1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
SUBROUTINE FFHPOL (HEAT0,ATPOL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER*1 AXIS(3)
LOGICAL DEBUG
INCLUDE 'SIZES'
C***********************************************************************
C SUBROUTINE FOR THE FINITE FIELD CALCULATION OF ELECTRIC RESPONSE
C PROPERTIES (DIPOLE MOMENT, POLARIZABILITY, AND 1ST AND 2ND
C HYPERPOLARIZABILITY.
C
C HENRY A. KURTZ, DEPARTMENT OF CHEMISTRY
C MEMPHIS STATE UNIVERSITY
C MEMPHIS, TN 38152
C
C***********************************************************************
COMMON /CORE / CORE(107)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM),NORS,NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
COMMON /KEYWRD/ KEYWRD
COMMON /FIELD / EFIELD(3)
COMMON /EULER / TVEC(3,3),IDTVEC
CHARACTER*241 KEYWRD
C
C
C DIPE4 AND DIPDP HOLD THE CALCULATED DIPOLE MOMENTS
C
C APOLE4 AND APOLDP HOLD THE POLARIZABILITY TENSOR AS
C A PACKED ARRAY XX,XY,YY,XZ,YZ,ZZ
C
C BETAE4 AND BETAEP HOLD THE FIRST HYPERPOLARIZABILITY
C 1. XXX
C 2. YYY 6. YXX
C 3. ZZZ 7. YZZ
C 4. XYY 8. ZXX
C 5. XZZ 9. ZYY
C
DIMENSION HEATE(3,2),
1 DIPE4(3),APOLE4(6),BETAE4(9),GAMME4(6),
2 DIPDP(3),APOLDP(6),BETADP(9),GAMMDP(6),
3 DIP1P(3),DIP1M(3),DIP2P(3),DIP2M(3)
DIMENSION IPTBD(6), GRAD(MAXPAR)
DATA IPTBD /5,7,4,9,6,8/
C Energy: a.u. to kcal/mole
AUTOKC = 23.061D+00*27.2107D+00
C Dipole: a.u. to debye
AUTODB = 2.541563D+00
C Electric Field: a.u. to volt/meter
AUTOVM = 51.4257D+00
NBDIP = 1
NBCNT = 4
NGCNT = 4
C
DATA AXIS/'X','Y','Z'/
DEBUG = (INDEX(KEYWRD,'DEBUG').NE.0)
C
C FIELD STRENGTH IN A.U.
C
EFVAL=0.001D0
IDIP=1
C modification for variable field strength
IF(INDEX(KEYWRD,'POLAR=').NE.0)
1EFVAL=READA(KEYWRD,INDEX(KEYWRD,'POLAR='))
WRITE (6,10) EFVAL
10 FORMAT (//' APPLIED ELECTRIC FIELD MAGNITUDE: ',F15.5)
SFE = 1.D00/EFVAL
WRITE (6,20) 6.74834D0*ATPOL
20 FORMAT (//' ATOMIC CONTRIBUTION TO THE POLARIZABILITY: ',F15.6,/,
1 ' (IT IS ONLY APPLIED TO THE E4 RESULT)')
C.......................................................................
C CALCULATE THE POLARIZABILITY AND HYPERPOLARIZABILITIES ALONG
C THE THREE PRINCIPLE AXES. (THESE AXES DEPEND ON YOUR ARBITRARY
C ORIENTATION AND MAY NOT BE THE TRUE PRINCIPLE AXES.)
C.......................................................................
DO 150 ID = 1,3
IF (DEBUG) THEN
WRITE (6,30) AXIS(ID)
30 FORMAT (//,' ****** FIELD IN ',A1,' DIRECTION *****',/)
ENDIF
C
C ZERO THE FIELD
C
DO 40 I = 1,3
EFIELD(I) = 0.0D00
40 CONTINUE
HNUC = 0.0D00
DO 50 I = 1,NUMAT
HNUC = HNUC + EFVAL*GEO(ID,I)*CORE(NAT(I))*AUTOVM
50 CONTINUE
HNUC = HNUC*23.061D00
C +E(ID)
EFIELD(ID) = EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT1P,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DIIP = DIP1P(ID)
C -E(ID)
EFIELD(ID) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT1M,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1M)
DIIM = DIP1M(ID)
C +2E(ID)
EFIELD(ID) = 2.0D00*EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT2P,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP2P)
C -2E(ID)
EFIELD(ID) = -2.0D00*EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT2M,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP2M)
C
C CORRECT FOR ELECTRIC FIELD - NUCLEAR INTERACTIONS
C
HEAT1P = HEAT1P + HNUC
HEATE(ID,1) = HEAT1P
HEAT1M = HEAT1M - HNUC
HEATE(ID,2) = HEAT1M
HEAT2P = HEAT2P + HNUC*2.D00
HEAT2M = HEAT2M - HNUC*2.D00
C
IF (DEBUG) THEN
WRITE (6,60)
60 FORMAT (' FIELDS OF: ',5X,'F',21X,'2F')
WRITE (6,70) HEAT1P,HEAT2P,HEAT1M,HEAT2M,
1 DIP1P(ID),DIP2P(ID),DIP1M(ID),DIP2M(ID)
70 FORMAT (' ENERGY:'/,
1 ' + ',2(F20.10,3X),/,' - ',2(F20.10,3X),/,
2 ' DIPOLE:'/,
3 ' + ',2(F20.10,3X),/,' - ',2(F20.10,3X))
ENDIF
C
C DIPOLE
C
ETERM = (1.0D00/12.D00)*(HEAT2P - HEAT2M)
1 - (2.0D00/3.0D00)*(HEAT1P - HEAT1M)
DIPE4(ID) = ETERM*SFE/AUTOKC
C
C ALPHA
C
IVL = (ID*(ID+1))/2
ETERM = 2.5D00*HEAT0 - (4.D00/3.D00)*(HEAT1P + HEAT1M)
1 + (1.D00/12.0D00)*(HEAT2P + HEAT2M)
APOLE4(IVL) = ETERM*SFE*SFE/AUTOKC + ATPOL*6.74834D0
C
C BETA
C
ETERM = (HEAT1P - HEAT1M) - 0.5D00*(HEAT2P - HEAT2M)
BETAE4(ID) = ETERM*SFE*SFE*SFE/AUTOKC
C
C GAMMA
C
ETERM = 4.0D00*(HEAT1P + HEAT1M) - (HEAT2P + HEAT2M)
1 - 6.0D00*HEAT0
GAMME4(ID) = ETERM*SFE*SFE*SFE*SFE/AUTOKC
C
C DIPOLE CALCULATIONS
C
DMU = (2.0D00/3.0D00)*(DIP1P(ID) + DIP1M(ID))
1 - (1.D00/6.0D00)*(DIP2P(ID) + DIP2M(ID))
DIPDP(ID) = DMU/AUTODB
AE = (2.0D00/3.0D00)*(DIP1P(ID) - DIP1M(ID))
1 - (1.0D00/12.D00)*(DIP2P(ID) - DIP2M(ID))
APOLDP(IVL) = AE*SFE/AUTODB
BE = (1.D00/3.0D00)*(DIP2P(ID) + DIP2M(ID)
1 - DIP1P(ID) - DIP1M(ID))
BETADP(ID) = BE*SFE*SFE/AUTODB
GE = 0.5D00*(DIP2P(ID) - DIP2M(ID))
1 - (DIP1P(ID) - DIP1M(ID))
GAMMDP(ID) = GE*SFE*SFE*SFE/AUTODB
DO 80 KD = 1,3
IF (KD.LT.ID) THEN
KVL = (ID*(ID-1))/2 + KD
AKI = (2.0D00/3.0D00)*(DIP1P(KD) - DIP1M(KD))
1 - (1.0D00/12.0D00)*(DIP2P(KD) - DIP2M(KD))
APOLDP(KVL) = AKI*SFE/AUTODB
ENDIF
IF (KD.NE.ID) THEN
BKII = (1.0D00/3.0D00)*(DIP2P(KD) + DIP2M(KD)
1 - DIP1P(KD) - DIP1M(KD))
NBD = IPTBD(NBDIP)
BETADP(NBD) = BKII*SFE*SFE/AUTODB
NBDIP = NBDIP + 1
ENDIF
80 CONTINUE
C.......................................................................
C
C NOW CALCULATE THE OFF AXIS RESULTS.
C
C.......................................................................
IDM1 = ID - 1
DO 140 JD = 1,IDM1
HNUCJ = 0.0D00
DO 90 I = 1,NUMAT
HNUCJ = HNUCJ + EFVAL*GEO(JD,I)*CORE(NAT(I))*51.4257D0
90 CONTINUE
HNUCJ = HNUCJ*23.061D0
DO 100 I = 1,3
EFIELD(I) = 0.0D00
100 CONTINUE
C
C DIAGONAL FIELDS WITH COMPONENTS EQUAL TO EFVAL
C
EFIELD(ID) = EFVAL
EFIELD(JD) = EFVAL
CALL COMPFG(GEO,.TRUE.,HPP,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DPP = DIP1P(ID)
EFIELD(JD) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HPM,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DPM = DIP1P(ID)
EFIELD(ID) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HMM,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DMM = DIP1P(ID)
EFIELD(JD) = EFVAL
CALL COMPFG(GEO,.TRUE.,HMP,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DMP = DIP1P(ID)
HPP = HPP + HNUC + HNUCJ
HPM = HPM + HNUC - HNUCJ
HMM = HMM - HNUC - HNUCJ
HMP = HMP - HNUC + HNUCJ
IF (DEBUG) THEN
WRITE (6,110)
110 FORMAT (/,' ',12X,'+,+',15X,'+,-',15X,'-,+',15X,'-,-')
WRITE (6,120) HPP,HPM,HMP,HMM
120 FORMAT (' E ',4F15.6)
ENDIF
C
C DIAGONAL FIELDS WITH COMPONENTS EQUAL TO 2*EFVAL
C
EFIELD(ID) = EFVAL*2.D00
EFIELD(JD) = EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2PP,.TRUE.,GRAD,.FALSE.)
EFIELD(JD) = -EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2PM,.TRUE.,GRAD,.FALSE.)
EFIELD(ID) = -EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2MM,.TRUE.,GRAD,.FALSE.)
EFIELD(JD) = EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2MP,.TRUE.,GRAD,.FALSE.)
H2PP = H2PP + 2.0D00*(HNUC + HNUCJ)
H2PM = H2PM + 2.0D00*(HNUC - HNUCJ)
H2MM = H2MM - 2.0D00*(HNUC + HNUCJ)
H2MP = H2MP - 2.0D00*(HNUC - HNUCJ)
IF (DEBUG) THEN
WRITE (6,130) H2PP,H2PM,H2MP,H2MM
130 FORMAT (' 2E ',4F15.6)
ENDIF
C
ATERM = (1.0D00/48.0D00)*(H2PP - H2PM - H2MP + H2MM)
1 - (1.0D00/3.0D00)*(HPP - HPM - HMP + HMM)
AIJ = ATERM*SFE*SFE/AUTOKC
IVL = (ID*(ID-1))/2 + JD
APOLE4(IVL) = AIJ
BTERM = 0.5D00*(HMM - HPP + HPM - HMP)
1 + HEATE(JD,1) - HEATE(JD,2)
BJII = BTERM*SFE*SFE*SFE/AUTOKC
BETAE4(NBCNT) = BJII
NBCNT = NBCNT + 1
BTERM = 0.5D00*(HMM - HPP + HMP - HPM)
1 + HEATE(ID,1) - HEATE(ID,2)
BIJJ = BTERM*SFE*SFE*SFE/AUTOKC
BETAE4(NBCNT) = BIJJ
NBCNT = NBCNT + 1
C
GTERM = -(HPP + HMM + HPM + HMP) - 4.0D00*HEAT0
1 + 2.0D00*(HEATE(ID,1) + HEATE(ID,2))
2 + 2.0D00*(HEATE(JD,1) + HEATE(JD,2))
GIIJJ = GTERM*SFE*SFE*SFE*SFE/AUTOKC
GAMME4(NGCNT) = GIIJJ
GDIP = 0.5D00*(DPP - DMP + DPM - DMM) - (DIIP - DIIM)
GAMMDP(NGCNT) = GDIP*SFE*SFE*SFE/AUTODB
NGCNT = NGCNT + 1
140 CONTINUE
C
150 CONTINUE
C-----------------------------------------------------------------------
C SUMMARIZE THE RESULTS
C-----------------------------------------------------------------------
WRITE (6,160)
160 FORMAT (//,' ',30('*'),' DIPOLE ',30('*'),//)
DIPE4T = SQRT(DIPE4(1)*DIPE4(1) + DIPE4(2)*DIPE4(2)
1 + DIPE4(3)*DIPE4(3))
DIPE4D = DIPE4T*AUTODB
DIPDPT = SQRT(DIPDP(1)*DIPDP(1) + DIPDP(2)*DIPDP(2)
1 + DIPDP(3)*DIPDP(3))
DIPDPD = DIPDPT*AUTODB
WRITE (6,170)
170 FORMAT (21X,'E4',13X,'DIP',/)
WRITE (6,180) 'X',DIPE4(1),DIPDP(1)
WRITE (6,180) 'Y',DIPE4(2),DIPDP(2)
WRITE (6,180) 'Z',DIPE4(3),DIPDP(3)
180 FORMAT (5X,A1,7X,2F15.6)
WRITE (6,190) DIPE4T,DIPDPT,
1 DIPE4D,DIPDPD
190 FORMAT (//' MAGNITUDE: ',2F15.6,' (A.U.)',/,
1 ' ',12X,2F15.6,' (DEBYE)')
C
C FIND EIGENVALUES AND EIGENVECTORS OF POLARIZATION MATRIX.
C
WRITE (6,200)
200 FORMAT (//,' ',22('*'),' POLARIZABILITY (ALPHA)',21('*'),//)
AVGPE4 = (APOLE4(1)+APOLE4(3)+APOLE4(6))/3.0D00
AVGA3 = AVGPE4*0.14818D00
AVGESU = AVGPE4*0.296352D-24
AVGPDP = (APOLDP(1)+APOLDP(3)+APOLDP(6))/3.0D00
AVGA3D = AVGPDP*0.14818D00
AVGESD = AVGPDP*0.296352D-24
WRITE (6,210)
210 FORMAT (' COMPONENT',12X,'E4',13X,'DIP',/)
WRITE (6,220) 'XX',APOLE4(1),APOLDP(1),
1 'YY',APOLE4(3),APOLDP(3),
2 'ZZ',APOLE4(6),APOLDP(6),
3 'XY',APOLE4(2),APOLDP(2),
4 'XZ',APOLE4(4),APOLDP(4),
5 'YZ',APOLE4(5),APOLDP(5)
220 FORMAT (' ',5X,A4,5X,2F15.6)
WRITE (6,230) AVGPE4,AVGPDP,AVGA3,AVGA3D,AVGESU,AVGESD
230 FORMAT (//,' AVERAGE POLARIZABILITY:',8X,'E4',13X,'DIP',/,
1 ' ',24X,2F15.6,' A.U.',/,
2 ' ',24X,2F15.6,' ANG.**3',/,
3 ' ',24X,2(1PD15.6),' ESU')
C
C CALCULATE "EXPERIMENTAL" HYPERPOLARIZABILITIES
C
C 8.65710D-33 is a.u. to e.s.u. conversion
WRITE (6,240)
240 FORMAT (//,' ',30('*'),' SECOND-ORDER (BETA)',25('*'),//)
BX4 = 0.6D00*(BETAE4(1) + BETAE4(4) + BETAE4(6))
BY4 = 0.6D00*(BETAE4(2) + BETAE4(5) + BETAE4(8))
BZ4 = 0.6D00*(BETAE4(3) + BETAE4(7) + BETAE4(9))
B4MU = (BX4*DIPE4(1) + BY4*DIPE4(2) + BZ4*DIPE4(3))/DIPE4T
B4ESU = B4MU*8.65710D-03
BXD = 0.6D00*(BETADP(1) + BETADP(4) + BETADP(6))
BYD = 0.6D00*(BETADP(2) + BETADP(5) + BETADP(8))
BZD = 0.6D00*(BETADP(3) + BETADP(7) + BETADP(9))
BDMU = (BXD*DIPDP(1) + BYD*DIPDP(2) + BZD*DIPDP(3))/DIPDPT
BDESU = BDMU*8.65710D-03
C
WRITE(6,'(29X,A2,25X,A6)')'1X','(1/2)X'
WRITE (6,250)
250 FORMAT (' COMPONENT',2(12X,'E4',10X,'DIP',2X),/)
WRITE (6,260) 'XXX',BETAE4(1),BETADP(1),BETAE4(1)/2,BETADP(1)/2
WRITE (6,260) 'XYY',BETAE4(4),BETADP(4),BETAE4(4)/2,BETADP(4)/2
WRITE (6,260) 'XZZ',BETAE4(6),BETADP(6),BETAE4(6)/2,BETADP(6)/2
WRITE (6,260) 'YYY',BETAE4(2),BETADP(2),BETAE4(2)/2,BETADP(2)/2
WRITE (6,260) 'YXX',BETAE4(5),BETADP(5),BETAE4(5)/2,BETADP(5)/2
WRITE (6,260) 'YZZ',BETAE4(8),BETADP(8),BETAE4(8)/2,BETADP(8)/2
WRITE (6,260) 'ZZZ',BETAE4(3),BETADP(3),BETAE4(3)/2,BETADP(3)/2
WRITE (6,260) 'ZXX',BETAE4(7),BETADP(7),BETAE4(7)/2,BETADP(7)/2
WRITE (6,260) 'ZYY',BETAE4(9),BETADP(9),BETAE4(9)/2,BETADP(9)/2
260 FORMAT (' ',5X,A4,2(5X,2F12.3))
WRITE (6,270)
270 FORMAT (//,' VECTOR COMPONENTS GIVEN BY:',/,
1 ' BI = (2/5)*(BI11+BI22+BI33)'/)
WRITE (6,280) 'BX',BX4,BXD,BX4/2,BXD/2
WRITE (6,280) 'BY',BY4,BYD,BY4/2,BYD/2
WRITE (6,280) 'BZ',BZ4,BZD,BZ4/2,BZD/2
280 FORMAT (' ',6X,A2,2(6X,2F12.3))
WRITE (6,290)
290 FORMAT (//' VALUE OF BETA ALONG THE DIPOLE MOMENT:'/)
WRITE (6,300) B4MU,BDMU,B4MU/2,BDMU/2,B4ESU,BDESU,B4ESU/2,BDESU/2
300 FORMAT (' ',4X,'B(AU)',2(5X,2F12.3,2X),/,
1 ' ',4X,'B(ESU)',4X,2F12.3,7X,2F12.3,' (X10-30)')
C
WRITE (6,310)
310 FORMAT (//' ',24('*'),' THIRD-ORDER (GAMMA)',24('*'),//)
GAMVAL = (GAMME4(1) + GAMME4(2) + GAMME4(3))
GAMVAL = GAMVAL + 2.0D00*(GAMME4(4) + GAMME4(5) + GAMME4(6))
GAMVAL = GAMVAL/5.0D00
C 5.05116D-40 is the a.u. to e.s.u. conversion
GAMESU = GAMVAL*5.05116D-04
GAMDIP = (GAMMDP(1) + GAMMDP(2) + GAMMDP(3))
GAMDIP = GAMDIP + 2.0D00*(GAMMDP(4) + GAMMDP(5) + GAMMDP(6))
GAMDIP = GAMDIP/5.0D00
GAMDES = GAMDIP*5.05116D-04
WRITE(6,'(23X,A2,25X,A6)')'1X','(1/6)X'
WRITE (6,320)
320 FORMAT (' ',17X,'E4',8X,'DIP',16X,'E4',8X,'DIP',/)
WRITE (6,330) 'XXXX',GAMME4(1),GAMMDP(1),GAMME4(1)/6,GAMMDP(1)/6
WRITE (6,330) 'YYYY',GAMME4(2),GAMMDP(2),GAMME4(2)/6,GAMMDP(2)/6
WRITE (6,330) 'ZZZZ',GAMME4(3),GAMMDP(3),GAMME4(3)/6,GAMMDP(3)/6
WRITE (6,330) 'XXYY',GAMME4(4),GAMMDP(4),GAMME4(4)/6,GAMMDP(4)/6
WRITE (6,330) 'XXZZ',GAMME4(5),GAMMDP(5),GAMME4(5)/6,GAMMDP(5)/6
WRITE (6,330) 'YYZZ',GAMME4(6),GAMMDP(6),GAMME4(6)/6,GAMMDP(6)/6
330 FORMAT (5X,A4,2F12.3,5X,2F12.3)
WRITE (6,340)
340 FORMAT (//' AVERAGE GAMMA GIVEN BY:',/,
1 ' (1/5)*[GXXX + GYYY + GZZZ + 2.0*(GXXYY + GXXZZ + GYYZZ)]')
WRITE(6,'(/,20X,A2,22X,A6)')'1X','(1/6)X'
WRITE (6,350) GAMVAL,GAMDIP,GAMVAL/6,GAMDIP/6,
1 GAMESU,GAMDES,GAMESU/6,GAMDES/6
350 FORMAT (/' <GAMMA> ',1PD12.5,1PD12.5,5X,1PD12.5,1PD12.5,' A.U.'/,
1 ' ',8X,1PD12.5,1PD12.5,5X,1PD12.5,1PD12.5,' ESU (X10-36)')
C
RETURN
END
|