1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
SUBROUTINE ANALYT(PSUM,PALPHA,PBETA,COORD,NAT,JJA,JJD,
1IIA,IID,ENG)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*),ENG(3), PSUM(*), PALPHA(*), PBETA(*),NAT(*)
************************************************************************
* *
* CALCULATION OF ANALYTICAL DERIVATIVES *
* *
************************************************************************
C
C COMMON BLOCKS 'OWNED' BY REST OF PROGRAM.
C
COMMON /CORE / CORE(107)
1 /BETAS / BETAS(107),BETAP(107),BETAD(107)
2 /EXPONT/ ZS(107),ZP(107),ZD(107)
3 /ALPHA / ALPA(107)
COMMON /TWOEL3/ F03(107)
COMMON /NATORB/ NATORB(107)
COMMON /ALPHA3/ ALP3(153)
COMMON /IDEAS / FN1(107,10),FN2(107,10),FN3(107,10)
COMMON /WMATRX/ W(N2ELEC*2)
COMMON /NATYPE/ NZTYPE(107),MTYPE(30),LTYPE
COMMON /BETA3 / BETA3(153)
COMMON /VSIPS / VS(107),VP(107),VD(107)
COMMON /KEYWRD/ KEYWRD
C
C COMMON BLOCKS 'OWNED' BY ANT
C
COMMON /DERIVS/ DS(16),DG(22),DR(100),TDX(3),TDY(3),TDZ(3)
COMMON /EXTRA/ G(22), TXYZ(9)
C
C ON RETURN, ENG HOLDS ANALYTICAL DERIVATIVES
C
COMMON /FORCE3/ IDMY(5),I3N,IX
COMMON /NUMCAL/ NUMCAL
DIMENSION EAA(3),EAB(3),ENUC(3), BI(4), BJ(4)
CHARACTER*241 KEYWRD
SAVE AM1, MINDO3
LOGICAL AM1, MINDO3
DATA ICALCN/0/
IF (ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
AM1=(INDEX(KEYWRD,'AM1')+INDEX(KEYWRD,'PM3').NE.0)
MINDO3=(INDEX(KEYWRD,'MINDO').NE.0)
ENDIF
A0=0.529167D0
JD=JJD-JJA+1
JA=1
ID=IID-IIA+1+JD
IA=JD+1
DO 10 J=1,3
EAA(J)=0.0D0
EAB(J)=0.0D0
ENUC(J)=0.0D0
ENG(J)=0.0D0
10 CONTINUE
I=2
NI=NAT(I)
ISTART=NZTYPE(NI)*4-3
J=1
NJ=NAT(J)
JSTART=NZTYPE(NJ)*4-3
R2=(COORD(1,I)-COORD(1,J))**2+(COORD(2,I)-COORD(2,J))**2
1 + (COORD(3,I)-COORD(3,J))**2
RIJ=SQRT(R2)
R0=RIJ/A0
RR=R2/(A0*A0)
DO 150 IX=1,3
DEL1=COORD(IX,I)-COORD(IX,J)
TERMAA=0.0D0
TERMAB=0.0D0
ISP=0
IOL=0
C THE FIRST DERIVATIVES OF OVERLAP INTEGRALS
DO 30 K=IA,ID
KA=K-IA
KG=ISTART+KA
DO 30 L=JA,JD
LA=L-JA
LG=JSTART+LA
IOL=IOL+1
DS(IOL)=0.0D0
IF(KA.EQ.0.AND.LA.EQ.0) THEN
C (S/S) TERM
IF(ABS(DEL1).LE.1.0D-6) GO TO 30
IS=1
ELSEIF(KA.EQ.0.AND.LA.GT.0) THEN
C (S/P) TERM
IS=3
IF(IX.EQ.LA) GO TO 20
IF(ABS(DEL1).LE.1.0D-6) GO TO 30
IS=2
DEL2=COORD(LA,I)-COORD(LA,J)
ELSEIF(KA.GT.0.AND.LA.EQ.0) THEN
C (P/S) TERM
IS=5
IF(IX.EQ.KA) GO TO 20
IF(ABS(DEL1).LE.1.0D-6) GO TO 30
IS=4
DEL2=COORD(KA,I)-COORD(KA,J)
ELSE
C (P/P) TERM
IF(KA.EQ.LA) THEN
C P/P
IS=9
IF(IX.EQ.KA) GO TO 20
IF(ABS(DEL1).LE.1.0D-6) GO TO 30
C P'/P'
IS=8
DEL2=COORD(KA,I)-COORD(KA,J)
ELSEIF(IX.NE.KA.AND.IX.NE.LA) THEN
C P'/P"
IF(ABS(DEL1).LE.1.0D-6) GO TO 30
IS=7
DEL2=COORD(KA,I)-COORD(KA,J)
DEL3=COORD(LA,I)-COORD(LA,J)
ELSE
C P/P' OR P'/P
DEL2=COORD(KA+LA-IX,I)-COORD(KA+LA-IX,J)
IS=6
ENDIF
ENDIF
C
C CALCULATE OVERLAP DERIVATIVES, STORE RESULTS IN DS
C
20 CALL DERS(KG,LG,RR,DEL1,DEL2,DEL3,IS,IOL)
30 CONTINUE
IF(.NOT.MINDO3.AND.IX.EQ.1) READ (2) (G(I22),I22=1,22)
IF(.NOT.MINDO3) CALL DELRI(DG,NI,NJ,R0,DEL1)
CALL DELMOL(COORD,I,J,NI,NJ,IA,ID,JA,JD,IX,RIJ,DEL1,ISP)
C
C THE FIRST DERIVATIVE OF NUCLEAR REPULSION TERM
IF(MINDO3)THEN
II=MAX(NI,NJ)
NBOND=(II*(II-1))/2+NI+NJ-II
ALPHA=0
IF(NBOND.LT.154)THEN
ALPHA=ALP3(NBOND)
ELSE
ALPH1=100
ALPH2=100
IF(NATORB(NI).EQ.0)ALPH1=ALPA(NI)
IF(NATORB(NJ).EQ.0)ALPH2=ALPA(NJ)
ENDIF
C2=(7.1995D0/F03(NI)+7.1995D0/F03(NJ))**2
C1=DEL1/RIJ*CORE(NI)*CORE(NJ)*14.399D0
C3=DEL1/RIJ*ABS(CORE(NI)*CORE(NJ))*14.399D0
IF(NBOND.EQ.22.OR.NBOND.EQ.29)THEN
TERMNC=-C1*ALPHA*(1.D0/RIJ**2 - RIJ*(RIJ**2+C2)**(-1.5D0)
1 + 1.D0/RIJ - 1.D0/SQRT(RIJ**2+C2)) * EXP(-RIJ) -
2C1*RIJ*(RIJ**2+C2)**(-1.5D0)
ELSEIF (RIJ.LT.1.D0.AND.NATORB(NI)*NATORB(NJ).EQ.0) THEN
TERMNC=0.D0
ELSEIF(NBOND.GE.154) THEN
C
C SPECIAL CASE INVOLVING SPARKLES
C
EXP1=EXP(-MIN(ALPH1*RIJ,20.D0))
EXP2=EXP(-MIN(ALPH2*RIJ,20.D0))
PART1=-C3*(1.D0/RIJ**2 - RIJ*(RIJ**2+C2)**(-1.5D0))
1*(EXP1+EXP2)
PART2=-C3*(1.D0/RIJ -1.D0/SQRT(RIJ**2+C2))
1*(ALPH1*EXP1 + ALPH2*EXP2)
PART3=-C1*RIJ*(RIJ**2+C2)**(-1.5D0)
TERMNC=PART1+PART2+PART3
C# WRITE(6,'(4F13.6)')PART1,PART2,PART3,TERMNC
ELSE
TERMNC=-C1*(1.D0/RIJ**2 - RIJ*(RIJ**2+C2)**(-1.5D0) +
1ALPHA/RIJ - ALPHA/SQRT(RIJ**2+C2)) * EXP(-ALPHA*RIJ) -
2C1*RIJ*(RIJ**2+C2)**(-1.5D0)
ENDIF
DR1=DEL1/RIJ*14.399D0*RIJ*(RIJ**2+C2)**(-1.5D0)
ELSE
C
C CORE-CORE TERMS, MNDO AND AM1
C
C
C SPECIAL TREATMENT FOR N-H AND O-H TERMS
C
IF(RIJ.LT.1.D0.AND.NATORB(NI)*NATORB(NJ).EQ.0)THEN
TERMNC=0.D0
GOTO 50
ENDIF
C1=CORE(NI)*CORE(NJ)
IF(NI.EQ.1.AND.(NJ.EQ.7.OR.NJ.EQ.8)) THEN
F3=1.0D0+EXP(-ALPA(1)*RIJ)+RIJ*EXP(-ALPA(NJ)*RIJ)
DD=(DG(1)*F3-G(1)*(DEL1/RIJ)*(ALPA(1)*EXP(-ALPA(1)*RIJ)
1 +(ALPA(NJ)*RIJ-1.0D0)*EXP(-ALPA(NJ)*RIJ)))*C1
ELSEIF((NI.EQ.7.OR.NI.EQ.8).AND.NJ.EQ.1) THEN
F3=1.0D0+EXP(-ALPA(1)*RIJ)+RIJ*EXP(-ALPA(NI)*RIJ)
DD=(DG(1)*F3-G(1)*(DEL1/RIJ)*(ALPA(1)*EXP(-ALPA(1)*RIJ)
1 +(ALPA(NI)*RIJ-1.0D0)*EXP(-ALPA(NI)*RIJ)))*C1
ELSE
C# ELSEIF(NATORB(NI)+NATORB(NJ).EQ.0) THEN
C
C SPECIAL CASE OF TWO SPARKLES
C
PART1=DG(1)*C1
PART2=-(G(1)*(DEL1/RIJ)*(ALPA(NI)*EXP(-ALPA(NI)*RI
1J) +ALPA(NJ)*EXP(-ALPA(NJ)*RIJ)))*ABS(C1)
PART3=DG(1)*(EXP(-ALPA(NI)*RIJ)+EXP(-ALPA(NJ)*RIJ))*ABS(C
11)
DD=PART1+PART2+PART3
C# WRITE(6,'(4F13.6)')PART1,PART2,PART3,DD
C# ELSE
C
C THE GENERAL CASE
C
C# F3=1.0D0+EXP(-ALPA(NI)*RIJ)+EXP(-ALPA(NJ)*RIJ)
C# DD=(DG(1)*F3-G(1)*(DEL1/RIJ)*(ALPA(NI)*EXP(-ALPA(NI)*RI
C# 1J) +ALPA(NJ)*EXP(-ALPA(NJ)*RIJ)))*C1
ENDIF
TERMNC=DD
ENDIF
C
C **** START OF THE AM1 SPECIFIC DERIVATIVE CODE ***
C
C ANALYT=-A*(1/(R*R)+2.D0*B*(R-C)/R)*EXP(-B*(R-C)**2)
C
C ANALYTICAL DERIVATIVES
C
IF( AM1 )THEN
ANAM1=0.D0
DO 40 IG=1,10
IF(ABS(FN1(NI,IG)).GT.0.D0)
1ANAM1=ANAM1+FN1(NI,IG)*
2(1.D0/(RIJ*RIJ)+2.D0*FN2(NI,IG)*(RIJ-FN3(NI,IG))/RIJ)*
3EXP(MAX(-30.D0,-FN2(NI,IG)*(RIJ-FN3(NI,IG))**2))
IF(ABS(FN1(NJ,IG)).GT.0.D0)
1ANAM1=ANAM1+FN1(NJ,IG)*
2(1.D0/(RIJ*RIJ)+2.D0*FN2(NJ,IG)*(RIJ-FN3(NJ,IG))/RIJ)*
3EXP(MAX(-30.D0,-FN2(NJ,IG)*(RIJ-FN3(NJ,IG))**2))
40 CONTINUE
ANAM1=ANAM1*CORE(NI)*CORE(NJ)
TERMNC=TERMNC-ANAM1*DEL1/RIJ
ENDIF
C
C **** END OF THE AM1 SPECIFIC DERIVATIVE CODE ***
C
50 CONTINUE
C
C COMBINE TOGETHER THE OVERLAP DERIVATIVE PARTS
C
IF(MINDO3)THEN
II=MAX(NI,NJ)
NBOND=(II*(II-1))/2+NI+NJ-II
IF(NBOND.GT.153)GOTO 60
BI(1)=BETA3(NBOND)*VS(NI)*2.D0
BI(2)=BETA3(NBOND)*VP(NI)*2.D0
BI(3)=BI(2)
BI(4)=BI(2)
BJ(1)=BETA3(NBOND)*VS(NJ)*2.D0
BJ(2)=BETA3(NBOND)*VP(NJ)*2.D0
BJ(3)=BJ(2)
BJ(4)=BJ(2)
60 CONTINUE
ELSE
BI(1)=BETAS(NI)
BI(2)=BETAP(NI)
BI(3)=BI(2)
BI(4)=BI(2)
BJ(1)=BETAS(NJ)
BJ(2)=BETAP(NJ)
BJ(3)=BJ(2)
BJ(4)=BJ(2)
ENDIF
C
C CODE COMMON TO MINDO/3, MNDO, AND AM1
C
IOL=0
DO 70 K=IA,ID
DO 70 L=JA,JD
LK=L+K*(K-1)/2
TERMK=BI(K-IA+1)
TERML=BJ(L-JA+1)
IOL=IOL+1
TERMAB=TERMAB+(TERMK+TERML)
1*PSUM(LK)*DS(IOL)
70 CONTINUE
IF(MINDO3)THEN
C
C FIRST, CORE-ELECTRON ATTRACTION DERIVATIVES (MINDO/3)
C
C ATOM CORE I AFFECTING A.O.S ON J
DO 80 M=JA,JD
MN=(M*(M+1))/2
80 TERMAB=TERMAB+CORE(NI)*PSUM(MN)*DR1
C ATOM CORE J AFFECTING A.O.S ON I
DO 90 M=IA,ID
MN=(M*(M+1))/2
90 TERMAB=TERMAB+CORE(NJ)*PSUM(MN)*DR1
C
C NOW FOR COULOMB AND EXCHANGE TERMS (MINDO/3)
C
DO 100 I1=IA,ID
II=(I1*(I1+1))/2
DO 100 J1=JA,JD
JJ=(J1*(J1+1))/2
IJ=J1+(I1*(I1-1))/2
C
C COULOMB TERM
C
TERMAA=TERMAA-PSUM(II)*DR1*PSUM(JJ)
C
C EXCHANGE TERM
C
TERMAA=TERMAA+(PALPHA(IJ)*PALPHA(IJ)+PBETA(IJ)*PBETA(I
1J))*DR1
100 CONTINUE
ELSE
C
C FIRST, CORE-ELECTRON ATTRACTION DERIVATIVES (MNDO AND AM1)
C
C ATOM CORE I AFFECTING A.O.S ON J
ISP=0
DO 110 M=JA,JD
BB=1.D0
DO 110 N=M,JD
MN=M+N*(N-1)/2
ISP=ISP+1
TERMAB=TERMAB-BB*CORE(NI)*PSUM(MN)*DR(ISP)
110 BB=2.D0
C ATOM CORE J AFFECTING A.O.S ON I
K=MAX(JD-JA+1,1)
K=(K*(K+1))/2
ISP=-K+1
DO 120 M=IA,ID
BB=1.D0
DO 120 N=M,ID
MN=M+N*(N-1)/2
ISP=ISP+K
TERMAB=TERMAB-BB*CORE(NJ)*PSUM(MN)*DR(ISP)
120 BB=2.D0
ISP=0
C
C NOW FOR COULOMB AND EXCHANGE TERMS (MNDO AND AM1)
C
DO 140 K=IA,ID
AA=1.D0
KK=(K*(K-1))/2
DO 140 L=K,ID
LL=(L*(L-1))/2
DO 130 M=JA,JD
BB=1.D0
DO 130 N=M,JD
ISP=ISP+1
KL=K+LL
MN=M+N*(N-1)/2
C
C COULOMB TERM
C
TERMAA=TERMAA+AA*BB*PSUM(KL)*PSUM(MN)*DR(ISP)
MK=M+KK
NK=N+KK
ML=M+LL
NL=N+LL
C
C EXCHANGE TERM
C
TERMAA= TERMAA-0.5D0*AA*BB*(PALPHA(M
1K)*PALPHA(NL)+PALPHA(NK)*PALPHA(ML)+PBETA(MK)*PBETA(NL)+PBETA(NK)*
2PBETA(ML))*DR(ISP)
130 BB=2.D0
140 AA=2.D0
C END OF MNDO AND AM1 SPECIFIC CODE
ENDIF
EAA(IX)=EAA(IX)+TERMAA
EAB(IX)=EAB(IX)+TERMAB
ENUC(IX)=ENUC(IX)+TERMNC
150 CONTINUE
C# WRITE(6,*)EAA,EAB,ENUC,NAT(1),NAT(2)
160 CONTINUE
170 CONTINUE
DO 180 J=1,3
ENG(J)=EAA(J)+EAB(J)+ENUC(J)
ENG(J) = -ENG(J)*23.061D0
180 CONTINUE
RETURN
END
|