File: hqrii.f

package info (click to toggle)
mopac7 1.15-5
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 3,748 kB
  • sloc: fortran: 35,321; sh: 9,039; ansic: 417; makefile: 95
file content (249 lines) | stat: -rw-r--r-- 6,850 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
      SUBROUTINE HQRII(A,N,M,E,V)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION A(*), E(N), V(N,M)
*************************************************************
*
* HQRII IS A DIAGONALISATION ROUTINE, WRITTEN BY YOSHITAKA BEPPU OF
*       NAGOYA UNIVERSITY, JAPAN.
*       FOR DETAILS SEE 'COMPUTERS & CHEMISTRY' VOL.6 1982. PAGE 000.
*
* ON INPUT    A       = MATRIX TO BE DIAGONALISED (PACKED CANONICAL)
*             N       = SIZE OF MATRIX TO BE DIAGONALISED.
*             M       = NUMBER OF EIGENVECTORS NEEDED.
*             E       = ARRAY OF SIZE AT LEAST N
*             V       = ARRAY OF SIZE AT LEAST NMAX*M
*
* ON OUTPUT   E       = EIGENVALUES
*             V       = EIGENVECTORS IN ARRAY OF SIZE NMAX*M
*
************************************************************************
      DIMENSION W(5,MAXPAR)
      IF(N.LE.1 .OR. M .LE.1 .OR. M .GT. N) THEN
         IF(N.EQ.1 .AND. M.EQ.1) THEN
            E(1)=A(1)
            V(1,1)=1.D0
            RETURN
         ENDIF
         WRITE(6,'(////10X,''IN HQRII, N ='',I4,'' M ='',I4)')N,M
         STOP
      ENDIF
*
* EPS3 AND EPS ARE MACHINE-PRECISION DEPENDENT
*
      EPS3=1.D-30
      LL=(N*(N+1))/2+1
      EPS=1.D-8
      IORD=-1
      NM1=N-1
      IF(N.EQ.2) GOTO 90
      NM2=N-2
      KRANK=0
C     HOUSEHOLDER TRANSFORMATION
      DO 80 K=1,NM2
         KP1=K+1
         KRANK=KRANK+K
         W(2,K)=A(KRANK)
         SUM=0.D0
         JRANK=KRANK
         DO 10 J=KP1,N
            W(2,J)=A(JRANK+K)
            JRANK=JRANK+J
   10    SUM=W(2,J)**2+SUM
         S=SIGN(SQRT(SUM),W(2,KP1))
         W(1,K)=-S
         W(2,KP1)=W(2,KP1)+S
         A(K+KRANK)=W(2,KP1)
         H=W(2,KP1)*S
         IF(ABS(H).LT.EPS3) GOTO 80
         SUMM=0.D0
         IRANK=KRANK
         DO 50 I=KP1,N
            SUM=0.D0
            DO 20 J=KP1,I
   20       SUM=SUM+A(J+IRANK)*W(2,J)
            IF(I.GE.N) GOTO 40
            IP1=I+1
            JRANK=I*(I+3)/2
            DO 30 J=IP1,N
               SUM=SUM+A(JRANK)*W(2,J)
   30       JRANK=JRANK+J
   40       W(1,I)=SUM/H
            IRANK=IRANK+I
   50    SUMM=W(1,I)*W(2,I)+SUMM
         U=SUMM*0.5D0/H
         JRANK=KRANK
         DO 70 J=KP1,N
            W(1,J)=W(2,J)*U-W(1,J)
            DO 60 I=KP1,J
   60       A(I+JRANK)=W(1,I)*W(2,J)+W(1,J)*W(2,I)+A(I+JRANK)
   70    JRANK=JRANK+J
   80 A(KRANK)=H
   90 W(2,NM1)=A((NM1*(NM1+1))/2)
      W(2,N)=A((N*(N+1))/2)
      W(1,NM1)=A(NM1+(N*(N-1))/2)
      W(1,N)=0.D0
      GERSCH=ABS(W(2,1))+ABS(W(1,1))
      DO 100 I=1,NM1
  100 GERSCH=MAX(ABS(W(2,I+1))+ABS(W(1,I))+ABS(W(1,I+1)),GERSCH)
      DEL=EPS*GERSCH
      DO 110 I=1,N
         W(3,I)=W(1,I)
         E(I)=W(2,I)
  110 V(I,M)=E(I)
      IF(ABS(DEL).LT.EPS3)  GOTO  220
C     QR-METHOD WITH ORIGIN SHIFT
      K=N
  120 L=K
  130 IF(ABS(W(3,L-1)).LT.DEL) GOTO 140
      L=L-1
      IF(L.GT.1)  GOTO 130
  140 IF(L.EQ.K)  GOTO 170
      WW=(E(K-1)+E(K))*0.5D0
      R=E(K)-WW
      Z=SIGN(SQRT(W(3,K-1)**2+R*R),R)+WW
      EE=E(L)-Z
      E(L)=EE
      FF=W(3,L)
      R=SQRT(EE*EE+FF*FF)
      J=L
      GOTO 160
  150 R=SQRT(E(J)**2+W(3,J)**2)
      W(3,J-1)=S*R
      EE=E(J)*C
      FF=W(3,J)*C
  160 C=E(J)/R
      S=W(3,J)/R
      WW=E(J+1)-Z
      E(J)=(FF*C+WW*S)*S+EE+Z
      E(J+1)=C*WW-S*FF
      J=J+1
      IF(J.LT.K) GOTO 150
      W(3,K-1)=E(K)*S
      E(K)=E(K)*C+Z
      GOTO 120
  170 K=K-1
      IF(K.GT.1) GOTO 120
*    *    *    *    *    *    *    *    *    *    *    *    *
*
*   AT THIS POINT THE ARRAY 'E' CONTAINS THE UN-ORDERED EIGENVALUES
*
*    *    *    *    *    *    *    *    *    *    *    *    *
C     STRAIGHT SELECTION SORT OF EIGENVALUES
      SORTER=1.D0
      IF(IORD.LT.0) SORTER=-1.D0
      J=N
  180 L=1
      II=1
      LL=1
      DO 200 I=2,J
         IF((E(I)-E(L))*SORTER .GT. 0.D0) GOTO 190
         L=I
         GOTO 200
  190    II=I
         LL=L
  200 CONTINUE
      IF(II.EQ.LL) GOTO 210
      WW=E(LL)
      E(LL)=E(II)
      E(II)=WW
  210 J=II-1
      IF(J.GE.2) GOTO 180
  220 IF(M.EQ.0) RETURN
***************
*  ORDERING OF EIGENVALUES COMPLETE.
***************
C      INVERSE-ITERATION FOR EIGENVECTORS
      EPS1=1.D-5
      EPS2=0.05D0
      RN=0.D0
      RA=EPS*0.6180339887485D0
C    0.618... IS THE FIBONACCI NUMBER (-1+SQRT(5))/2.
      IG=1
      DO 450 I=1,M
         IM1=I-1
         DO 230 J=1,N
            W(3,J)=0.D0
            W(4,J)=W(1,J)
            W(5,J)=V(J,M)-E(I)
            RN=RN+RA
            IF(RN.GE.EPS) RN=RN-EPS
  230    V(J,I)=RN
         DO 260 J=1,NM1
            IF(ABS(W(5,J)).GE.ABS(W(1,J))) GOTO 240
            W(2,J)=-W(5,J)/W(1,J)
            W(5,J)=W(1,J)
            T=W(5,J+1)
            W(5,J+1)=W(4,J)
            W(4,J)=T
            W(3,J)=W(4,J+1)
            IF(ABS(W(3,J)).LT.EPS3) W(3,J)=DEL
            W(4,J+1)=0.D0
            GOTO 250
  240       IF(ABS(W(5,J)).LT.EPS3) W(5,J)=DEL
            W(2,J)=-W(1,J)/W(5,J)
  250       W(4,J+1)=W(3,J)*W(2,J)+W(4,J+1)
  260    W(5,J+1)=W(4,J)*W(2,J)+W(5,J+1)
         IF(ABS(W(5,N)) .LT. EPS3) W(5,N)=DEL
         DO 320 ITERE=1,5
            IF(ITERE.EQ.1) GOTO 280
            DO 270 J=1,NM1
               IF(ABS(W(3,J)).LT.EPS3) GOTO 270
               T=V(J,I)
               V(J,I)=V(J+1,I)
               V(J+1,I)=T
  270       V(J+1,I)=V(J,I)*W(2,J)+V(J+1,I)
  280       V(N,I)=V(N,I)/W(5,N)
            V(NM1,I)=(V(NM1,I)-V(N,I)*W(4,NM1))/W(5,NM1)
            VN=MAX(ABS(V(N,I)),ABS(V(NM1,I)),1.D-20)
            IF(N.EQ.2) GOTO 300
            K=NM2
  290       V(K,I)=(V(K,I)-V(K+1,I)*W(4,K)-V(K+2,I)*W(3,K))/W(5,K)
            VN=MAX(ABS(V(K,I)),VN,1.D-20)
            K=K-1
            IF(K.GE.1) GOTO 290
  300       S=EPS1/VN
            DO 310 J=1,N
  310       V(J,I)=V(J,I)*S
            IF(ITERE.GT.1 .AND. VN.GT.1) GOTO 330
  320    CONTINUE
C     TRANSFORMATION OF EIGENVECTORS
  330    IF(N.EQ.2) GOTO 380
         KRANK=NM2*(N+1)/2
         KPIV=NM2*NM1/2
         DO 370 K=NM2,1,-1
            KP1=K+1
            IF(ABS(A(KPIV)).LE.EPS3) GOTO 360
            SUM=0.D0
            DO 340 KK=KP1,N
               SUM=SUM+A(KRANK)*V(KK,I)
  340       KRANK=KRANK+KK
            S=-SUM/A(KPIV)
            DO 350 KK=N,KP1,-1
               KRANK=KRANK-KK
  350       V(KK,I)=A(KRANK)*S+V(KK,I)
  360       KPIV=KPIV-K
  370    KRANK=KRANK-KP1
  380    DO 390 J=IG,I
            IF(ABS(E(J)-E(I)) .LT. EPS2) GOTO 400
  390    CONTINUE
         J=I
  400    IG=J
         IF(IG .EQ. I) GOTO 430
C     RE-ORTHOGONALISATION
         DO 420 K=IG,IM1
            SUM=0.D0
            DO 410 J=1,N
  410       SUM=V(J,K)*V(J,I)+SUM
            S=-SUM
            DO 420 J=1,N
  420    V(J,I)=V(J,K)*S+V(J,I)
C     NORMALISATION
  430    SUM=1.D-24
         DO 440 J=1,N
  440    SUM=SUM+V(J,I)**2
         SINV=1.D0/SQRT(SUM)
         DO 450 J=1,N
  450 V(J,I)=V(J,I)*SINV
      RETURN
      END