1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
SUBROUTINE DCART (COORD,DXYZ)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*), DXYZ(3,*)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /DENSTY/ P(MPACK), PA(MPACK), PB(MPACK)
C***********************************************************************
C
C DCART CALCULATES THE DERIVATIVES OF THE ENERGY WITH RESPECT TO THE
C CARTESIAN COORDINATES. THIS IS DONE BY FINITE DIFFERENCES.
C
C THE MAIN ARRAYS IN DCART ARE:
C DXYZ ON EXIT CONTAINS THE CARTESIAN DERIVATIVES.
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /EULER / TVEC(3,3), ID
COMMON /MOLMEC/ HTYPE(4),NHCO(4,20),NNHCO,ITYPE
COMMON /UCELL / L1L,L2L,L3L,L1U,L2U,L3U
COMMON /DCARTC/ K1L,K2L,K3L,K1U,K2U,K3U
COMMON /NUMCAL/ NUMCAL
C COSMO change
LOGICAL ISEPS, USEPS , UPDA
COMMON /ISEPS/ ISEPS, USEPS, UPDA
C end of COSMO change
CHARACTER*241 KEYWRD
DIMENSION PDI(171),PADI(171),PBDI(171),
1CDI(3,2),NDI(2),LSTOR1(6), LSTOR2(6), ENG(3)
LOGICAL DEBUG, FORCE, MAKEP, ANADER, LARGE
EQUIVALENCE (LSTOR1(1),L1L), (LSTOR2(1), K1L)
SAVE CHNGE, CHNGE2, ANADER, DEBUG, FORCE
DATA ICALCN/0/
DATA CHNGE /1.D-4/
CHNGE2=CHNGE*0.5D0
*
* CHNGE IS A MACHINE-PRECISION DEPENDENT CONSTANT
* CHNGE2=CHNGE/2
*
IF (ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
LARGE = (INDEX(KEYWRD,'LARGE') .NE. 0)
ANADER= (INDEX(KEYWRD,'ANALYT') .NE. 0)
DEBUG = (INDEX(KEYWRD,'DCART') .NE. 0)
FORCE = (INDEX(KEYWRD,'PREC')+INDEX(KEYWRD,'FORCE') .NE. 0)
ENDIF
NCELLS=(L1U-L1L+1)*(L2U-L2L+1)*(L3U-L3L+1)
DO 10 I=1,6
LSTOR2(I)=LSTOR1(I)
10 LSTOR1(I)=0
IOFSET=(NCELLS+1)/2
NUMTOT=NUMAT*NCELLS
DO 20 I=1,NUMTOT
DO 20 J=1,3
20 DXYZ(J,I)=0.D0
IF(ANADER) REWIND 2
DO 130 II=1,NUMAT
III=NCELLS*(II-1)+IOFSET
IM1=II
IF=NFIRST(II)
IM=NMIDLE(II)
IL=NLAST(II)
NDI(2)=NAT(II)
DO 30 I=1,3
30 CDI(I,2)=COORD(I,II)
DO 130 JJ=1,IM1
JJJ=NCELLS*(JJ-1)
C FORM DIATOMIC MATRICES
JF=NFIRST(JJ)
JM=NMIDLE(JJ)
JL=NLAST(JJ)
C GET FIRST ATOM
NDI(1)=NAT(JJ)
MAKEP=.TRUE.
DO 120 IK=K1L,K1U
DO 120 JK=K2L,K2U
DO 120 KL=K3L,K3U
JJJ=JJJ+1
* KKK=KKK-1
DO 40 L=1,3
40 CDI(L,1)=COORD(L,JJ)+TVEC(L,1)*IK+TVEC(L,2)*JK+TVEC
1(L,3)*KL
IF(.NOT. MAKEP) GOTO 90
MAKEP=.FALSE.
IJ=0
DO 50 I=JF,JL
K=I*(I-1)/2+JF-1
DO 50 J=JF,I
IJ=IJ+1
K=K+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
50 PDI(IJ)=P(K)
C GET SECOND ATOM FIRST ATOM INTERSECTION
DO 80 I=IF,IL
L=I*(I-1)/2
K=L+JF-1
DO 60 J=JF,JL
IJ=IJ+1
K=K+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
60 PDI(IJ)=P(K)
K=L+IF-1
DO 70 L=IF,I
K=K+1
IJ=IJ+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
70 PDI(IJ)=P(K)
80 CONTINUE
90 CONTINUE
IF(II.EQ.JJ) GOTO 120
IF(ANADER)THEN
CALL ANALYT(PDI,PADI,PBDI,CDI,NDI,JF,JL,IF,IL
1, ENG)
DO 100 K=1,3
DXYZ(K,III)=DXYZ(K,III)-ENG(K)
100 DXYZ(K,JJJ)=DXYZ(K,JJJ)+ENG(K)
ELSE
IF( .NOT. FORCE) THEN
CDI(1,1)=CDI(1,1)+CHNGE2
CDI(2,1)=CDI(2,1)+CHNGE2
CDI(3,1)=CDI(3,1)+CHNGE2
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF,IM
1,IL, AA,1)
ENDIF
DO 110 K=1,3
IF( FORCE )THEN
CDI(K,2)=CDI(K,2)-CHNGE2
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF
1,IM,IL, AA,1)
ENDIF
CDI(K,2)=CDI(K,2)+CHNGE
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF,IM
1,IL, EE,2)
CDI(K,2)=CDI(K,2)-CHNGE2
IF( .NOT. FORCE) CDI(K,2)=CDI(K,2)-CHNGE2
DERIV=(AA-EE)*23.061D0/CHNGE
DXYZ(K,III)=DXYZ(K,III)-DERIV
DXYZ(K,JJJ)=DXYZ(K,JJJ)+DERIV
110 CONTINUE
ENDIF
120 CONTINUE
130 CONTINUE
IF(NNHCO.NE.0)THEN
C
C NOW ADD IN MOLECULAR-MECHANICS CORRECTION TO THE H-N-C=O TORSION
C
DEL=1.D-8
DO 160 I=1,NNHCO
DO 150 J=1,4
DO 140 K=1,3
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))-DEL
CALL DIHED(COORD,NHCO(1,I),NHCO(2,I),NHCO(3,I),NHCO(4,
1I),ANGLE)
REFH=HTYPE(ITYPE)*SIN(ANGLE)**2
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))+DEL*2.D0
CALL DIHED(COORD,NHCO(1,I),NHCO(2,I),NHCO(3,I),NHCO(4,
1I),ANGLE)
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))-DEL
HEAT=HTYPE(ITYPE)*SIN(ANGLE)**2
SUM=(REFH-HEAT)/(2.D0*DEL)
DXYZ(K,NHCO(J,I))=DXYZ(K,NHCO(J,I))-SUM
140 CONTINUE
150 CONTINUE
160 CONTINUE
ENDIF
C COSMO change A. Klamt
C analytic calculation of the gradient of the dielectric energy A.Klamt
IF (USEPS) CALL DIEGRD(COORD,DXYZ)
C DO 170 I=1,6
C 170 LSTOR1(I)=LSTOR2(I)
IF ( .NOT. DEBUG) RETURN
IW = 6
WRITE(IW,'(//10X,''CARTESIAN COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM '',5X,''X'',12X,''Y'',12X,''Z'',/)')
IF(NCELLS.EQ.1)THEN
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT(I),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSEIF(LARGE)THEN
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSE
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I)+DXYZ(J,I+1)+DXYZ(J,I+2)
2,J=1,3),I=1,NUMTOT,3)
ENDIF
IROT = 2
IF (ANADER) REWIND IROT
C end of COSMO (A. Klamt) changes
IF ( .NOT. DEBUG) RETURN
WRITE(6,'(//10X,''CARTESIAN COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM '',5X,''X'',12X,''Y'',12X,''Z'',/)')
IF(NCELLS.EQ.1)THEN
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT(I),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSEIF(LARGE)THEN
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSE
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I)+DXYZ(J,I+1)+DXYZ(J,I+2)
2,J=1,3),I=1,NUMTOT,3)
ENDIF
IF (ANADER) REWIND 2
RETURN
END
SUBROUTINE DHC (P,PA,PB,XI,NAT,IF,IM,IL,JF,JM,JL,DENER,MODE)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION P(*), PA(*), PB(*)
DIMENSION XI(3,*),NFIRST(2),NMIDLE(2),NLAST(2),NAT(*)
C***********************************************************************
C
C DHC CALCULATES THE ENERGY CONTRIBUTIONS FROM THOSE PAIRS OF ATOMS
C THAT HAVE BEEN MOVED BY SUBROUTINE DERIV.
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
1 /ONELEC/ USS(107),UPP(107),UDD(107)
COMMON /EULER / TVEC(3,3), ID
COMMON /NUMCAL/ NUMCAL
SAVE ICALCN, WLIM, UHF
CHARACTER*241 KEYWRD
LOGICAL UHF, CUTOFF
DIMENSION H(171), SHMAT(9,9), F(171),
1 WJ(100), E1B(10), E2A(10), WK(100), W(100),
2 WJS(100), WKS(100)
DOUBLE PRECISION WJS, WKS
DATA ICALCN /0/
IF( ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
WLIM=4.D0
IF(ID.EQ.0)WLIM=0.D0
UHF=(INDEX(KEYWRD,'UHF') .NE. 0)
ENDIF
NFIRST(1)=1
NMIDLE(1)=IM-IF+1
NLAST(1)=IL-IF+1
NFIRST(2)=NLAST(1)+1
NMIDLE(2)=NFIRST(2)+JM-JF
NLAST(2)=NFIRST(2)+JL-JF
LINEAR=(NLAST(2)*(NLAST(2)+1))/2
DO 10 I=1,LINEAR
F(I)=0.D0
10 H(I)=0.0D00
DO 20 I=1,LINEAR
20 F(I)=H(I)
JA=NFIRST(2)
JB=NLAST(2)
JC=NMIDLE(2)
IA=NFIRST(1)
IB=NLAST(1)
IC=NMIDLE(1)
J=2
I=1
NJ=NAT(2)
NI=NAT(1)
CALL H1ELEC(NI,NJ,XI(1,1),XI(1,2),SHMAT)
IF(NAT(1).EQ.102.OR.NAT(2).EQ.102) THEN
K=(JB*(JB+1))/2
DO 30 J=1,K
30 H(J)=0.D0
ELSE
J1=0
DO 40 J=JA,JB
JJ=J*(J-1)/2
J1=J1+1
I1=0
DO 40 I=IA,IB
JJ=JJ+1
I1=I1+1
H(JJ)=SHMAT(I1,J1)
F(JJ)=SHMAT(I1,J1)
40 CONTINUE
ENDIF
KR=1
IF(ID.EQ.0)THEN
CALL ROTATE (NJ,NI,XI(1,2),XI(1,1),W(KR),KR,E2A,E1B,ENUCLR,100.
1D0)
ELSE
CALL SOLROT (NJ,NI,XI(1,2),XI(1,1),WJ,WK,KR,E2A,E1B,ENUCLR,100.
1D0)
IF(MODE.EQ.1)CUTOFF=(WJ(1).LT.WLIM)
IF(CUTOFF)THEN
DO 50 I=1,KR-1
50 WK(I)=0.D0
ENDIF
DO 60 I=1,KR-1
WJS(I)=WJ(I)
WKS(I)=WK(I)
60 CONTINUE
ENDIF
C
C * ENUCLR IS SUMMED OVER CORE-CORE REPULSION INTEGRALS.
C
I2=0
DO 70 I1=IA,IC
II=I1*(I1-1)/2+IA-1
DO 70 J1=IA,I1
II=II+1
I2=I2+1
H(II)=H(II)+E1B(I2)
70 F(II)=F(II)+E1B(I2)
DO 80 I1=IC+1,IB
II=(I1*(I1+1))/2
F(II)=F(II)+E1B(1)
80 H(II)=H(II)+E1B(1)
I2=0
DO 90 I1=JA,JC
II=I1*(I1-1)/2+JA-1
DO 90 J1=JA,I1
II=II+1
I2=I2+1
H(II)=H(II)+E2A(I2)
90 F(II)=F(II)+E2A(I2)
DO 100 I1=JC+1,JB
II=(I1*(I1+1))/2
F(II)=F(II)+E2A(1)
100 H(II)=H(II)+E2A(1)
CALL FOCK2(F,P,PA,W, WJS, WKS,2,NAT,NFIRST,NMIDLE,NLAST)
EE=HELECT(NLAST(2),PA,H,F)
IF( UHF ) THEN
DO 110 I=1,LINEAR
110 F(I)=H(I)
CALL FOCK2(F,P,PB,W, WJS, WKS,2,NAT,NFIRST,NMIDLE,NLAST)
EE=EE+HELECT(NLAST(2),PB,H,F)
ELSE
EE=EE*2.D0
ENDIF
DENER=EE+ENUCLR
RETURN
C
END
|