1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C this subroutine is moved to the top of the
C source file in order to resolve the mis-
C matching parameter types later in code.
C 2005-10-11 Tommi Hassinen
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE EC08C(A,B,VALUE,VEC,N,IV,W)
C
C TO FIND THE EIGENVALUES AND VECTORS OF A TRI-DIAGONAL
C HERMITIAN MATRIX.
REAL VALUE(*),W(*),PCK(2),ONE,ZERO,VEC(*)
COMPLEX A(*),B(*),DN,UPCK
EQUIVALENCE (PCK(1),UPCK)
C WE TREAT VEC AS IF IT IS DEFINED AS COMPLEX VEC(IV,N)
C IN THE CALLING PROGRAM.
DATA ONE, ZERO/1.0,0.0/
IV2=IV+IV
N2=N+N
IL=IV2*(N-1)+1
W(1)=A(1)
C
C THE HERMITIAN FORM IS TRANSFORMED INTO A REAL FORM
IF(N-1)80,80,10
10 DO 20 I=2,N
W(I)=A(I)
20 W(I+N)=CABS(B(I))
C
C FIND THE EIGENVALUES AND VECTORS OF THE REAL FORM
30 CALL EA08C(W,W(N+1),VALUE,VEC,N,IV2,W(N2+1))
C
C THE VECTORS IN VEC AT THIS POINT ARE REAL,WE NOW EXPAND THEM
C INTO VEC AS THOUGH THEY WERE COMPLEX.
DO 50 I=1,IL,IV2
DO 40 J=1,N
K=N-J
L=K+K
40 VEC(I+L)=VEC(I+K)
50 VEC(I+1)=ZERO
IF(N.LE.1)GO TO 80
DN=ONE
K=1
C
C TRANSFORM VECTORS OF REAL FORM TO THOSE OF COMPLEX FORM.
DO 70 I=4,N2,2
K=K+1
UPCK=ONE
IF(W(K+N).NE.ZERO)UPCK=DN*CONJG(B(K))/W(K+N)
I1=IL-1+I
DO 60 J=I,I1,IV2
VEC(J)=VEC(J-1)*PCK(2)
60 VEC(J-1)=VEC(J-1)*PCK(1)
70 DN=UPCK
80 RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C this subroutine is moved to the top of the
C source file in order to resolve the mis-
C matching parameter types later in code.
C 2005-10-11 Tommi Hassinen
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE ME08B (A,Q,B,N,IA)
REAL A(IA,*),Q(2,*),B(IA,*)
DO 10 I=1,N
A(1,I)=A(1,I) -Q(1,1)*B(1,I)+Q(2,1)*B(2,I)
1 -Q(1,I)*B(1,1)+Q(2,I)*B(2,1)
10 A(2,I)=A(2,I)-Q(2,1)*B(1,I)-Q(1,1)*B(2,I)
1 +Q(2,I)*B(1,1)+Q(1,I)*B(2,1)
RETURN
END
SUBROUTINE CDIAG(A,VALUE,VEC,N, NEED)
C
C TO FIND THE EIGENVALUES AND EIGENVECTORS OF A HERMITIAN MATRIX.
REAL VALUE(*),H
COMPLEX W(6000)
COMPLEX A(N,*),VEC(N,*)
COMPLEX FM06AS
IA=N
IV=N
C
C REDUCE MATRIX TO A TRI-DIAGONAL HERMITIAN MATRIX.
CALL ME08A(A,W,W(N+1),N,IA,W(2*N+1))
C
C FIND THE EIGENVALUES AND EIGENVECTORS OF THE TRI-DIAGONAL MATRIX
CALL EC08C(W,W(N+1),VALUE,VEC,N,IV,W(2*N+1))
IF(NEED.EQ.0) GOTO 50
IF(N.LT.2)RETURN
C
C THE EIGENVECTORS OF THE ORIGINAL MATRIX ARE NOW FOUND BY
C BACK TRANSFORMATION USING INFORMATION STORE IN THE UPPER
C TRIANGLE OF MATRIX A (BY ME08)
DO 40 II=3,N
I=N-II+1
H=W(N+I+1)*CONJG(A(I,I+1))
IF(H)10,40,10
10 DO30L=1,N
I1=I+1
S=FM06AS(N-I,A(I,I+1),IA,VEC(I+1,L),1)
S=S/H
DO20K=I1,N
20 VEC(K,L)=VEC(K,L)+CONJG(A(I,K))*S
30 CONTINUE
40 CONTINUE
50 CALL SORT(VALUE,VEC,N)
RETURN
END
SUBROUTINE EA08C(A,B,VALUE,VEC,M,IV,W)
C STANDARD FORTRAN 66 (A VERIFIED PFORT SUBROUTINE)
DIMENSION A(*),B(*),VALUE(*),VEC(*),W(*)
DATA EPS/1.E-6/,A34/0.0/
C THIS USES QR ITERATION TO FIND THE EIGENVALUES AND EIGENVECTORS
C OF THE SYMMETRIC TRIDIAGONAL MATRIX WHOSE DIAGONAL ELEMENTS ARE
C A(I),I=1,M AND OFF-DIAGONAL ELEMENTS ARE B(I),I=2,M. THE ARRAY
C W IS USED FOR WORKSPACE AND MUST HAVE DIMENSION AT LEAST 2*M.
C WE TREAT VEC AS IF IT HAD DIMENSIONS (IV,M).
SML=EPS*FLOAT(M)
CALL EA09C(A,B,W(M+1),M,W)
C SET VEC TO THE IDENTITY MATRIX.
DO 20 I=1,M
VALUE(I)=A(I)
W(I)=B(I)
K=(I-1)*IV+1
L=K+M-1
DO 10 J=K,L
10 VEC(J)=0.
KI=K+I-1
20 VEC(KI)=1.
K=0
IF(M.EQ.1)RETURN
DO 100 N3=2,M
N2=M+2-N3
C EACH QR ITERATION IS PERFORMED OF ROWS AND COLUMNS N1 TO N2
MN2=M+N2
ROOT=W(MN2)
DO 80 ITER=1,20
BB=(VALUE(N2)-VALUE(N2-1))*0.5
CC=W(N2)*W(N2)
A22=VALUE(N2)
IF(CC.NE.0.0)A22=A22+CC/(BB+SIGN(1.0,BB)*SQRT(BB*BB+CC))
DO 30 I=1,N2
MI=M+I
IF(ABS(ROOT-A22).LE.ABS(W(MI)-A22))GO TO 30
ROOT=W(MI)
MN=M+N2
W(MI)=W(MN)
W(MN)=ROOT
30 CONTINUE
DO 40 II=2,N2
N1=2+N2-II
IF(ABS(W(N1)).LE.(ABS(VALUE(N1-1))+ABS(VALUE(N1)))*SML)GO
1 TO 50
40 CONTINUE
N1=1
50 IF(N2.EQ.N1) GO TO 100
N2M1=N2-1
IF(ITER.GE.3)ROOT=A22
K=K+1
A22=VALUE(N1)
A12=A22-ROOT
A23=W(N1+1)
A13=A23
DO70 I=N1,N2M1
A33=VALUE(I+1)
IF(I.NE.N2M1)A34=W (I+2)
S=SIGN(SQRT(A12*A12+A13*A13),A12)
SI=A13/S
CO=A12/S
JK=I*IV+1
J1=JK-IV
J2=J1+MIN0(M,I+K)-1
DO 60 JI=J1,J2
V1=VEC(JI)
V2=VEC(JK)
VEC(JI)=V1*CO+V2*SI
VEC(JK)=V2*CO-V1*SI
60 JK=JK+1
IF(I.NE.N1) W(I)=S
A11=CO*A22+SI*A23
A12=CO*A23+SI*A33
A13=SI*A34
A21=CO*A23-SI*A22
A22=CO*A33-SI*A23
A23=CO*A34
VALUE(I)=A11*CO+A12*SI
A12=-A11*SI+A12*CO
W(I+1)=A12
70 A22=A22*CO-A21*SI
80 VALUE(N2)=A22
WRITE(6,90)
90 FORMAT(48H1CYCLE DETECTED IN SUBROUTINE EA08 -STOPPING NOW)
STOP
100 CONTINUE
C RAYLEIGH QUOTIENT
DO 120 J=1,M
K=(J-1)*IV
XX=VEC(K+1)**2
XAX=XX*A(1)
DO 110 I=2,M
KI=K+I
XX=XX+VEC(KI)**2
110 XAX=XAX+VEC(KI)*(2.*B(I)*VEC(KI-1)+A(I)*VEC(KI))
120 VALUE(J)=XAX/XX
RETURN
END
SUBROUTINE EA09C(A,B,VALUE,M,OFF)
C STANDARD FORTRAN 66 (A VERFIED PFORT SUBROUTINE)
DIMENSION A(*),B(*),VALUE(*),OFF(*)
DATA A34/0.0/,EPS/1.0E-6/
SML=EPS*FLOAT(M)
VALUE(1)=A(1)
IF(M.EQ.1)RETURN
DO 10 I=2,M
VALUE(I)=A(I)
10 OFF(I)=B(I)
C EACH QR ITERATION IS PERFORMED OF ROWS AND COLUMNS N1 TO N2
MAXIT=10*M
DO 80 ITER=1,MAXIT
DO 40 N3=2,M
N2=M+2-N3
DO 20 II=2,N2
N1=2+N2-II
IF(ABS(OFF(N1)).LE.(ABS(VALUE(N1-1))+ABS(VALUE(N1)))*SML)
1GO TO 30
20 CONTINUE
N1=1
30 IF(N2.NE.N1) GO TO 50
40 CONTINUE
RETURN
C ROOT IS THE EIGENVALUE OF THE BOTTOM 2*2 MATRIX THAT IS NEAREST
C TO THE LAST MATRIX ELEMENT AND IS USED TO ACCELERATE THE
C CONVERGENCE
50 BB=(VALUE(N2)-VALUE(N2-1))*0.5
CC=OFF(N2)*OFF(N2)
SBB=1.
IF(BB.LT.0.)SBB=-1.
ROOT=VALUE(N2)+CC/(BB+SBB*SQRT(BB*BB+CC))
N2M1=N2-1
60 A22=VALUE(N1)
A12=A22-ROOT
A23=OFF(N1+1)
A13=A23
DO 70 I=N1,N2M1
A33=VALUE(I+1)
IF(I.NE.N2M1)A34=OFF(I+2)
S=SQRT(A12*A12+A13*A13)
SI=A13/S
CO=A12/S
IF(I.NE.N1)OFF(I)=S
A11=CO*A22+SI*A23
A12=CO*A23+SI*A33
A13=SI*A34
A21=CO*A23-SI*A22
A22=CO*A33-SI*A23
A23=CO*A34
VALUE(I)=A11*CO+A12*SI
A12=-A11*SI+A12*CO
OFF(I+1)=A12
70 A22=A22*CO-A21*SI
80 VALUE(N2)=A22
WRITE(6,90)
90 FORMAT(39H1LOOPING DETECTED IN EA09-STOPPING NOW )
STOP
END
COMPLEX FUNCTION FM06AS(N,A,IA,B,IB)
IMPLICIT COMPLEX (A-H,O-Z)
COMPLEX A(*), B(*)
*******************************************************
*
* FM06AS - A FUNCTION ROUTINE TO COMPUTE THE VALUE OF THE
* INNER PRODUCT, OR DOT PRODUCT, OF TWO SINGLE PRECISION
* COMPLEX VECTORS, ACCUMULATING THE INTERMEDIATE PRODUCTS
* DOUBLE PRECISION. THE ELEMENTS OF EACH VECTOR CAN BE
* STORED IN ANY FIXED DISPLACEMENT FROM NEIGHBOURING
* ELEMENTS.
*
* COMPUTES: SUM(J=1,N) A((J-1)*IA+1)*B((J-1)*IB+1)
*
* W = FM06AS(N,A,IA,B,IB)
*
* N INTEGER SCALAR; (USER:*); LENGTH OF THE VECTORS A AND B.
* IF N <= 0 THE INNER PRODUCT VALUE IS DEFINED TO BE ZERO.
* A COMPLEX*8 ARRAY((N-1)*IABS(IA)+1); (USER:*); THE ARRAY
* CONTAINING THE 1ST VECTOR. THE FORTRAN CONVENTION OF STORING
* REAL AND IMAGINARY PARTS IN ADJACENT WORDS IS ASSUMED.
* IA INTEGER SCALAR; (USER:*); THE SUBSCRIPT DISPLACEMENT OF
* AN ELEMENT IN THE ARRAY A TO ITS NEIGHBOUR, I.E. THE VECTOR
* ELEMENTS ARE IN A(1), A(IA+1), A(2*IA+1),...
* IF IA < 0 THE ELEMENTS ARE ASSUMED TO BE STORED IN
* A(1-(N-1)*IA), A(1-(N-2)*IA),..., A(1-IA), A(1).
* B COMPLEX*8 ARRAY((N-1)*IABS(IA)+1); (USER:*); THE ARRAY
* CONTAINING THE SECOND VECTOR. TREAT LIKE A.
* IB INTEGER SCALAR; (USER:*); THE SUBSCRIPT DISPLACEMENT OF
* AN ELEMENT IN B TO ITS NEIGHBOUR. TREAT LIKE IA.
* FM06AS COMPLEX FUNCTION; (*:FM06AS); THE INNER PRODUCT VALUE.
* IT IS RETURNED DOUBLE PRECISION, THE REAL PART IN FLT PNT
* REG 0 AND THE IMAGINARY PART IN FLT PNT REG 2.
*
* THIS ROUTINE IS WRITTEN IN FORTRAN.
*
*--------------------------------------------------------*
SUM=(0.0,0.0)
DO 10 I=1,N
10 SUM=SUM+A((I-1)*IA+1)*B((I-1)*IB+1)
FM06AS=SUM
RETURN
END
COMPLEX FUNCTION FM06BS(N,A,IA,B,IB)
IMPLICIT COMPLEX (A-H,O-Z)
COMPLEX A(*), B(*)
*******************************************************
*
* FM06BS - A FUNCTION ROUTINE TO COMPUTE THE VALUE OF THE
* INNER PRODUCT, OR DOT PRODUCT, OF A SIGLE PRECISION
* COMPLEX VECTORS, ACCUMULATING THE INTERMEDIATE PRODUCTS
* DOUBLE PRECISION. THE ELEMENTS OF EACH VECTOR CAN BE
* STORED IN ANY FIXED DISPLACEMENT FROM NEIGHBOURING
* ELEMENTS.
*
* COMPUTES: SUM(J=1,N) A((J-1)*IA+1)*B((J-1)*IB+1)
*
* W = FM06BS(N,A,IA,B,IB)
*
* N INTEGER SCALAR; (USER:*); LENGTH OF THE VECTORS A AND B.
* IF N <= 0 THE INNER PRODUCT VALUE IS DEFINED TO BE ZERO.
* A COMPLEX*8 ARRAY((N-1)*IABS(IA)+1); (USER:*); THE ARRAY
* CONTAINING THE 1ST VECTOR. THE FORTRAN CONVENTION OF STORING
* REAL AND IMAGINARY PARTS IN ADJACENT WORDS IS ASSUMED.
* IA INTEGER SCALAR; (USER:*); THE SUBSCRIPT DISPLACEMENT OF
* AN ELEMENT IN THE ARRAY A TO ITS NEIGHBOUR, I.E. THE VECTOR
* ELEMENTS ARE IN A(1), A(IA+1), A(2*IA+1),...
* IF IA < 0 THE ELEMENTS ARE ASSUMED TO BE STORED IN
* A(1-(N-1)*IA), A(1-(N-2)*IA),..., A(1-IA), A(1).
* B COMPLEX*8 ARRAY((N-1)*IABS(IA)+1); (USER:*); THE ARRAY
* CONTAINING THE SECOND VECTOR. TREAT LIKE A.
* IB INTEGER SCALAR; (USER:*); THE SUBSCRIPT DISPLACEMENT OF
* AN ELEMENT IN B TO ITS NEIGHBOUR. TREAT LIKE IA.
* FM06BS COMPLEX FUNCTION; (*:FM06BS); THE INNER PRODUCT VALUE.
* IT IS RETURNED DOUBLE PRECISION, THE REAL PART IN FLT PNT
* REG 0 AND THE IMAGINARY PART IN FLT PNT REG 2.
*
* THIS ROUTINE IS WRITTEN IN FORTRAN.
*
*--------------------------------------------------------*
SUM=(0.0,0.0)
DO 10 I=1,N
10 SUM=SUM+A((I-1)*IA+1)*CONJG(B((I-1)*IB+1))
FM06BS=SUM
RETURN
END
SUBROUTINE ME08A(A,ALPHA,BETA,N,IA,Q)
COMPLEX A(IA,*),ALPHA(*),BETA(*),Q(*),CW,QJ
COMPLEX FM06AS,FM06BS
REAL PP,ZERO,P5,H
REAL S1,PP1
DATA ZERO/0.0/, P5 /0.50/
C**************************************************************
C THE REDUCTION OF FULL HERMITIAN MATRIX INTO TRI-DIAGONAL HERMITIAN
C FORM IS DONE IN N-2 STEPS.AT THE I TH STEP ZEROS ARE INTRODUCED IN
C THE I TH ROW AND COLUMNS WITHOUT DESTROYING PREVIOUSLY PRODUCED ZEROS
C
C H
C AT THE I TH STEP WE HAVE A =P A P WITH P =I-U U /K
C I I I-1 I I I I I
C
C WHERE U =(0,0,...,A (1+S /T ),A ,...,A )
C I I,I+1 I I I,I+2 I,N
C 2 N 2 2 2
C S = SUM ] A ] K =S +T AND T = SQRT(]A ] S )
C I J=I+1 I,J I I I I I,I+1 I
C
C COMPUTATIONAL DETAILS AT THE I TH STAGE ARE (1) FORM S ,K THEN
C I I
C
C H H H
C (2) Q =A U /K (3) Q =Q -.5U (U Q /K ) (4) A =A -U Q -Q U
C I I-1 I I I I I I I I I I-1 I I I I
C
C THE VECTORS U BEING APPROPIATELY IN A.
IF(N.LE.0)GO TO 90
DO 10 J=1,N
ALPHA(J)=A(J,J)
DO 10 I=1,J
10 A(I,J)=CONJG(A(J,I))
IF(N-2)90,80,20
20 N2=N-2
DO 60 I=1,N2
I1=I+1
C (1)
CW=FM06BS(N-I,A(I,I+1),IA,A(I,I+1),IA)
PP=CW
PP1=SQRT(PP)
BETA(I+1)=CMPLX(-PP1,ZERO)
S1=CABS(A(I,I+1))
IF(S1.GT.ZERO)BETA(I+1)=BETA(I+1)*A(I,I+1)/S1
IF(PP.LE.1.D-15)GO TO 60
H=PP+PP1*S1
A(I,I+1)=A(I,I+1)-BETA(I+1)
C (2)
DO 30 K=I1,N
QJ=FM06AS(-(I-K),A(I+1,K),1,A(I,I+1),IA)
QJ=FM06BS(N-K,A(K,K+1),IA,A(I,K+1),IA)+CONJG(QJ)
30 Q(K)=QJ/H
C (3)
CW=FM06AS(N-I,A(I,I+1),IA,Q(I+1),1)
PP=CW*P5/H
DO 40 K=I1,N
40 Q(K)=Q(K)-PP*CONJG(A(I,K))
C (4)
DO 50 K=I1,N
50 CALL ME08B (A(K,K),Q(K),A(I,K),N-K+1,IA*2)
60 CONTINUE
DO 70 I=2,N
QJ=ALPHA(I)
ALPHA(I)=A(I,I)
70 A(I,I)=QJ
80 BETA(N)=A(N-1,N)
90 RETURN
END
SUBROUTINE SORT(VAL,VEC,N)
COMPLEX VEC(N,*), SUM
REAL VAL(*)
DO 30 I=1,N
X=1.E9
DO 10 J=I,N
IF(VAL(J).LT.X) THEN
K=J
X=VAL(J)
ENDIF
10 CONTINUE
DO 20 J=1,N
SUM=VEC(J,K)
VEC(J,K)=VEC(J,I)
20 VEC(J,I)=SUM
VAL(K)=VAL(I)
VAL(I)=X
30 CONTINUE
RETURN
END
|