. J.D.NEECE
C ----- LOCAL VARIABLES -----
C ----- GLOBAL VARIABLES -----
DIMENSION A(NV), Z(NM,M)
C ===== TRANSLATED PROGRAM =====
C
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRBAK3,
C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C THIS SUBROUTINE FORMS THE EIGENVECTORS OF A REAL SYMMETRIC
C MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
C SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY TRED3.
C
C ON INPUT-
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT,
C
C N IS THE ORDER OF THE MATRIX,
C
C NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
C AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT,
C
C A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANSFORMATIONS
C USED IN THE REDUCTION BY TRED3 IN ITS FIRST
C N*(N+1)/2 POSITIONS,
C
C M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED,
C
C Z CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED
C IN ITS FIRST M COLUMNS.
C
C ON OUTPUT-
C
C Z CONTAINS THE TRANSFORMED EIGENVECTORS
C IN ITS FIRST M COLUMNS.
C
C NOTE THAT TRBAK3 PRESERVES VECTOR EUCLIDEAN NORMS.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C ------------------------------------------------------------------
C
IF (M .EQ. 0) GO TO 50
IF (N .EQ. 1) GO TO 50
C
DO 40 I = 2, N
L = I - 1
IZ = (I * L) / 2
IK = IZ + I
H = A(IK)
IF (H.EQ.0.0D0) GO TO 40
C
DO 30 J = 1, M
S=0.0D0
IK = IZ
C
DO 10 K = 1, L
IK = IK + 1
S = S + A(IK) * Z(K,J)
10 CONTINUE
C ********** DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW **********
S = (S / H) / H
IK = IZ
C
DO 20 K = 1, L
IK = IK + 1
Z(K,J) = Z(K,J) - S * A(IK)
20 CONTINUE
C
30 CONTINUE
C
40 CONTINUE
C
50 RETURN
C ********** LAST CARD OF TRBAK3 **********
END
SUBROUTINE TRED3(N,NV,A,D,E,E2,EPS,ETA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C ===== PROCESSED BY AUGMENT, VERSION 4N =====
C APPROVED FOR VAX 11/780 ON MAY 6,1980. J.D.NEECE
C ----- LOCAL VARIABLES -----
C ----- GLOBAL VARIABLES -----
DIMENSION A(NV), D(N), E(N), E2(N)
C ----- SUPPORTING PACKAGE FUNCTIONS -----
C ===== TRANSLATED PROGRAM =====
C
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED3,
C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX, STORED AS
C A ONE-DIMENSIONAL ARRAY, TO A SYMMETRIC TRIDIAGONAL MATRIX
C USING ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C ON INPUT-
C
C N IS THE ORDER OF THE MATRIX,
C
C NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
C AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT,
C
C A CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
C INPUT MATRIX, STORED ROW-WISE AS A ONE-DIMENSIONAL
C ARRAY, IN ITS FIRST N*(N+1)/2 POSITIONS.
C
C ON OUTPUT-
C
C A CONTAINS INFORMATION ABOUT THE ORTHOGONAL
C TRANSFORMATIONS USED IN THE REDUCTION,
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX,
C
C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO,
C
C E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C ------------------------------------------------------------------
C
C ********** FOR I=N STEP -1 UNTIL 1 DO -- **********
DO 100 II = 1, N
I = N + 1 - II
L = I - 1
IZ = ( I * L ) / 2
H=0.0D0
SCALE=0.0D0
DO 10 K = 1, L
IZ = IZ + 1
D(K) = A(IZ)
SCALE=SCALE+ABS( D(K) )
10 CONTINUE
C
IF ( SCALE.NE.0.D0 ) GO TO 20
E(I)=0.0D0
E2(I)=0.0D0
GO TO 90
C
20 DO 30 K = 1, L
D(K) = D(K) / SCALE
H = H + D(K) * D(K)
30 CONTINUE
C
E2(I) = SCALE * SCALE * H
F = D(L)
G=-SIGN (SQRT (H),F)
E(I) = SCALE * G
H = H - F * G
D(L) = F - G
A(IZ) = SCALE * D(L)
IF (L .EQ. 1) GO TO 90
F=0.0D0
C
DO 70 J = 1, L
G=0.0D0
JK = (J * (J-1)) / 2
C ********** FORM ELEMENT OF A*U **********
K = 0
40 K = K + 1
JK = JK + 1
G = G + A(JK) * D(K)
IF ( K .LT. J ) GO TO 40
IF ( K .EQ. L ) GO TO 60
50 JK = JK + K
K = K + 1
G = G + A(JK) * D(K)
IF ( K .LT. L ) GO TO 50
C ********** FORM ELEMENT OF P **********
60 CONTINUE
E(J) = G / H
F = F + E(J) * D(J)
70 CONTINUE
C
HH = F / (H + H)
JK = 0
C ********** FORM REDUCED A **********
DO 80 J = 1, L
F = D(J)
G = E(J) - HH * F
E(J) = G
C
DO 80 K = 1, J
JK = JK + 1
A(JK) = A(JK) - F * E(K) - G * D(K)
80 CONTINUE
C
90 D(I) = A(IZ+1)
A(IZ+1)=SCALE*SQRT (H)
100 CONTINUE
C
RETURN
C ********** LAST CARD OF TRED3 **********
END
|