1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
SUBROUTINE FORMXY(W,KR,WCA,WCB,CA,NA,CB,NB)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION W(100), WCA(NA), WCB(NB), CA(NA), CB(NB)
C***********************************************************************
C
C EACH OF THE NA ELEMENTS OF WCA WILL ADD ON THE NB ELECTROSTATIC
C TERMS FROM ATOM B IN CB
C
C EACH OF THE NB ELEMENTS OF WCB WILL ADD ON THE NA ELECTROSTATIC
C TERMS FROM ATOM A IN CA
C
C BOTH SUMS WILL INVOLVE THE NA*NB TERMS IN ARRAY W. ONCE USED,
C W WILL BE INCREMENTED BY NA*NB.
C
C NA=1 IF ATOM 'A' IS A HYDROGEN, NA=10 IF ATOM 'A' IS NOT A HYDROGEN
C NB=1 IF ATOM 'B' IS A HYDROGEN, NB=10 IF ATOM 'B' IS NOT A HYDROGEN
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /NUMCAL/ NUMCAL
LOGICAL MINDO3
CHARACTER KEYWRD*241
DATA ICALCN/0/
IF(ICALCN.NE.NUMCAL)THEN
ICALCN=NUMCAL
MINDO3=(INDEX(KEYWRD,'MINDO').NE.0)
ENDIF
IF(MINDO3)THEN
W1=W(1)*0.25D0
C
C CALCULATE THE TOTAL NUMBER OF ELECTRONS ON ATOMS A AND B
C
PA=CA(1)
PB=CB(1)
IF(NA.GT.1.AND.NB.GT.1)THEN
PWA=(PA+CA(3)+CA(6)+CA(10))*W1
PWB=(PB+CB(3)+CB(6)+CB(10))*W1
WCA(1)=WCA(1)+PWB
WCA(3)=WCA(3)+PWB
WCA(6)=WCA(6)+PWB
WCA(10)=WCA(10)+PWB
WCB(1)=WCB(1)+PWA
WCB(3)=WCB(3)+PWA
WCB(6)=WCB(6)+PWA
WCB(10)=WCB(10)+PWA
ELSEIF(NA.GT.1)THEN
PWB=PB*W1
WCA(1)=WCA(1)+PWB
WCA(3)=WCA(3)+PWB
WCA(6)=WCA(6)+PWB
WCA(10)=WCA(10)+PWB
WCB(1)=WCB(1)+(PA+CA(3)+CA(6)+CA(10))*W1
ELSEIF(NB.GT.1)THEN
PWA=PA*W1
WCA(1)=WCA(1)+(PB+CB(3)+CB(6)+CB(10))*W1
WCB(1)=WCB(1)+PWA
WCB(3)=WCB(3)+PWA
WCB(6)=WCB(6)+PWA
WCB(10)=WCB(10)+PWA
ELSE
WCA(1)=WCA(1)+PB*W1
WCB(1)=WCB(1)+PA*W1
ENDIF
KR=KR+1
RETURN
ENDIF
IF(NA.GT.1.AND.NB.GT.1)THEN
C
C BOTH ATOMS 'A' AND 'B' ARE HEAVY ATOMS
C
C
C THIS COMMENTED-OUT CODE RUNS SLOWER ON A SCALAR MACHINE THAN THE
C EXPLICIT CODE ACTUALLY USED HERE. THE CODE COMMENTED OUT IS PROVIDED
C FOR USERS WHO WANT TO VECTORIZE THE CODE
C
C# IJP=0
C# DO 3 II=1,4
C# DO 4 JJ=1,II
C# IJ=IJP*10
C# IJP=IJP+1
C# KL=-10+IJP
C# SUM1=0.D0
C# SUM2=0.D0
C# JI=0
C# DO 10 I=1,4
C# DO 10 J=1,I
C# JI=JI+1
C# IJ=IJ+1
C# KL=KL+10
C# FACT=1.D0
C# IF(I.EQ.J)FACT=0.5D0
C# SUM1=SUM1+CB(JI)*W(IJ)*FACT
C# 10 SUM2=SUM2+CA(JI)*W(KL)*FACT
C# IF(II.EQ.JJ)THEN
C# SUM1=SUM1*0.5D0
C# SUM2=SUM2*0.5D0
C# ENDIF
C# WCA(IJP)=WCA(IJP)+SUM1
C# WCB(IJP)=WCB(IJP)+SUM2
C# 4 CONTINUE
C# 3 CONTINUE
C
C START OF EXPLICIT CODE
C
WCA(1)=WCA(1)+
10.25D0*(CB(1)*W(1) + CB(3)*W(3) + CB(6)*W(6) + CB(10)*W(10)) +
20.5D0*( CB(2)*W(2) + CB(4)*W(4) + CB(5)*W(5) +
3 CB(7)*W(7) + CB(8)*W(8) + CB(9)*W(9))
WCA(2)=WCA(2)+
10.5D0*(CB(1)*W(11) + CB(3)*W(13) + CB(6)*W(16) + CB(10)*W(20)) +
2CB(2)*W(12) + CB(4)*W(14) + CB(5)*W(15) +
3CB(7)*W(17) + CB(8)*W(18) + CB(9)*W(19)
WCA(3)=WCA(3)+
10.25D0*(CB(1)*W(21) + CB(3)*W(23) + CB(6)*W(26) + CB(10)*W(30)) +
20.5D0*(CB(2)*W(22) + CB(4)*W(24) + CB(5)*W(25) +
3 CB(7)*W(27) + CB(8)*W(28) + CB(9)*W(29))
WCA(4)=WCA(4)+
10.5D0*(CB(1)*W(31) + CB(3)*W(33) + CB(6)*W(36) + CB(10)*W(40)) +
2CB(2)*W(32) + CB(4)*W(34) + CB(5)*W(35) +
3CB(7)*W(37) + CB(8)*W(38) + CB(9)*W(39)
WCA(5)=WCA(5)+
10.5D0*(CB(1)*W(41) + CB(3)*W(43) + CB(6)*W(46) + CB(10)*W(50)) +
2CB(2)*W(42) + CB(4)*W(44) + CB(5)*W(45) +
3CB(7)*W(47) + CB(8)*W(48) + CB(9)*W(49)
WCA(6)=WCA(6)+
10.25D0*(CB(1)*W(51) + CB(3)*W(53) + CB(6)*W(56) + CB(10)*W(60)) +
20.5D0*(CB(2)*W(52) + CB(4)*W(54) + CB(5)*W(55) +
3 CB(7)*W(57) + CB(8)*W(58) + CB(9)*W(59))
WCA(7)=WCA(7)+
10.5D0*(CB(1)*W(61) + CB(3)*W(63) + CB(6)*W(66) + CB(10)*W(70)) +
2CB(2)*W(62) + CB(4)*W(64) + CB(5)*W(65) +
3CB(7)*W(67) + CB(8)*W(68) + CB(9)*W(69)
WCA(8)=WCA(8)+
10.5D0*(CB(1)*W(71) + CB(3)*W(73) + CB(6)*W(76) + CB(10)*W(80)) +
2CB(2)*W(72) + CB(4)*W(74) + CB(5)*W(75) +
3CB(7)*W(77) + CB(8)*W(78) + CB(9)*W(79)
WCA(9)=WCA(9)+
10.5D0*(CB(1)*W(81) + CB(3)*W(83) + CB(6)*W(86) + CB(10)*W(90)) +
2CB(2)*W(82) + CB(4)*W(84) + CB(5)*W(85) +
3CB(7)*W(87) + CB(8)*W(88) + CB(9)*W(89)
WCA(10)=WCA(10)+
10.25D0*(CB(1)*W(91) + CB(3)*W(93) + CB(6)*W(96) + CB(10)*W(100)) +
20.5D0*(CB(2)*W(92) + CB(4)*W(94) + CB(5)*W(95) +
3 CB(7)*W(97) + CB(8)*W(98) + CB(9)*W(99))
WCB(1)=WCB(1)+
10.25D0*(CA(1)*W(1) + CA(3)*W(21) + CA(6)*W(51) + CA(10)*W(91)) +
20.5D0*(CA(2)*W(11) + CA(4)*W(31) + CA(5)*W(41) +
3 CA(7)*W(61) + CA(8)*W(71) + CA(9)*W(81))
WCB(2)=WCB(2)+
10.5D0*(CA(1)*W(2) + CA(3)*W(22) + CA(6)*W(52) + CA(10)*W(92)) +
2CA(2)*W(12) + CA(4)*W(32) + CA(5)*W(42) +
3CA(7)*W(62) + CA(8)*W(72) + CA(9)*W(82)
WCB(3)=WCB(3)+
10.25D0*(CA(1)*W(3) + CA(3)*W(23) + CA(6)*W(53) + CA(10)*W(93)) +
20.5D0*(CA(2)*W(13) + CA(4)*W(33) + CA(5)*W(43) +
3 CA(7)*W(63) + CA(8)*W(73) + CA(9)*W(83))
WCB(4)=WCB(4)+
10.5D0*(CA(1)*W(4) + CA(3)*W(24) + CA(6)*W(54) + CA(10)*W(94)) +
2CA(2)*W(14) + CA(4)*W(34) + CA(5)*W(44) +
3CA(7)*W(64) + CA(8)*W(74) + CA(9)*W(84)
WCB(5)=WCB(5)+
10.5D0*(CA(1)*W(5) + CA(3)*W(25) + CA(6)*W(55) + CA(10)*W(95)) +
2CA(2)*W(15) + CA(4)*W(35) + CA(5)*W(45) +
3CA(7)*W(65) + CA(8)*W(75) + CA(9)*W(85)
WCB(6)=WCB(6)+
10.25D0*(CA(1)*W(6) + CA(3)*W(26) + CA(6)*W(56) + CA(10)*W(96)) +
20.5D0*(CA(2)*W(16) + CA(4)*W(36) + CA(5)*W(46) +
3 CA(7)*W(66) + CA(8)*W(76) + CA(9)*W(86))
WCB(7)=WCB(7)+
10.5D0*(CA(1)*W(7) + CA(3)*W(27) + CA(6)*W(57) + CA(10)*W(97)) +
2CA(2)*W(17) + CA(4)*W(37) + CA(5)*W(47) +
3CA(7)*W(67) + CA(8)*W(77) + CA(9)*W(87)
WCB(8)=WCB(8)+
10.5D0*(CA(1)*W(8) + CA(3)*W(28) + CA(6)*W(58) + CA(10)*W(98)) +
2CA(2)*W(18) + CA(4)*W(38) + CA(5)*W(48) +
3CA(7)*W(68) + CA(8)*W(78) + CA(9)*W(88)
WCB(9)=WCB(9)+
10.5D0*(CA(1)*W(9) + CA(3)*W(29) + CA(6)*W(59) + CA(10)*W(99)) +
2CA(2)*W(19) + CA(4)*W(39) + CA(5)*W(49) +
3CA(7)*W(69) + CA(8)*W(79) + CA(9)*W(89)
WCB(10)=WCB(10)+
10.25D0*(CA(1)*W(10) + CA(3)*W(30) + CA(6)*W(60) + CA(10)*W(100)) +
20.5D0*(CA(2)*W(20) + CA(4)*W(40) + CA(5)*W(50) +
3 CA(7)*W(70) + CA(8)*W(80) + CA(9)*W(90))
C
C END OF EXPLICIT CODE
C
ELSEIF(NA.GT.1)THEN
C
C ATOM 'A' IS NOT A HYDROGEN, ATOM 'B' IS A HYDROGEN
C
SUM=0.D0
IJ=0
DO 20 I=1,4
DO 10 J=1,I-1
IJ=IJ+1
SUM=SUM+CA(IJ)*W(IJ)
10 WCA(IJ)=WCA(IJ)+CB(1)*W(IJ)*0.5D0
IJ=IJ+1
SUM=SUM+CA(IJ)*W(IJ)*0.5D0
20 WCA(IJ)=WCA(IJ)+CB(1)*W(IJ)*0.25D0
WCB(1) =WCB(1)+SUM*0.5D0
ELSEIF(NB.GT.1)THEN
C
SUM=0.D0
IJ=0
DO 40 I=1,4
DO 30 J=1,I-1
IJ=IJ+1
SUM=SUM+CB(IJ)*W(IJ)
30 WCB(IJ)=WCB(IJ)+CA(1)*W(IJ)*0.5D0
IJ=IJ+1
SUM=SUM+CB(IJ)*W(IJ)*0.5D0
40 WCB(IJ)=WCB(IJ)+CA(1)*W(IJ)*0.25D0
WCA(1) =WCA(1)+SUM*0.5D0
ELSEIF(NB.GT.1)THEN
C
C ATOM 'A' IS A HYDROGEN, ATOM 'B' IS NOT A HYDROGEN
C
ELSE
C
C BOTH ATOMS 'A' AND 'B' ARE HYDROGENS
C
WCB(1)=WCB(1)+CA(1)*W(1)*0.25D0
WCA(1)=WCA(1)+CB(1)*W(1)*0.25D0
ENDIF
KR=KR+NA*NB
RETURN
END
|