File: drc.f

package info (click to toggle)
mopac7 1.15-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, jessie, jessie-kfreebsd, stretch
  • size: 3,748 kB
  • ctags: 5,768
  • sloc: fortran: 35,321; sh: 9,039; ansic: 417; makefile: 80
file content (584 lines) | stat: -rw-r--r-- 18,760 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
      SUBROUTINE DRC(STARTV, STARTK)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION STARTV(*), STARTK(*)
************************************************************************
*                                                                      *
*    DRC IS DESIGNED TO FOLLOW A REACTION PATH FROM THE TRANSITION     *
*    STATE.  TWO MODES ARE SUPPORTED, FIRST: GAS PHASE:- AS THE SYSTEM *
*    MOVES FROM THE T/S THE MOMENTUM OF THE ATOMS IS STORED AND THE    *
*    POSITION OF THE ATOMS IS RELATED TO THE OLD POSITION BY (A) THE   *
*    CURRENT VELOCITY OF THE ATOM, AND (B) THE FORCES ACTING ON THAT   *
*    ATOM.  THE SECOND MODE IS CONDENSED PHASE, IN WHICH THE ATOMS MOVE*
*    IN RESPONSE TO THE FORCES ACTING ON THEM. I.E. INFINITELY DAMPED  *
*                                                                      *
************************************************************************
      INCLUDE 'SIZES'
      COMMON /KEYWRD/ KEYWRD
      COMMON /TIMDMP/ TLEFT, TDUMP
      COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
      COMMON /GRADNT/ GRAD(MAXPAR),GNORM
      COMMON /NUMCAL/ NUMCAL
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      COMMON /ATMASS/ ATMASS(NUMATM)
      COMMON /GEOVAR/ NVAR, LOC(2,MAXPAR), IDUMY, XPARAM(MAXPAR)
      COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
     1                NA(NUMATM),NB(NUMATM),NC(NUMATM)
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
     2                NCLOSE,NOPEN,NDUMY,XRACT
      COMMON /DRCCOM/ MCOPRT(2,MAXPAR), NCOPRT, PRTMAX
      CHARACTER KEYWRD*241, GETNAM*80
      DIMENSION  VELO0(MAXPAR), VELO1(MAXPAR),
     1VELO2(MAXPAR), VELO3(MAXPAR), GERROR(MAXPAR),
     2COORD(3,NUMATM), GROLD2(MAXPAR), PAST10(10),
     3GROLD(MAXPAR), GEOREF(3,NUMATM)
      LOGICAL  ADDK, LETOT, LET, VELRED,PRTMAX
      DATA VELO0/MAXPAR*0.D0/
      DATA ADDK/.TRUE./
      TNOW=SECOND()
      OLDTIM=SECOND()
      DELOLD=10.D0
      GTOT=0.D0
      OPEN(UNIT=7,STATUS='SCRATCH')
      IF(INDEX(KEYWRD,' PREC').NE.0)THEN
         ACCU=0.25D0
      ELSE
         ACCU=1.D0
      ENDIF
      GNLIM=1.D0
      PAST10(5)=100.D0
      I=INDEX(KEYWRD,'GNORM')
      IF(I.NE.0)GNLIM=READA(KEYWRD,I)
      VELRED=(INDEX(KEYWRD,'VELO').NE.0)
      IF(DOT(STARTV,STARTV,3*NUMAT).GT.0.001D0)THEN
C
C     PRINT OUT INITIAL VELOCITIES
C
         WRITE(6,'(A)')' INITIAL VELOCITY IN DRC'
         WRITE(6,'(3F13.5)')(STARTV(I),I=1,NUMAT*3)
      ENDIF
      LET=(INDEX(KEYWRD,' GEO-OK').NE.0.OR.VELRED)
      IF(INDEX(KEYWRD,' SYM').NE.0)THEN
         WRITE(6,*)'  SYMMETRY SPECIFIED, BUT CANNOT BE USED IN DRC'
         NDEP=0
      ENDIF
C
C      CONVERT TO CARTESIAN COORDINATES, IF NOT ALREADY DONE.
C
      IF(INDEX(KEYWRD,' XYZ').EQ.0)THEN
         NA(1)=0
         CALL GMETRY(GEO,COORD)
         L=0
C
         DO 30 J=1,3
            DO 20 I=1,NUMAT
               GEO(J,I)=COORD(J,I)
               COORD(J,I)=0.0D0
   20       CONTINUE
   30    CONTINUE
C
         NA(1)=99
      ENDIF
C
C  TRANSFER COORDINATES TO XPARAM AND LOC
C
      IF(INDEX(KEYWRD,' DRC').NE.0)THEN
         PRTMAX=(LOC(1,1).EQ.1)
         IF(PRTMAX)THEN
            J=1
         ELSE
            J=0
         ENDIF
         NVAR=NVAR-J
         DO 40 I=1,NVAR
            MCOPRT(1,I)=LOC(1,I+J)
   40    MCOPRT(2,I)=LOC(2,I+J)
         IF(LOC(1,1).EQ.0)NVAR=0
         NCOPRT=NVAR
      ELSE
         NCOPRT=0
      ENDIF
      L=0
      DO 50 I=1,NUMAT
         LOC(1,L+1)=I
         LOC(2,L+1)=1
         GEOREF(1,I)=GEO(1,I)
         XPARAM(L+1)=GEO(1,I)
C
         LOC(1,L+2)=I
         LOC(2,L+2)=2
         GEOREF(2,I)=GEO(2,I)
         XPARAM(L+2)=GEO(2,I)
C
         LOC(1,L+3)=I
         LOC(2,L+3)=3
         GEOREF(3,I)=GEO(3,I)
         XPARAM(L+3)=GEO(3,I)
C
         L=L+3
   50 CONTINUE
      NVAR=NUMAT*3
C
C DETERMINE DAMPING FACTOR
C
      IF(INDEX(KEYWRD,'DRC=').NE.0) THEN
         HALF=READA(KEYWRD,INDEX(KEYWRD,'DRC='))
         WRITE(6,'(//10X,'' DAMPING FACTOR FOR KINETIC ENERGY ='',F12.6)
     1')HALF
      ELSEIF (INDEX(KEYWRD,'DRC').EQ.0) THEN
         HALF=0.D0
      ELSE
         HALF=1.D6
      ENDIF
C
C  LETOT IS TRUE IF CORRECTIONS ARE NOT TO BE MADE PART WAY INTO
C        THE CALCULATION
C
C  USAGE OF LETOT:
C (1) WHILE LETOT IS FALSE, NO DAMPING WILL BE DONE
C (2) WHEN LETOT IS TURNED TRUE,
C     IF AN IRC, THEN ETOT IS RESET SO THE ERROR IS ZERO.
C     IF A  DRC, EXCESS KINETIC ENERGY USED TO START THE RUN IS REMOVED.
C
      LETOT=(INDEX(KEYWRD,'IRC=').EQ.0 .AND. .NOT. LET)
      HALF=SIGN(MAX(0.000001D0,ABS(HALF)),HALF)
C
C DETERMINE EXCESS KINETIC ENERGY
C
      ISKIN=0
      IF(INDEX(KEYWRD,'KINE').NE.0) THEN
         ISKIN=1
         ADDONK=READA(KEYWRD,INDEX(KEYWRD,'KINE'))
         WRITE(6,'(//10X,'' EXCESS KINETIC ENERGY ENTERED INTO SYSTEM ='
     1',F12.6)')ADDONK
      ELSE
         ADDONK=0.D0
      ENDIF
C
C   LOOP OVER TIME-INTERVALS OF DELTAT SECOND
C
      DELTAT=1.D-16
      QUADR=1.D0
      ETOT=0.D0
      ESCF=0.D0
      CONST=1.D0
      IF( INDEX(KEYWRD,'RESTART').NE.0.AND.INDEX(KEYWRD,'IRC=').EQ.0)
     1THEN
C
C  RESTART FROM A PREVIOUS RUN
C
         OPEN(UNIT=9,FILE=GETNAM('FOR009'),STATUS='UNKNOWN',
     +FORM='FORMATTED')
         REWIND 9
         OPEN(UNIT=10,FILE=GETNAM('FOR010'),STATUS='UNKNOWN',
     +FORM='UNFORMATTED')
         REWIND 10
         READ(9,'(A80)')ALPHA
         READ(9,'(3F19.13)')(XPARAM(I),I=1,NVAR)
         READ(9,'(A80)')ALPHA
         READ(9,'(3F19.3)')(VELO0(I),I=1,NVAR)
         READ(9,'(A80)')ALPHA
         READ(9,*)(GRAD(I),I=1,NVAR)
         READ(9,*)(GROLD(I),I=1,NVAR)
         READ(9,*)(GROLD2(I),I=1,NVAR)
         READ(9,*)ETOT,ESCF,EKIN,DELOLD,DELTAT,DLOLD2,ILOOP,
     1GNORM,LETOT,ELOST1,GTOT
         WRITE(6,'(//10X,''CALCULATION RESTARTED, CURRENT'',
     1'' KINETIC ENERGY='',F10.5,//)')EKIN
         GOTO 100
      ELSE
C                         NOT A RESTART
         ILOOP=1
         IF(INDEX(KEYWRD,'IRC=').NE.0.OR.VELRED)THEN
C
C  GET HOLD OF VELOCITY VECTOR
C
            IF(INDEX(KEYWRD,'IRC=').NE.0)THEN
               K=READA(KEYWRD,INDEX(KEYWRD,'IRC='))
            ELSE
               K=1
            ENDIF
            IF(K.LT.0)THEN
               K=-K
               ONE=-1.D0
            ELSE
               ONE=1.D0
            ENDIF
            KL=(K-1)*NVAR
            SUMM=0.D0
            VELO1(1)=0
            VELO1(2)=0
            VELO1(3)=0
            SUMMAS=0.D0
            I=0
            DO 60 II=1,NUMAT
               AMS=ATMASS(II)
               SUMMAS=SUMMAS+AMS
               VELO0(I+1)=STARTV(KL+I+1)*ONE
               VELO1(1)=VELO1(1)+VELO0(I+1)*AMS
C
               VELO0(I+2)=STARTV(KL+I+2)*ONE
               VELO1(2)=VELO1(2)+VELO0(I+2)*AMS
C
               VELO0(I+3)=STARTV(KL+I+3)*ONE
               VELO1(3)=VELO1(3)+VELO0(I+3)*AMS
C
               I=I+3
   60       CONTINUE
C$DOIT ASIS
            DO 70 I=1,3
   70       VELO1(I)=-VELO1(I)/SUMMAS
            I=0
C$DOIT ASIS
            DO 80 II=1,NUMAT
               AMS=ATMASS(II)
C$DOIT ASIS
               DO 80 I1=1,3
                  I=I+1
                  IF(ADDONK.GT.1.D-5.OR..NOT.VELRED)VELO0(I)=VELO0(I)+VE
     1LO1(I1)
   80       SUMM=SUMM+VELO0(I)**2*AMS
            IF(ADDONK.LT.1.D-5.AND.VELRED)ADDONK=0.5D0*SUMM/4.184D10
            IF(ADDONK.LT.1.D-5.AND..NOT.VELRED)THEN
               IF(ABS(HALF).GT.1.D-3.AND.STARTK(K).GT.105.D0)THEN
                  WRITE(6,'(A,F10.3,A,/,A)')' BY DEFAULT, ONE QUANTUM OF
     1 ENERGY,'//' EQUIVALENT TO',STARTK(K),' CM(-1)',
     2' WILL BE USED TO START THE DRC'
C
C    2.8585086D-3 CONVERTS CM(-1) INTO KCAL/MOLE
C
                  ADDONK=STARTK(K)*2.8585086D-3
                  WRITE(6,'(A,F7.2,A)')' THIS REPRESENTS AN ENERGY OF',A
     1DDONK,' KCALS/MOLE'
               ELSEIF(ABS(HALF).GT.1.D-3)THEN
                  WRITE(6,'(A,F9.2,A)')' THE VIBRATIONAL FREQUENCY (',ST
     1ARTK(K),'CM(-1)) IS TOO SMALL',' FOR ONE QUANTUM TO BE USED'
                  WRITE(6,'(A)')
     1' INSTEAD 0.3KCAL/MOLE WILL BE USED TO START THE IRC'
                  ADDONK=0.3D0
               ELSE
                  ADDONK=0.3D0
               ENDIF
            ENDIF
C
C   AT THIS POINT ADDONK IS IN KCAL/MOLE
C   NORMALIZE SO THAT TOTAL K.E. = ONE QUANTUM (DEFAULT) (DRC ONLY)
C                              OR 0.3KCAL/MOLE (IRC ONLY)
C                              OR ADDONK IF KINETIC=NN SUPPLIED
C
            IF(SUMM.LT.1.D-4) THEN
               WRITE(6,'(A)')' SYSTEM IS APPARENTLY NOT MOVING!'
               RETURN
            ENDIF
C
C  ADDONK IS EXCESS KINETIC ENERGY.  IF THE CALCULATION IS AN IRC,
C  THIS ENERGY MUST BE REMOVED AFTER A SHORT 'TIME'.
C
C  MAKE AN AD-HOC CORRECTION: IF ADDONK IS NON-ZERO AND HALF IS LARGER
C  THAN 0.1, MODIFY ADDONK TO REFLECT ERRORS DUE TO START-UP.
C
            IF(HALF.GT.0.1D0.AND.HALF.LT.10000.D0)
     1ADDONK=ADDONK*(1.D0+0.06972D0/HALF)
C
C  MAKE AN AD-HOC CORRECTION: IF ADDONK IS NON-ZERO AND HALF IS LESS
C  THAN -0.1, MODIFY ADDONK TO REFLECT ERRORS DUE TO START-UP.
C
            IF(HALF.LT.-0.1D0.AND.HALF.GT.-10000.D0)
     1ADDONK=ADDONK*(1.D0+0.06886D0/HALF)
            SUMM=SQRT(ADDONK/(0.5D0*SUMM/4.184D10))
            ADDK=.FALSE.
            IF(SUMM.GT.1.D-10)THEN
               DO  90 I=1,NVAR
   90          VELO0(I)=VELO0(I)*SUMM
C
C  IF IT IS A DRC, DESTROY ADDONK.  THE KINETIC ENERGY USED WILL COME
C  FROM THE VELOCITY ONLY.
C
               IF(HALF.GT.1.D-3)ADDONK=0.D0
            ENDIF
         ENDIF
      ENDIF
  100 CONTINUE
      IUPPER=ILOOP+4999
      ILP=ILOOP
      ONE=0.D0
      IF(INDEX(KEYWRD,'RESTART').NE.0.AND.INDEX(KEYWRD,'IRC=').EQ.0)
     1ONE=1.D0
      DO 190 ILOOP=ILP,IUPPER
C
C  MOVEMENT OF ATOMS WILL BE PROPORTIONAL TO THE AVERAGE VELOCITIES
C  OF THE ATOMS BEFORE AND AFTER TIME INTERVAL
C
C
C  RAPID CHANGE IN GRADIENT IMPLIES SMALL STEP SIZE FOR DELTAT
C
C   KINETIC ENERGY = 1/2 * M * V * V
C                  = 0.5 / (4.184D10) * M * V * V
C   NEW VELOCITY = OLD VELOCITY + GRADIENT * TIME / MASS
C                = KCAL/ANGSTROM*SECOND/(ATOMIC WEIGHT)
C                =4.184*10**10(ERGS)*10**8(PER CM)*DELTAT(SECONDS)
C   NEW POSITION = OLD POSITION - AVERAGE VELOCITY * TIME INTERVAL
C
C
C   ESTABLISH REFERENCE TOTAL ENERGY
C
         ERROR=(ETOT-(EKIN+ESCF))
         IF(ILOOP.GT.2)THEN
            QUADR = 1.D0+ERROR/(EKIN*CONST+0.001D0)*0.5D0
            QUADR = MIN(1.3D0,MAX(0.8D0,QUADR))
         ELSE
            QUADR=1.D0
         ENDIF
         IF((LET.OR.EKIN.GT.0.2).AND.ADDK)THEN
C
C   DUMP IN EXCESS KINETIC ENERGY
C
            ETOT=ETOT+ADDONK
            ADDK=.FALSE.
            ADDONK=0.D0
         ENDIF
C
C  CALCULATE THE DURATION OF THE NEXT STEP.
C  STEP SIZE IS THAT REQUIRED TO PRODUCE A CONSTANT CHANGE IN GEOMETRY
C
C
C  IF DAMPING IS USED, CALCULATE THE NEW TOTAL ENERGY AND
C  THE RATIO FOR REDUCING THE KINETIC ENERGY
C
         CONST=MAX(1.D-36,0.5D0**(DELTAT*1.D15/HALF))
         CONST=SQRT(CONST)
         VELVEC=0.D0
         EKIN=0.D0
         DELTA1=DELOLD+DLOLD2
         ELOST=0.D0
         DO 110 I=1,NVAR
C
C   CALCULATE COMPONENTS OF VELOCITY AS
C   V = V(0) + V'*T + V"*T*T
C   WE NEED ALL THREE TERMS, V(0), V' AND V"
C
            VELO1(I) = 1.D0/ATMASS(LOC(1,I))*GRAD(I)
            IF(ILOOP.GT.3) THEN
               VELO3(I) = 2.D0/ATMASS(LOC(1,I))*
     1(DELTA1*(GROLD(I)-GRAD(I))-DELOLD*(GROLD2(I)-GRAD(I)))/
     2(DELTA1*(DELOLD**2*1.D30)-DELOLD*(DELTA1**2*1.D30))
               VELO2(I)=1.D0/ATMASS(LOC(1,I))*
     1(GRAD(I)-GROLD(I)-0.5D0*VELO3(I)*(1.D30*DELOLD**2))/(DELOLD*1.D15)
            ELSE
               VELO2(I) = 1.D0/ATMASS(LOC(1,I))*
     1                 (GRAD(I)-GROLD(I))/(1.D15*DELOLD)
               VELO3(I)=0.D0
            ENDIF
C
C  MOVE ATOMS THROUGH DISTANCE EQUAL TO VELOCITY * DELTA-TIME, NOTE
C  VELOCITY CHANGES FROM START TO FINISH, THEREFORE AVERAGE.
C
            XPARAM(I)=XPARAM(I)
     1             -1.D8*(DELTAT*VELO0(I)*ONE
     2             +0.5D0*DELTAT**2*VELO1(I)
     3             +0.16666D0*(DELTAT**2*1.D15)*DELTAT*VELO2(I)
     4             +0.0416666D0*DELTAT**2*(1.D30*DELTAT**2)*VELO3(I))
C
C   CORRECT ERRORS DUE TO CUBIC COMPONENTS IN ENERGY GRADIENT,
C   ALSO TO ADD ON EXCESS ENERGY, IF NECESSARY.
C
            VELVEC=VELVEC+VELO0(I)**2
C
C   MODIFY VELOCITY IN LIGHT OF CURRENT ENERGY GRADIENTS.
C
C   VELOCITY = OLD VELOCITY + (DELTA-T / ATOMIC MASS) * CURRENT GRADIENT
C                           + 1/2 *(DELTA-T * DELTA-T /ATOMIC MASS) *
C                             (SLOPE OF GRADIENT)
C              SLOPE OF GRADIENT = (GRAD(I)-GROLD(I))/DELOLD
C
C
C   THIS EXPRESSION IS ACCURATE TO SECOND ORDER IN TIME.
C
            VELO0(I) = VELO0(I) + DELTAT*VELO1(I) + 0.5D0*DELTAT**2*VELO
     12(I)*1.D15           + 0.166666D0*DELTAT*(1.D30*DELTAT**2)*VELO3(
     2I)
            IF(LET.OR.GNORM.GT.3.D0)THEN
               LET=.TRUE.
               ELOST=ELOST+VELO0(I)**2*ATMASS(LOC(1,I))*(1-CONST**2)
               VELO0(I)=VELO0(I)*CONST*QUADR
            ENDIF
C
C  CALCULATE KINETIC ENERGY (IN 2*ERGS AT THIS POINT)
C
            EKIN=EKIN+VELO0(I)**2*ATMASS(LOC(1,I))
  110    CONTINUE
         ONE=1.D0
         IF(LET.OR.GNORM.GT.3.D0)THEN
            IF(.NOT.LETOT) THEN
               IF(ABS(HALF).LT.1.D-3)THEN
C
C  IT IS AN IRC, SO RESET THE TOTAL ENERGY
C
                  ETOT=ESCF+ELOST1
                  ADDONK=0.D0
                  ELOST1=0.D0
                  ELOST=0.D0
               ELSEIF(ISKIN.EQ.0)THEN
C
C  IT IS A DRC AND KINETIC NOT USED, SO REMOVE EXTRA KINETIC ENERGY
C
                  ETOT=ETOT-ADDONK
               ENDIF
            ENDIF
            LETOT=.TRUE.
         ENDIF
C
C  CONVERT ENERGY INTO KCAL/MOLE
C
         EKIN=0.5D0*EKIN/4.184D10
C
C  IF IT IS A DAMPED DRC, MODIFY ETOT TO REFLECT LOSS OF KINETIC ENERGY
C
         IF(LETOT.AND.ABS(HALF).GT.0.00001D0)
     1ETOT=ETOT-EKIN/CONST**2+EKIN
         ELOST1=ELOST1+0.5D0*ELOST/4.184D10
C
C STORE OLD GRADIENTS FOR DELTA - VELOCITY CALCULATION
C
         DO 120 I=1,NVAR
            GROLD2(I)=GROLD(I)
            GROLD(I)=GRAD(I)
  120    GRAD(I)=0.D0
C
C   CALCULATE ENERGY AND GRADIENTS
C
         SCFOLD=ESCF
         CALL COMPFG(XPARAM,.TRUE.,ESCF,.TRUE.,GRAD,.TRUE.)
         IF(ILOOP.GT.2)THEN
            GNORM=0.D0
            DO 140 I=1,NVAR,3
               SUM=SQRT(DOT(GRAD(I),GRAD(I),3)/
     1(DOT(VELO0(I),VELO0(I),3)+1.D-20))
               DO 130 J=I,I+2
  130          GERROR(J)=GERROR(J)+GRAD(J)+VELO0(J)*SUM
  140       CONTINUE
            GNORM=SQRT(DOT(GERROR,GERROR,NVAR))
            GTOT=GNORM
         ENDIF
         GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
C
C   CONVERT GRADIENTS INTO ERGS/CM
C
         DO 150 I=1,NVAR
  150    GRAD(I)=GRAD(I)*4.184D18
C
C   SPECIAL TREATMENT FOR FIRST POINT - SET "OLD" GRADIENTS EQUAL TO
C   CURRENT GRADIENTS.
C
         IF(ILOOP.EQ.1) THEN
            DO 160 I=1,NVAR
  160       GROLD(I)=GRAD(I)
         ENDIF
         DLOLD2=DELOLD
         DELOLD=DELTAT
         SUM=0.D0
         DO 170 I=1,NVAR
  170    SUM=SUM + ((GRAD(I)-GROLD(I))/4.184D18)**2
         IF(ABS(HALF).LT.0.001D0)THEN
            DELTAT= DELTAT*
     1MIN(2.D0, (5.D-5*ACCU/(ABS(ESCF+ELOST1-ETOLD)+1.D-20)))**0.25D0
            ETOLD=ESCF+ELOST1
            IF(ILOOP.GT.5.AND.SCFOLD-ESCF.LT.-1.D-3 .OR.
     1      ILOOP.GT.30.AND.SCFOLD-ESCF.LT.0.D0)  THEN
               WRITE(6,'(//,'' IRC CALCULATION COMPLETE '')')
               RETURN
            ENDIF
         ELSE
            DELTAT= DELTAT*MIN(1.05D0, 10.D0*ACCU/(SUM+1.D-4))
            DELTAT=MIN(DELTAT,3.D-15*ACCU)
            PAST10(10)=GNORM
            SUM=0.D0
            DO 180 I=1,9
               SUM=SUM+ABS(PAST10(I)-PAST10(I+1))
  180       PAST10(I)=PAST10(I+1)
            IF(SUM.LT.GNLIM)THEN
               WRITE(6,'(//,A)')' GRADIENT CONSTANT AND SMALL -- ASSUME'
     1//' ALL MOTION STOPPED'
               RETURN
            ENDIF
            DELTAT=MIN(DELTAT,2.D-15)
************************************************************************
*
*         TESTING CODE - REMOVE BEFORE FINAL VERSION ASSEMBLED
C#          (ILOOP/400)*400.EQ.ILOOP)DELTAT=-DELTAT
*
************************************************************************
         ENDIF
         DELTAT=MAX(1.D-16,DELTAT)
         IF(ABS(HALF).LT.0.00001D0)THEN
C
C   FOR THE IRC:
C
C ESCF   = POTENTIAL ENERGY
C ELOST1 = ENERGY LOST (IN DRC, THIS WOULD HAVE BEEN THE KINETIC ENERGY)
C ETOT   = COMPUTED TOTAL ENERGY = STARTING POTENTIAL ENERGY
C
C   IN DRCOUT  'TOTAL' = ESCF + ELOST1
C              'ERROR' = ESCF + ELOST1 - ETOT
C
            CALL PRTDRC(ESCF,DELTAT,XPARAM,GEOREF,
     1ELOST1,GTOT,ETOT,VELO0,NVAR)
         ELSE
C
C   FOR THE DRC:
C
C ESCF   = POTENTIAL ENERGY
C EKIN   = CURRENT KINETIC ENERGY
C ETOT   = COMPUTED TOTAL ENERGY = STARTING POTENTIAL ENERGY -
C          KINETIC ENERGY LOST THROUGH DAMPING, IF PRESENT.
C
C   IN DRCOUT  'TOTAL' = ESCF + EKIN
C              'ERROR' = ESCF + EKIN - ETOT
C
            CALL PRTDRC(ESCF,DELTAT,XPARAM,GEOREF,
     1EKIN,DUMMY,ETOT,VELO0,NVAR)
         ENDIF
         TNOW=SECOND()
         TCYCLE=TNOW-OLDTIM
         OLDTIM=TNOW
         TLEFT=TLEFT-TCYCLE
         IF (ILOOP.EQ.IUPPER.OR.TLEFT.LT.3*TCYCLE) THEN
  46        OPEN(UNIT=9,FILE=GETNAM('FOR009'),STATUS='NEW',
     +FORM='FORMATTED',ERR=45)
            GOTO 47
  45        OPEN(UNIT=9,FILE=GETNAM('FOR009'),STATUS='OLD')
            CLOSE(9,STATUS='DELETE')
            GOTO 46
  47        CONTINUE
            REWIND 9
            OPEN(UNIT=10,FILE=GETNAM('FOR010'),STATUS='UNKNOWN',
     +FORM='UNFORMATTED')
            REWIND 10
            WRITE(9,'(A)')' CARTESIAN GEOMETRY PARAMETERS IN ANGSTROMS'
            WRITE(9,'(3F19.13)')(XPARAM(I),I=1,NVAR)
            WRITE(9,'(A)')' VELOCITY FOR EACH CARTESIAN COORDINATE, IN C
     1M/SEC'
            WRITE(9,'(3F19.3)')(VELO0(I),I=1,NVAR)
            WRITE(9,'(A)')' FIRST, SECOND, AND THIRD-ORDER GRADIENTS, ET
     1C'
            WRITE(9,*)(GRAD(I),I=1,NVAR)
            WRITE(9,*)(GROLD(I),I=1,NVAR)
            WRITE(9,*)(GROLD2(I),I=1,NVAR)
            I=ILOOP+1
            WRITE(9,*)ETOT,ESCF,EKIN,DELOLD,DELTAT,DLOLD2,I,
     1GNORM,LETOT,ELOST1,GTOT
            ESCF=-1.D9
            CALL PRTDRC(ESCF,DELTAT,XPARAM,GEOREF,
     1EKIN,ELOST,ETOT,VELO0,NVAR)
            LINEAR=(NORBS*(NORBS+1))/2
            WRITE(10)(PA(I),I=1,LINEAR)
            IF(NALPHA.NE.0)WRITE(10)(PB(I),I=1,LINEAR)
            WRITE(6,'(//10X,'' RUNNING OUT OF TIME, RESTART FILE WRITTEN
     1'')')
            WRITE(6,'(A)')' GEOMETRY AND VELOCITY ARE IN RESTART FILE'
     1//' IN ASCII'
            RETURN
         ENDIF
  190 CONTINUE
      END