File: force.f

package info (click to toggle)
mopac7 1.15-5
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 3,748 kB
  • sloc: fortran: 35,321; sh: 9,039; ansic: 417; makefile: 95
file content (438 lines) | stat: -rw-r--r-- 14,004 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
      SUBROUTINE FORCE
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR),IDUMY,DUMY(MAXPAR)
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),
     1                     LOCDEP(MAXPAR)
      COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
     1NA(NUMATM),NB(NUMATM),NC(NUMATM)
      COMMON /FMATRX/ FMATRX(MAXPAR**2+MAXPAR*3+1),IDUMY2(4)
      COMMON /KEYWRD/ KEYWRD
      COMMON /GRADNT/ GRAD(MAXPAR),GNORM
      PARAMETER (IPADD=2*MORB2+2*MAXORB-MAXPAR-MAXPAR*MAXPAR)
      COMMON /VECTOR/ CNORML(MAXPAR*MAXPAR),FREQ(MAXPAR),DUMMY(IPADD)
      COMMON /ELEMTS/ ELEMNT(107)
      COMMON /LAST  / LAST
      COMMON /MESAGE/ IFLEPO,ISCF
      COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
      COMMON /SIMBOL/ SIMBOL(MAXPAR)
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      COMMON /COORD / COORD(3,NUMATM)
***********************************************************************
*
*   FORCE CALCULATES THE FORCE CONSTANTS FOR THE MOLECULE, AND THE
*         VIBRATIONAL FREQUENCIES.  ISOTOPIC SUBSTITUTION IS ALLOWED.
*
***********************************************************************
      COMMON /EULER / TVEC(3,3), ID
      COMMON /SCFTYP/ EMIN, LIMSCF
      COMMON /SCRACH/ STORE(MAXPAR**2)
      DIMENSION XPARAM(MAXPAR), GR(3,NUMATM),
     1DELDIP(3,MAXPAR), TRDIP(3,MAXPAR),LOCOLD(2,MAXPAR)
     2,REDMAS(MAXPAR), SHIFT(6), DIPT(MAXPAR), TRAVEL(MAXPAR)
     3, ROT(3,3), GEOREF(3,NUMATM), NAR(NUMATM), NBR(NUMATM),NCR(NUMATM)
      CHARACTER KEYWRD*241, KEYS(241)*1, ELEMNT*2, SIMBOL*10
      LOGICAL RESTRT, LINEAR, DEBUG, BARTEL, PRNT, LARGE, LIMSCF
      EQUIVALENCE (GRAD(1), GR(1,1)), (KEYWRD,KEYS(1))
C
C TEST GEOMETRY TO SEE IF IT IS OPTIMIZED
      TIME2=-1.D9
      CALL GMETRY(GEO,COORD)
      NVAOLD=NVAR
      DO 10 I=1,NVAR
         LOCOLD(1,I)=LOC(1,I)
   10 LOCOLD(2,I)=LOC(2,I)
      NVAR=0
      NDEOLD=NDEP
      NDEP=0
      NUMAT=0
      IF(LABELS(1) .NE. 99) NUMAT=1
      DO 30 I=2,NATOMS
         IF(LABELS(I).EQ.99) GOTO 30
         IF(I.EQ.2)ILIM=1
         IF(I.EQ.3)ILIM=2
         IF(I.GT.3)ILIM=3
C
C  IS IT A POLYMER?
C
         IF(LABELS(I).EQ.107) THEN
            ILIM=1
         ELSE
            NUMAT=NUMAT+1
         ENDIF
C$DOIT ASIS
         DO 20 J=1,ILIM
            NVAR=NVAR+1
            LOC(1,NVAR)=I
            LOC(2,NVAR)=J
   20    XPARAM(NVAR)=GEO(J,I)
   30 CONTINUE
C
C   IF A RESTART, THEN TSCF AND TDER WILL BE FAULTY, THEREFORE SET TO -1
C
      TSCF=-1.D0
      TDER=-1.D0
      PRNT=(INDEX(KEYWRD,'RC=') .EQ. 0)
      DEBUG=(INDEX(KEYWRD,'DFORCE') .NE. 0)
      LARGE=(INDEX(KEYWRD,'LARGE') .NE. 0)
      BARTEL=(INDEX(KEYWRD,'NLLSQ') .NE. 0)
      RESTRT=(INDEX(KEYWRD,'RESTART') .NE. 0)
      TIME1=SECOND()
      IF (RESTRT) THEN
C
C   CHECK TO SEE IF CALCULATION IS IN NLLSQ OR FORCE.
C
         IF(BARTEL)GOTO 50
C
C   CALCULATION IS IN FORCE
C
         GOTO 90
      ENDIF
      CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .FALSE.)
      IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
     1'' KCALS/MOLE'')')ESCF
      TIME2=SECOND()
      TSCF=TIME2-TIME1
      CALL COMPFG( XPARAM, .TRUE., ESCF1, .FALSE., GRAD, .TRUE.)
      TIME3=SECOND()
      TDER=TIME3-TIME2
      IF(PRNT)WRITE(6,'(//10X,''INTERNAL COORDINATE DERIVATIVES'',//3X,
     1''NUMBER  ATOM'',2X,''BOND'',9X,''  ANGLE'',10X,''DIHEDRAL'',/)')
      L=0
      IU=0
      DO 40 I=1,NATOMS
         IF(LABELS(I).EQ.99) GOTO 40
         L=L+1
         IL=IU+1
         IF(I .EQ. 1) IU=IL-1
         IF(I .EQ. 2) IU=IL
         IF(I .EQ. 3) IU=IL+1
         IF(I .GT. 3) IU=IL+2
         IF(LABELS(I).EQ.107)IU=IL
         IF(PRNT)WRITE(6,'(I6,4X,A2,F13.6,2F13.6)')
     1L,ELEMNT(LABELS(I)),(GRAD(J),J=IL,IU)
   40 CONTINUE
C   TEST SUM OF GRADIENTS
      GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
      IF(PRNT)WRITE(6,'(//10X,''GRADIENT NORM ='',F10.5)') GNORM
      IF(GNORM.LT.10.D0) GOTO 70
      IF(INDEX(KEYWRD,' LET ') .NE. 0) THEN
         WRITE(6,'(///1X,''** GRADIENT IS VERY LARGE, BUT SINCE "LET"'',
     1'' IS USED, CALCULATION WILL CONTINUE'')')
         GOTO 90
      ENDIF
      WRITE(6,'(///1X,''** GRADIENT IS TOO LARGE TO ALLOW '',
     1    ''FORCE MATRIX TO BE CALCULATED, (LIMIT=10) **'',//)')
   50 CONTINUE
      DO 60 I=1,NVAR
   60 SIMBOL(I)='---'
      WRITE(6,'(//10X,'' GEOMETRY WILL BE OPTIMIZED FIRST'')')
      IF(BARTEL) THEN
         WRITE(6,'(15X,''USING NLLSQ'')')
         CALL NLLSQ(XPARAM,NVAR)
      ELSE
         WRITE(6,'(15X,''USING FLEPO'')')
         CALL FLEPO(XPARAM,NVAR,ESCF)
C
C  DID FLEPO USE ALL THE TIME ALLOWED?
C
         IF(IFLEPO.EQ.-1) RETURN
      ENDIF
      LIMSCF=.FALSE.
      CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .TRUE.)
      CALL WRITMO(TIME1,ESCF)
      WRITE(6,'(//10X,''GRADIENT NORM ='',F10.7)') GNORM
      CALL GMETRY(GEO,COORD)
   70 CONTINUE
         DO 80 J=1,NATOMS
      NAR(J)=NA(J)
      NBR(J)=NB(J)
      NCR(J)=NC(J)
      DO 80 I=1,3
   80 GEOREF(I,J)=GEO(I,J)
C
C NOW TO CALCULATE THE FORCE MATRIX
C
C CHECK OUT SYMMETRY
   90 CONTINUE
C
C   NEED TO ENSURE THAT XYZINT WILL WORK CORRECTLY BEFORE CALL
C   TO DRC.
C
      L=0
      DO 100 I=1,NATOMS
         IF(LABELS(I).NE.99)THEN
            L=L+1
            LABELS(L)=LABELS(I)
         ENDIF
  100 CONTINUE
      NATOMS=NUMAT
      CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
      CALL GMETRY(GEO,COORD)
      IF(INDEX(KEYWRD,'THERMO').NE.0 .AND.GNORM.GT.1.D0) THEN
         WRITE(6,'(//30X,''**** WARNING ****'',//
     110X,'' GRADIENT IS VERY LARGE FOR A THERMO CALCULATION'',/
     210X,'' RESULTS ARE LIKELY TO BE INACCURATE IF THERE ARE'')')
         WRITE(6,'(10X,'' ANY LOW-LYING VIBRATIONS (LESS THAN ABOUT ''
     1,''400CM-1)'')')
         WRITE(6,'(10X,'' GRADIENT NORM SHOULD BE LESS THAN ABOUT '',
     1''0.2 FOR THERMO'',/10X,'' TO GIVE ACCURATE RESULTS'')')
      ENDIF
      IF(TSCF.GT.0.D0) THEN
         WRITE(6,'(//10X,''TIME FOR SCF CALCULATION ='',F8.2)')TSCF
         WRITE(6,'(//10X,''TIME FOR DERIVATIVES     ='',F8.2)')TDER
      ENDIF
      IF(NDEP.GT.0) THEN
         WRITE(6,'(//10X,''SYMMETRY WAS SPECIFIED, BUT '',
     1''CANNOT BE USED HERE'')')
         NDEP=0
      ENDIF
      IF(PRNT)CALL AXIS(COORD,NUMAT,A,B,C,WTMOL,2,ROT)
      NVIB=3*NUMAT-6
      IF(ABS(C).LT.1.D-20)NVIB=NVIB+1
      IF(ID.NE.0)NVIB=3*NUMAT-3
      IF(PRNT) THEN
         WRITE(6,'(/9X,''ORIENTATION OF MOLECULE IN FORCE CALCULATION'')
     1')
         WRITE(6,'(/,4X,''NO.'',7X,''ATOM'',9X,''X'',
     19X,''Y'',9X,''Z'',/)')
      ENDIF
      L=0
      DO 110 I=1,NATOMS
         IF(LABELS(I) .EQ. 99) GOTO 110
         L=L+1
         IF(PRNT)WRITE(6,'(I6,7X,I3,4X,3F10.4)')
     1    L,LABELS(I),(COORD(J,L),J=1,3)
  110 CONTINUE
      CALL FMAT(FMATRX, NVIB, TSCF, TDER, DELDIP,ESCF)
      NA(1)=0
         DO 120 J=1,NATOMS
      NA(J)=NAR(J)
      NB(J)=NBR(J)
      NC(J)=NCR(J)
      DO 120 I=1,3
  120 GEO(I,J)=GEOREF(I,J)
      IF(NVIB.LT.0)THEN
         NDEP=NDEOLD
         NVAR=0
         RETURN
      ENDIF
C
C   THE FORCE MATRIX IS PRINTED AS AN ATOM-ATOM MATRIX RATHER THAN
C   AS A 3N*3N MATRIX, AS THE 3N MATRIX IS VERY CONFUSING!
C
      IJ=0
      IU=0
      DO 150 I=1,NUMAT
         IL=IU+1
         IU=IL+2
         IM1=I-1
         JU=0
         DO 140 J=1,IM1
            JL=JU+1
            JU=JL+2
            SUM=0.D0
C$DOIT ASIS
            DO 130 II=IL,IU
C$DOIT ASIS
               DO 130 JJ=JL,JU
  130       SUM=SUM+FMATRX((II*(II-1))/2+JJ)**2
            IJ=IJ+1
  140    STORE(IJ)=SQRT(SUM)
         IJ=IJ+1
  150 STORE(IJ)=SQRT(
     1FMATRX(((IL+0)*(IL+1))/2)**2+
     2FMATRX(((IL+1)*(IL+2))/2)**2+
     3FMATRX(((IL+2)*(IL+3))/2)**2+2.D0*(
     4FMATRX(((IL+1)*(IL+2))/2-1)**2+
     5FMATRX(((IL+2)*(IL+3))/2-2)**2+
     6FMATRX(((IL+2)*(IL+3))/2-1)**2))
      IF(DEBUG) THEN
         WRITE(6,'(//10X,'' FULL FORCE MATRIX, INVOKED BY "DFORCE"'')')
         I=-NVAR
         CALL VECPRT(FMATRX,I)
      ENDIF
      IF(PRNT)THEN
         WRITE(6,'(//10X,'' FORCE MATRIX IN MILLIDYNES/ANGSTROM'')')
         CALL VECPRT(STORE,NUMAT)
      ENDIF
      L=(NVAR*(NVAR+1))/2
      DO 160 I=1,L
  160 STORE(I)=FMATRX(I)
      IF(PRNT) CALL AXIS(COORD,NUMAT,A,B,C,SUM,0,ROT)
      IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
     1'' KCALS/MOLE'')')ESCF
      IF(LARGE)THEN
         CALL FRAME(STORE,NUMAT,0, SHIFT)
         CALL RSP(STORE,NVAR,NVAR,FREQ,CNORML)
         DO 170 I=NVIB+1,NVAR
            J=(FREQ(I)+50.D0)*0.01D0
  170    FREQ(I)=FREQ(I)-J*100
         IF(PRNT)THEN
            WRITE(6,'(//10X,''TRIVIAL VIBRATIONS, SHOULD BE ZERO'')')
            WRITE(6,'(/, F9.4,''=TX'',F9.4,''=TY'',F9.4,''=TZ'',
     1             F9.4,''=RX'',F9.4,''=RY'',F9.4,''=RZ'')')
     2(FREQ(I),I=NVIB+1,NVAR)
            WRITE(6,'(//10X,''FORCE CONSTANTS IN MILLIDYNES/ANGSTROM''
     1,'' (= 10**5 DYNES/CM)'',/)')
            WRITE(6,'(8F10.5)')(FREQ(I),I=1,NVIB)
C CONVERT TO WEIGHTED FMAT
            WRITE(6,'(//10X,'' ASSOCIATED EIGENVECTORS'')')
            I=-NVAR
            CALL MATOUT(CNORML,FREQ,NVIB,I,NVAR)
         ENDIF
      ENDIF
      CALL FREQCY(FMATRX,FREQ,CNORML,REDMAS,TRAVEL,.TRUE.,DELDIP)
C
C  CALCULATE ZERO POINT ENERGY
C
C
C  THESE CONSTANTS TAKEN FROM HANDBOOK OF CHEMISTRY AND PHYSICS 62ND ED.
C   N AVOGADRO'S NUMBER = 6.022045*10**23
C   H PLANCK'S CONSTANT = 6.626176*10**(-34)JHZ
C   C SPEED OF LIGHT    = 2.99792458*10**10 CM/SEC
C   CONST=0.5*N*H*C/(1000*4.184)
      CONST=1.4295718D-3
      SUM=0.D0
      DO 180 I=1,NVAR
  180 SUM=SUM+FREQ(I)
      SUM=SUM*CONST
      IF(PRNT)
     1WRITE(6,'(//10X,'' ZERO POINT ENERGY''
     2, F12.3,'' KILOCALORIES PER MOLE'')')SUM
      SUMM=0.D0
      DO 230 I=1,NVAR
         SUM1=1.D-20
C$DOIT VBEST
         DO 190 J=1,NVAR
  190    SUM1=SUM1+CNORML(J+(I-1)*NVAR)**2
         SUM1=1.D0/SQRT(SUM1)
C$DOIT ASIS
         DO 200 K=1,3
  200    GRAD(K)=0.D0
C$DOIT ASIS
         DO 220 K=1,3
            SUM=0.D0
C$DOIT VBEST
            DO 210 J=1,NVAR
  210       SUM=SUM+CNORML(J+(I-1)*NVAR)*DELDIP(K,J)
            SUMM=SUMM+ABS(SUM)
  220    TRDIP(K,I)=SUM*SUM1
         DIPT(I)=SQRT(TRDIP(1,I)**2+TRDIP(2,I)**2+TRDIP(3,I)**2)
  230 CONTINUE
      IF(PRNT)THEN
         WRITE(6,'(//3X,'' THE LAST'',I2,'' VIBRATIONS ARE THE'',
     1'' TRANSLATION AND ROTATION MODES'')')NVAR-NVIB
         WRITE(6,'(3X,'' THE FIRST THREE OF THESE BEING TRANSLATIONS'',
     1'' IN X, Y, AND Z, RESPECTIVELY'')')
      ENDIF
      IF(PRNT.AND.LARGE)THEN
         WRITE(6,'(//10X,'' FREQUENCIES, REDUCED MASSES AND '',
     1''VIBRATIONAL DIPOLES''/)')
         NTO6=NVAR/6
         NREM6=NVAR-NTO6*6
         IINC1=-5
         IF (NTO6.LT.1) GO TO 250
         DO 240 I=1,NTO6
            WRITE (6,'(/)')
            IINC1=IINC1+6
            IINC2=IINC1+5
            WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
            WRITE (6,'('' FREQ(I)'',6F10.4,/)') (FREQ(J),J=IINC1,IINC2)
            WRITE (6,'('' MASS(I)'',6F10.5,/)') (REDMAS(J),J=IINC1,IINC2
     1)
            WRITE (6,'('' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
            WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
            WRITE (6,'('' DIPZ(I)'',6F10.5,/)') (TRDIP(3,J),J=IINC1,IINC
     12)
            WRITE (6,'('' DIPT(I)'',6F10.5)')
     1   (DIPT(J),J=IINC1,IINC2)
  240    CONTINUE
  250    CONTINUE
         IF (NREM6.LT.1) GO TO 260
         WRITE (6,'(/)')
         IINC1=IINC1+6
         IINC2=IINC1+(NREM6-1)
         WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
         WRITE (6,'('' FREQ(I)'',6F10.4)') (FREQ(J),J=IINC1,IINC2)
         WRITE (6,'(/,'' MASS(I)'',6F10.5)') (REDMAS(J),J=IINC1,IINC2)
         WRITE (6,'(/,'' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
         WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
         WRITE (6,'('' DIPZ(I)'',6F10.5)') (TRDIP(3,J),J=IINC1,IINC2)
         WRITE (6,'(/,'' DIPT(I)'',6F10.5)')
     1   (DIPT(J),J=IINC1,IINC2)
  260    CONTINUE
      ENDIF
      IF(PRNT)THEN
         WRITE(6,'(//10X,'' NORMAL COORDINATE ANALYSIS'')')
         I=-NVAR
         CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
      ENDIF
C
C   CARRY OUT IRC IF REQUESTED.
C
      IF(INDEX(KEYWRD,'IRC')+INDEX(KEYWRD,'DRC').eq.677)THEN
         DO 270 I=1,NVAR
            LOC(1,I)=0
  270    LOC(2,I)=0
         NVAR=NVAOLD
         DO 280 I=1,NVAR
            LOC(1,I)=LOCOLD(1,I)
  280    LOC(2,I)=LOCOLD(2,I)
         CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
         LAST=1
         CALL DRC(CNORML,FREQ)
         NA(1)=0
         NDEP=NDEOLD
         NVAR=0
         DO 290 I=1,3
            DO 290 J=1,NATOMS
  290    GEO(I,J)=GEOREF(I,J)
         RETURN
      ENDIF
      CALL FREQCY(FMATRX,FREQ,CNORML,DELDIP,DELDIP,.FALSE.,DELDIP)
      WRITE(6,'(//10X,'' MASS-WEIGHTED COORDINATE ANALYSIS'')')
      I=-NVAR
      CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
      CALL ANAVIB(COORD,FREQ,DIPT,NVAR,CNORML,STORE,
     1FMATRX,TRAVEL,REDMAS)
      IF(INDEX(KEYWRD,'THERMO').NE.0) THEN
         CALL GMETRY(GEO,COORD)
         I=INDEX(KEYWRD,' ROT')
         IF(I.NE.0) THEN
            SYM=READA(KEYWRD,I)
         ELSE
            SYM=1
         ENDIF
         LINEAR=(ABS(A*B*C) .LT. 1.D-10)
         I=INDEX(KEYWRD,' TRANS')
C
C   "I" IS GOING TO MARK THE BEGINNING OF THE GENUINE VIBRATIONS.
C
         IF(I.NE.0)THEN
            I=INDEX(KEYWRD,' TRANS=')
            IF(I.NE.0)THEN
               I=1+READA(KEYWRD,I)
               J=NVIB-I+1
               WRITE(6,'(//1X,''THE LOWEST'',I3,'' VIBRATIONS ARE NOT'',
     1/,'' TO BE USED IN THE THERMO CALCULATION'')')I-1
            ELSE
               WRITE(6,'(//10X,''SYSTEM IS A TRANSITION STATE'')')
               I=2
               J=NVIB-1
            ENDIF
         ELSE
            WRITE(6,'(//10X,''SYSTEM IS A GROUND STATE'')')
            I=1
            J=NVIB
         ENDIF
         CALL THERMO(A,B,C,LINEAR,SYM,WTMOL,FREQ(I),J,ESCF)
      ENDIF
      NA(1)=0
      NVAR=0
      NDEP=NDEOLD
      DO 300 I=1,3
         DO 300 J=1,NATOMS
  300 GEO(I,J)=GEOREF(I,J)
      RETURN
      END