1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
SUBROUTINE INTERP(N,NP,NQ,MODE,E,FP,CP,VEC,FOCK,P,H,VECL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION FP(MPACK), CP(N,N)
DIMENSION VEC(N,N), FOCK(N,N),
1 P(N,N), H(N*N), VECL(N*N)
**********************************************************************
*
* INTERP: AN INTERPOLATION PROCEDURE FOR FORCING SCF CONVERGANCE
* ORIGINAL THEORY AND FORTRAN WRITTEN BY R.N. CAMP AND
* H.F. KING, J. CHEM. PHYS. 75, 268 (1981)
**********************************************************************
*
* ON INPUT N = NUMBER OF ORBITALS
* NP = NUMBER OF FILLED LEVELS
* NQ = NUMBER OF EMPTY LEVELS
* MODE = 1, DO NOT RESET.
* E = ENERGY
* FP = FOCK MATRIX, AS LOWER HALF TRIANGLE, PACKED
* CP = EIGENVECTORS OF FOCK MATRIX OF ITERATION -1
* AS PACKED ARRAY OF N*N COEFFICIENTS
*
* ON OUTPUT CP = BEST GUESSED SET OF EIGENVECTORS
* MODE = 2 OR 3 - USED BY CALLING PROGRAM
**********************************************************************
DIMENSION THETA(MAXORB)
COMMON /KEYWRD/ KEYWRD
COMMON /NUMCAL/ NUMCAL
COMMON/FIT/NPNTS,IDUM2,XLOW,XHIGH,XMIN,EMIN,DEMIN,X(12),F(12),
1 DF(12)
LOGICAL DEBUG
CHARACTER*241 KEYWRD
SAVE ZERO, FF, RADMAX, ICALCN, DEBUG
DATA ICALCN/0/
DATA ZERO,FF,RADMAX/0.0D0,0.9D0,1.5708D0/
IF(ICALCN.NE.NUMCAL)THEN
DEBUG=(INDEX(KEYWRD,'INTERP').NE.0)
ICALCN=NUMCAL
ENDIF
C
C RADMAX=MAXIMUM ROTATION ANGLE (RADIANS). 1.5708 = 90 DEGREES.
C FF=FACTOR FOR CONVERGENCE TEST FOR 1D SEARCH.
C
MINPQ=MIN0(NP,NQ)
NP1=NP+1
NP2=MAX0(1,NP/2)
IF(MODE.EQ.2) GO TO 110
C
C (MODE=1 OR 3 ENTRY)
C TRANSFORM FOCK MATRIX TO CURRENT MO BASIS.
C ONLY THE OFF DIAGONAL OCC-VIRT BLOCK IS COMPUTED.
C STORE IN FOCK ARRAY
C
II=0
DO 50 I=1,N
I1=I+1
DO 40 J=1,NQ
DUM=ZERO
DO 20 K=1,I
20 DUM=DUM+FP(II+K)*CP(K,J+NP)
IF(I.EQ.N) GO TO 40
IK=II+I+I
DO 30 K=I1,N
DUM=DUM+FP(IK)*CP(K,J+NP)
30 IK=IK+K
40 P(I,J)=DUM
50 II=II+I
DO 80 I=1,NP
DO 70 J=1,NQ
DUM=ZERO
DO 60 K=1,N
60 DUM=DUM+CP(K,I)*P(K,J)
FOCK(I,J)=DUM
70 CONTINUE
80 CONTINUE
IF(MODE.EQ.3) GO TO 100
C
C CURRENT POINT BECOMES OLD POINT (MODE=1 ENTRY)
C
DO 90 I=1,N
DO 90 J=1,N
90 VEC(I,J)=CP(I,J)
EOLD=E
XOLD=1.0D0
MODE=2
RETURN
C
C (MODE=3 ENTRY)
C FOCK CORRESPONDS TO CURRENT POINT IN CORRESPONDING REPRESENTATION.
C VEC DOES NOT HOLD CURRENT VECTORS. VEC SET IN LAST MODE=2 ENTRY.
C
100 NPNTS=NPNTS+1
IF(DEBUG)WRITE(6,'('' INTERPOLATED ENERGY:'',F13.6)')E*23.061D0
IPOINT=NPNTS
GO TO 500
C
C (MODE=2 ENTRY) CALCULATE THETA, AND U, V, W MATRICES.
C U ROTATES CURRENT INTO OLD MO.
C V ROTATES CURRENT INTO CORRESPONDING CURRENT MO.
C W ROTATES OLD INTO CORRESPONDING OLD MO.
C
110 J1=1
DO 140 I=1,N
IF(I.EQ.NP1) J1=NP1
DO 130 J=J1,N
P(I,J)=ZERO
DO 120 K=1,N
120 P(I,J)=P(I,J)+CP(K,I)*VEC(K,J)
130 CONTINUE
140 CONTINUE
C
C U = CP(DAGGER)*VEC IS NOW IN P ARRAY.
C VEC IS NOW AVAILABLE FOR TEMPORARY STORAGE.
C
IJ=0
DO 170 I=1,NP
DO 160 J=1,I
IJ=IJ+1
H(IJ)=0.D0
DO 150 K=NP1,N
150 H(IJ)=H(IJ)+P(I,K)*P(J,K)
160 CONTINUE
170 CONTINUE
CALL HQRII(H,NP,NP,THETA,VECL)
DO 180 I=NP,1,-1
IL=I*NP-NP
DO 180 J=NP,1,-1
180 VEC(J,I)=VECL(J+IL)
DO 200 I=1,NP2
DUM=THETA(NP1-I)
THETA(NP1-I)=THETA(I)
THETA(I)=DUM
DO 190 J=1,NP
DUM=VEC(J,NP1-I)
VEC(J,NP1-I)=VEC(J,I)
190 VEC(J,I)=DUM
200 CONTINUE
DO 210 I=1,MINPQ
THETA(I)=MAX(THETA(I),ZERO)
THETA(I)=MIN(THETA(I),1.D0)
210 THETA(I)=ASIN(SQRT(THETA(I)))
C
C THETA MATRIX HAS NOW BEEN CALCULATED, ALSO UNITARY VP MATRIX
C HAS BEEN CALCULATED AND STORED IN FIRST NP COLUMNS OF VEC MATRIX.
C NOW COMPUTE WQ
C
DO 240 I=1,NQ
DO 230 J=1,MINPQ
VEC(I,NP+J)=ZERO
DO 220 K=1,NP
220 VEC(I,NP+J)=VEC(I,NP+J)+P(K,NP+I)*VEC(K,J)
230 CONTINUE
240 CONTINUE
CALL SCHMIT(VEC(1,NP1),NQ,N)
C
C UNITARY WQ MATRIX NOW IN LAST NQ COLUMNS OF VEC MATRIX.
C TRANSPOSE NP BY NP BLOCK OF U STORED IN P
C
DO 260 I=1,NP
DO 250 J=1,I
DUM=P(I,J)
P(I,J)=P(J,I)
250 P(J,I)=DUM
260 CONTINUE
C
C CALCULATE WP MATRIX AND HOLD IN FIRST NP COLUMNS OF P
C
DO 300 I=1,NP
DO 270 K=1,NP
270 H(K)=P(I,K)
DO 290 J=1,NP
P(I,J)=ZERO
DO 280 K=1,NP
280 P(I,J)=P(I,J)+H(K)*VEC(K,J)
290 CONTINUE
300 CONTINUE
CALL SCHMIB(P,NP,N)
C
C CALCULATE VQ MATRIX AND HOLD IN LAST NQ COLUMNS OF P MATRIX.
C
DO 340 I=1,NQ
DO 310 K=1,NQ
310 H(K)=P(NP+I,NP+K)
DO 330 J=NP1,N
P(I,J)=ZERO
DO 320 K=1,NQ
320 P(I,J)=P(I,J)+H(K)*VEC(K,J)
330 CONTINUE
340 CONTINUE
CALL SCHMIB(P(1,NP1),NQ,N)
C
C CALCULATE (DE/DX) AT OLD POINT
C
DEDX=ZERO
DO 370 I=1,NP
DO 360 J=1,NQ
DUM=ZERO
DO 350 K=1,MINPQ
350 DUM=DUM+THETA(K)*P(I,K)*VEC(J,NP+K)
360 DEDX=DEDX+DUM*FOCK(I,J)
370 CONTINUE
C
C STORE OLD POINT INFORMATION FOR SPLINE FIT
C
DEOLD=-4.0D0*DEDX
X(2)=XOLD
F(2)=EOLD
DF(2)=DEOLD
C
C MOVE VP OUT OF VEC ARRAY INTO FIRST NP COLUMNS OF P MATRIX.
C
DO 380 I=1,NP
DO 380 J=1,NP
380 P(I,J)=VEC(I,J)
K1=0
K2=NP
DO 410 J=1,N
IF(J.EQ.NP1) K1=NP
IF(J.EQ.NP1) K2=NQ
DO 400 I=1,N
DUM=ZERO
DO 390 K=1,K2
390 DUM=DUM+CP(I,K1+K)*P(K,J)
400 VEC(I,J)=DUM
410 CONTINUE
C
C CORRESPONDING CURRENT MO VECTORS NOW HELD IN VEC.
C COMPUTE VEC(DAGGER)*FP*VEC
C STORE OFF-DIAGONAL BLOCK IN FOCK ARRAY.
C
420 II=0
DO 460 I=1,N
I1=I+1
DO 450 J=1,NQ
DUM=ZERO
DO 430 K=1,I
430 DUM=DUM+FP(II+K)*VEC(K,J+NP)
IF(I.EQ.N) GO TO 450
IK=II+I+I
DO 440 K=I1,N
DUM=DUM+FP(IK)*VEC(K,J+NP)
440 IK=IK+K
450 P(I,J)=DUM
460 II=II+I
DO 490 I=1,NP
DO 480 J=1,NQ
DUM=ZERO
DO 470 K=1,N
470 DUM=DUM+VEC(K,I)*P(K,J)
FOCK(I,J)=DUM
480 CONTINUE
490 CONTINUE
C
C SET LIMITS ON RANGE OF 1-D SEARCH
C
NPNTS=2
IPOINT=1
XNOW=ZERO
XHIGH=RADMAX/THETA(1)
XLOW=-0.5D0*XHIGH
C
C CALCULATE (DE/DX) AT CURRENT POINT AND
C STORE INFORMATION FOR SPLINE FIT
C ***** JUMP POINT FOR MODE=3 ENTRY *****
C
500 DEDX=ZERO
DO 510 K=1,MINPQ
510 DEDX=DEDX+THETA(K)*FOCK(K,K)
DENOW=-4.0D0*DEDX
ENOW=E
IF(IPOINT.LE.12) GO TO 530
520 FORMAT(//,'EXCESSIVE DATA PNTS FOR SPLINE.',/
1,'IPOINT =',I3,'MAXIMUM IS 12.')
C
C PERFORM 1-D SEARCH AND DETERMINE EXIT MODE.
C
530 X(IPOINT)=XNOW
F(IPOINT)=ENOW
DF(IPOINT)=DENOW
CALL SPLINE
IF((EOLD-ENOW).GT.FF*(EOLD-EMIN).OR.IPOINT.GT.10) GO TO 560
C
C (MODE=3 EXIT) RECOMPUTE CP VECTORS AT PREDICTED MINIMUM.
C
XNOW=XMIN
DO 550 K=1,MINPQ
CK=COS(XNOW*THETA(K))
SK=SIN(XNOW*THETA(K))
IF(DEBUG)WRITE(6,'('' ROTATION ANGLE:'',F12.4)')SK*57.29578D0
DO 540 I=1,N
CP(I,K) =CK*VEC(I,K)-SK*VEC(I,NP+K)
540 CP(I,NP+K)=SK*VEC(I,K)+CK*VEC(I,NP+K)
550 CONTINUE
MODE=3
RETURN
C
C (MODE=2 EXIT) CURRENT VECTORS GIVE SATISFACTORY ENERGY IMPROVEMENT
C CURRENT POINT BECOMES OLD POINT FOR THE NEXT 1-D SEARCH.
C
560 IF(MODE.EQ.2) GO TO 580
DO 570 I=1,N
DO 570 J=1,N
570 VEC(I,J)=CP(I,J)
MODE=2
580 ROLD=XOLD*THETA(1)*57.29578D0
RNOW=XNOW*THETA(1)*57.29578D0
RMIN=XMIN*THETA(1)*57.29578D0
IF(DEBUG)WRITE(6,600) XOLD,EOLD*23.061D0,DEOLD,ROLD
1, XNOW,ENOW*23.061D0,DENOW,RNOW
2, XMIN,EMIN*23.061D0,DEMIN,RMIN
EOLD=ENOW
IF(NPNTS.LE.200) RETURN
WRITE(6,610)
DO 590 K=1,NPNTS
590 WRITE(6,620) K,X(K),F(K),DF(K)
WRITE(6,630)
RETURN
600 FORMAT(
1/14X,3H X ,10X,6H F(X) ,9X,7H DF/DX ,21H ROTATION (DEGREES),
2/10H OLD ,F10.5,3F15.10,
3/10H CURRENT ,F10.5,3F15.10,
4/10H PREDICTED,F10.5,3F15.10/)
610 FORMAT(3H K,10H X(K) ,15H F(K) ,10H DF(K))
620 FORMAT(I3,F10.5,2F15.10)
630 FORMAT(10X)
END
SUBROUTINE SPLINE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
LOGICAL SKIP1,SKIP2
C
C FIT F(X) BY A CUBIC SPLINE GIVEN VALUES OF THE FUNCTION
C AND ITS FIRST DERIVATIVE AT N PNTS.
C SUBROUTINE RETURNS VALUES OF XMIN,FMIN, AND DFMIN
C AND MAY REORDER THE DATA.
C CALLING PROGRAM SUPPLIES ALL OTHER VALUES IN THE
C COMMON BLOCK.
C XLOW AND XHIGH SET LIMITS ON THE INTERVAL WITHIN WHICH
C TO SEARCH. SUBROUTINE MAY FURTHER REDUCE THIS INTERVAL.
C
COMMON/FIT/N,IDUM2,XLOW,XHIGH,XMIN,FMIN,DFMIN,X(12),F(12),DF(12)
SAVE CLOSE, BIG, HUGE, USTEP, DSTEP
DATA CLOSE, BIG, HUGE, USTEP, DSTEP/1.0E-8,500.0,1.0E+10,1.0,2.0/
C
C SUBROUTINE ASSUMES THAT THE FIRST N-1 DATA PNTS HAVE BEEN
C PREVIOUSLY ORDERED, X(I).LT.X(I+1) FOR I=1,2,...,N-2
C NOW MOVE NTH POINT TO ITS PROPER PLACE.
C
XMIN=X(N)
FMIN=F(N)
DFMIN=DF(N)
N1=N-1
K=N1
10 IF(X(K).LT.XMIN) GO TO 20
X(K+1)=X(K)
F(K+1)=F(K)
DF(K+1)=DF(K)
K=K-1
IF(K.GT.0) GO TO 10
20 X(K+1)=XMIN
F(K+1)=FMIN
DF(K+1)=DFMIN
C
C DEFINE THE INTERVAL WITHIN WHICH WE TRUST THE SPLINE FIT.
C USTEP = UP HILL STEP SIZE FACTOR
C DSTEP = DOWN HILL STEP SIZE FACTOR
C
IF(DF(1).GT.0.0) STEP=DSTEP
IF(DF(1).LE.0.0) STEP=USTEP
XSTART=X(1)-STEP*(X(2)-X(1))
XSTART=MAX(XSTART,XLOW)
IF(DF(N).GT.0.0) STEP=USTEP
IF(DF(N).LE.0.0) STEP=DSTEP
XSTOP=X(N)+STEP*(X(N)-X(N1))
XSTOP=MIN(XSTOP,XHIGH)
C
C SEARCH FOR MINIMUM
C
DO 110 K=1,N1
SKIP1=K.NE.1
SKIP2=K.NE.N1
IF(F(K).GE.FMIN) GO TO 30
XMIN=X(K)
FMIN=F(K)
DFMIN=DF(K)
30 DX=X(K+1)-X(K)
C
C SKIP INTERVAL IF PNTS ARE TOO CLOSE TOGETHER
C
IF(DX.LE.CLOSE) GO TO 110
X1=0.0D0
IF(K.EQ.1) X1=XSTART-X(1)
X2=DX
IF(K.EQ.N1) X2=XSTOP-X(N1)
C
C (A,B,C)=COEF OF (CUBIC,QUADRATIC,LINEAR) TERMS
C
DUM=(F(K+1)-F(K))/DX
A=(DF(K)+DF(K+1)-DUM-DUM)/(DX*DX)
B=(DUM+DUM+DUM-DF(K)-DF(K)-DF(K+1))/DX
C=DF(K)
C
C XK = X-X(K) AT THE MINIMUM WITHIN THE KTH SUBINTERVAL
C TEST FOR PATHOLOGICAL CASES.
C
BB=B*B
AC3=(A+A+A)*C
IF(BB.LT.AC3) GO TO 90
IF( B.GT.0.0) GO TO 40
IF(ABS(B).GT.HUGE*ABS(A)) GO TO 90
GO TO 50
40 IF(BB.GT.BIG*ABS(AC3)) GO TO 60
C
C WELL BEHAVED CUBIC
C
50 XK=(-B+SQRT(BB-AC3))/(A+A+A)
GO TO 70
C
C CUBIC IS DOMINATED BY QUADRATIC TERM
C
60 R=AC3/BB
XK=-(((0.039063D0*R+0.0625D0)*R+0.125D0)*R+0.5D0)*C/B
70 IF(XK.LT.X1.OR.XK.GT.X2) GO TO 90
80 FM=((A*XK+B)*XK+C)*XK+F(K)
IF(FM.GT.FMIN) GO TO 90
XMIN=XK+X(K)
FMIN=FM
DFMIN=((A+A+A)*XK+B+B)*XK+C
C
C EXTRAPOLATE TO END OF INTERVAL IF K=1 AND/OR K=N1
C
90 IF(SKIP1) GO TO 100
SKIP1=.TRUE.
XK=X1
GO TO 80
100 IF(SKIP2) GO TO 110
SKIP2=.TRUE.
XK=X2
GO TO 80
110 CONTINUE
RETURN
END
SUBROUTINE SCHMIT(U,N,NDIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION U(NDIM,NDIM)
SAVE ZERO, SMALL, ONE
DATA ZERO,SMALL,ONE/0.0,0.01,1.0/
II=0
DO 110 K=1,N
K1=K-1
C
C NORMALIZE KTH COLUMN VECTOR
C
DOT = ZERO
DO 10 I=1,N
10 DOT=DOT+U(I,K)*U(I,K)
IF(DOT.EQ.ZERO) GO TO 100
SCALE=ONE/SQRT(DOT)
DO 20 I=1,N
20 U(I,K)=SCALE*U(I,K)
30 IF(K1.EQ.0) GO TO 110
NPASS=0
C
C PROJECT OUT K-1 PREVIOUS ORTHONORMAL VECTORS FROM KTH VECTOR
C
40 NPASS=NPASS+1
DO 70 J=1,K1
DOT=ZERO
DO 50 I=1,N
50 DOT=DOT+U(I,J)*U(I,K)
DO 60 I=1,N
60 U(I,K)=U(I,K)-DOT*U(I,J)
70 CONTINUE
C
C SECOND NORMALIZATION (AFTER PROJECTION)
C IF KTH VECTOR IS SMALL BUT NOT ZERO THEN NORMALIZE
C AND PROJECT AGAIN TO CONTROL ROUND-OFF ERRORS.
C
DOT=ZERO
DO 80 I=1,N
80 DOT=DOT+U(I,K)*U(I,K)
IF(DOT.EQ.ZERO) GO TO 100
IF(DOT.LT.SMALL.AND.NPASS.GT.2) GO TO 100
SCALE=ONE/SQRT(DOT)
DO 90 I=1,N
90 U(I,K)=SCALE*U(I,K)
IF(DOT.LT.SMALL) GO TO 40
GO TO 110
C
C REPLACE LINEARLY DEPENDENT KTH VECTOR BY A UNIT VECTOR.
C
100 II=II+1
C IF(II.GT.N) STOP
U(II,K)=ONE
GO TO 30
110 CONTINUE
RETURN
END
SUBROUTINE SCHMIB(U,N,NDIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C
C SAME AS SCHMIDT BUT WORKS FROM RIGHT TO LEFT.
C
DIMENSION U(NDIM,NDIM)
SAVE ZERO, SMALL, ONE
DATA ZERO,SMALL,ONE/0.0,0.01,1.0/
N1=N+1
II=0
DO 110 K=1,N
K1=K-1
C
C NORMALIZE KTH COLUMN VECTOR
C
DOT = ZERO
DO 10 I=1,N
10 DOT=DOT+U(I,N1-K)*U(I,N1-K)
IF(DOT.EQ.ZERO) GO TO 100
SCALE=ONE/SQRT(DOT)
DO 20 I=1,N
20 U(I,N1-K)=SCALE*U(I,N1-K)
30 IF(K1.EQ.0) GO TO 110
NPASS=0
C
C PROJECT OUT K-1 PREVIOUS ORTHONORMAL VECTORS FROM KTH VECTOR
C
40 NPASS=NPASS+1
DO 70 J=1,K1
DOT=ZERO
DO 50 I=1,N
50 DOT=DOT+U(I,N1-J)*U(I,N1-K)
DO 60 I=1,N
60 U(I,N1-K)=U(I,N1-K)-DOT*U(I,N1-J)
70 CONTINUE
C
C SECOND NORMALIZATION (AFTER PROJECTION)
C IF KTH VECTOR IS SMALL BUT NOT ZERO THEN NORMALIZE
C AND PROJECT AGAIN TO CONTROL ROUND-OFF ERRORS.
C
DOT=ZERO
DO 80 I=1,N
80 DOT=DOT+U(I,N1-K)*U(I,N1-K)
IF(DOT.EQ.ZERO) GO TO 100
IF(DOT.LT.SMALL.AND.NPASS.GT.2) GO TO 100
SCALE=ONE/SQRT(DOT)
DO 90 I=1,N
90 U(I,N1-K)=SCALE*U(I,N1-K)
IF(DOT.LT.SMALL) GO TO 40
GO TO 110
C
C REPLACE LINEARLY DEPENDENT KTH VECTOR BY A UNIT VECTOR.
C
100 II=II+1
C IF(II.GT.N) STOP
U(II,N1-K)=ONE
GO TO 30
110 CONTINUE
RETURN
END
SUBROUTINE PULAY(F,P,N,FPPF,FOCK,EMAT,LFOCK,NFOCK,MSIZE,START,PL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION F(*), P(*), FPPF(*), FOCK(*)
LOGICAL START
************************************************************************
*
* PULAY USES DR. PETER PULAY'S METHOD FOR CONVERGENCE.
* A MATHEMATICAL DESCRIPTION CAN BE FOUND IN
* "P. PULAY, J. COMP. CHEM. 3, 556 (1982).
*
* ARGUMENTS:-
* ON INPUT F = FOCK MATRIX, PACKED, LOWER HALF TRIANGLE.
* P = DENSITY MATRIX, PACKED, LOWER HALF TRIANGLE.
* N = NUMBER OF ORBITALS.
* FPPF = WORKSTORE OF SIZE MSIZE, CONTENTS WILL BE
* OVERWRITTEN.
* FOCK = " " " "
* EMAT = WORKSTORE OF AT LEAST 15**2 ELEMENTS.
* START = LOGICAL, = TRUE TO START PULAY.
* PL = UNDEFINED ELEMENT.
* ON OUTPUT F = "BEST" FOCK MATRIX, = LINEAR COMBINATION
* OF KNOWN FOCK MATRICES.
* START = FALSE
* PL = MEASURE OF NON-SELF-CONSISTENCY
* = [F*P] = F*P - P*F.
*
************************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /NUMCAL/ NUMCAL
DIMENSION EMAT(20,20), EVEC(1000), COEFFS(20)
CHARACTER*241 KEYWRD
LOGICAL DEBUG
DATA ICALCN/0/
IF (ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
MAXLIM=6
DEBUG=(INDEX(KEYWRD,'DEBUGPULAY') .NE.0)
ENDIF
IF(START) THEN
LINEAR=(N*(N+1))/2
MFOCK=MSIZE/LINEAR
IF(MFOCK.GT.MAXLIM)MFOCK=MAXLIM
IF(DEBUG)
1 WRITE(6,'('' MAXIMUM SIZE:'',I5)')MFOCK
NFOCK=1
LFOCK=1
START=.FALSE.
ELSE
IF(NFOCK.LT.MFOCK) NFOCK=NFOCK+1
IF(LFOCK.NE.MFOCK)THEN
LFOCK=LFOCK+1
ELSE
LFOCK=1
ENDIF
ENDIF
LBASE=(LFOCK-1)*LINEAR
*
* FIRST, STORE FOCK MATRIX FOR FUTURE REFERENCE.
*
DO 10 I=1,LINEAR
10 FOCK((I-1)*MFOCK+LFOCK)=F(I)
*
* NOW FORM /FOCK*DENSITY-DENSITY*FOCK/, AND STORE THIS IN FPPF
*
CALL MAMULT(P,F,FPPF(LBASE+1),N,0.D0)
CALL MAMULT(F,P,FPPF(LBASE+1),N,-1.D0)
*
* FPPF NOW CONTAINS THE RESULT OF FP - PF.
*
NFOCK1=NFOCK+1
DO 20 I=1,NFOCK
EMAT(NFOCK1,I)=-1.D0
EMAT(I,NFOCK1)=-1.D0
EMAT(LFOCK,I)=DOT(FPPF((I-1)*LINEAR+1),FPPF(LBASE+1),LINEAR)
20 EMAT(I,LFOCK)=EMAT(LFOCK,I)
PL=EMAT(LFOCK,LFOCK)/LINEAR
EMAT(NFOCK1,NFOCK1)=0.D0
CONST=1.D0/EMAT(LFOCK,LFOCK)
DO 30 I=1,NFOCK
DO 30 J=1,NFOCK
30 EMAT(I,J)=EMAT(I,J)*CONST
IF(DEBUG) THEN
WRITE(6,'('' EMAT'')')
DO 40 I=1,NFOCK1
40 WRITE(6,'(6E13.6)')(EMAT(J,I),J=1,NFOCK1)
ENDIF
L=0
DO 50 I=1,NFOCK1
DO 50 J=1,NFOCK1
L=L+1
50 EVEC(L)=EMAT(I,J)
CONST=1.D0/CONST
DO 60 I=1,NFOCK
DO 60 J=1,NFOCK
60 EMAT(I,J)=EMAT(I,J)*CONST
*********************************************************************
* THE MATRIX EMAT SHOULD HAVE FORM
*
* |<E(1)*E(1)> <E(1)*E(2)> ... -1.0|
* |<E(2)*E(1)> <E(2)*E(2)> ... -1.0|
* |<E(3)*E(1)> <E(3)*E(2)> ... -1.0|
* |<E(4)*E(1)> <E(4)*E(2)> ... -1.0|
* | . . ... . |
* | -1.0 -1.0 ... 0. |
*
* WHERE <E(I)*E(J)> IS THE SCALAR PRODUCT OF [F*P] FOR ITERATION I
* TIMES [F*P] FOR ITERATION J.
*
*********************************************************************
CALL OSINV(EVEC,NFOCK1,D)
IF(ABS(D).LT.1.D-6)THEN
START=.TRUE.
RETURN
ENDIF
IF(NFOCK.LT.2) RETURN
IL=NFOCK*NFOCK1
DO 70 I=1,NFOCK
70 COEFFS(I)=-EVEC(I+IL)
IF(DEBUG) THEN
WRITE(6,'('' EVEC'')')
WRITE(6,'(6F12.6)')(COEFFS(I),I=1,NFOCK)
WRITE(6,'('' LAGRANGIAN MULTIPLIER (ERROR) =''
1 ,F13.6)')EVEC(NFOCK1*NFOCK1)
ENDIF
DO 90 I=1,LINEAR
SUM=0
L=0
II=(I-1)*MFOCK
DO 80 J=1,NFOCK
80 SUM=SUM+COEFFS(J)*FOCK(J+II)
90 F(I)=SUM
RETURN
END
SUBROUTINE OSINV (A,N,D)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION A(*)
************************************************************************
*
* OSINV INVERTS A GENERAL SQUARE MATRIX OF ORDER UP TO MAXORB. SEE
* DIMENSION STATEMENTS BELOW.
*
* ON INPUT A = GENERAL SQUARE MATRIX STORED LINEARLY.
* N = DIMENSION OF MATRIX A.
* D = VARIABLE, NOT DEFINED ON INPUT.
*
* ON OUTPUT A = INVERSE OF ORIGINAL A.
* D = DETERMINANT OF ORIGINAL A, UNLESS A WAS SINGULAR,
* IN WHICH CASE D = 0.0
*
************************************************************************
DIMENSION L(MAXORB), M(MAXORB)
************************************************************************
*
* IF THE VALUE OF TOL GIVEN HERE IS UNSUITABLE, IT CAN BE CHANGED.
TOL=1.D-8
*
*
************************************************************************
D=1.0D0
NK=-N
DO 180 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J=K,N
IZ=N*(J-1)
DO 20 I=K,N
IJ=IZ+I
C
C 10 FOLLOWS
C
IF (ABS(BIGA)-ABS(A(IJ))) 10,20,20
10 BIGA=A(IJ)
L(K)=I
M(K)=J
20 CONTINUE
J=L(K)
IF (J-K) 50,50,30
30 KI=K-N
DO 40 I=1,N
KI=KI+N
HOLO=-A(KI)
JI=KI-K+J
A(KI)=A(JI)
40 A(JI)=HOLO
50 I=M(K)
IF (I-K) 80,80,60
60 JP=N*(I-1)
DO 70 J=1,N
JK=NK+J
JI=JP+J
HOLO=-A(JK)
A(JK)=A(JI)
70 A(JI)=HOLO
80 IF (ABS(BIGA)-TOL) 90,100,100
90 D=0.0D0
RETURN
100 DO 120 I=1,N
IF (I-K) 110,120,110
110 IK=NK+I
A(IK)=A(IK)/(-BIGA)
120 CONTINUE
DO 150 I=1,N
IK=NK+I
IJ=I-N
DO 150 J=1,N
IJ=IJ+N
IF (I-K) 130,150,130
130 IF (J-K) 140,150,140
140 KJ=IJ-I+K
A(IJ)=A(IK)*A(KJ)+A(IJ)
150 CONTINUE
KJ=K-N
DO 170 J=1,N
KJ=KJ+N
IF (J-K) 160,170,160
160 A(KJ)=A(KJ)/BIGA
170 CONTINUE
D=MIN(D*BIGA,1.D10)
A(KK)=1.0D0/BIGA
180 CONTINUE
K=N
190 K=K-1
IF (K) 260,260,200
200 I=L(K)
IF (I-K) 230,230,210
210 JQ=N*(K-1)
JR=N*(I-1)
DO 220 J=1,N
JK=JQ+J
HOLO=A(JK)
JI=JR+J
A(JK)=-A(JI)
220 A(JI)=HOLO
230 J=M(K)
IF (J-K) 190,190,240
240 KI=K-N
DO 250 I=1,N
KI=KI+N
HOLO=A(KI)
JI=KI+J-K
A(KI)=-A(JI)
250 A(JI)=HOLO
GO TO 190
260 RETURN
C
END
|