1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
SUBROUTINE FORCE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR),IDUMY,DUMY(MAXPAR)
COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),
1 LOCDEP(MAXPAR)
COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
1NA(NUMATM),NB(NUMATM),NC(NUMATM)
COMMON /FMATRX/ FMATRX(MAXPAR**2+MAXPAR*3+1),IDUMY2(4)
COMMON /KEYWRD/ KEYWRD
COMMON /GRADNT/ GRAD(MAXPAR),GNORM
PARAMETER (IPADD=2*MORB2+2*MAXORB-MAXPAR-MAXPAR*MAXPAR)
COMMON /VECTOR/ CNORML(MAXPAR*MAXPAR),FREQ(MAXPAR),DUMMY(IPADD)
COMMON /ELEMTS/ ELEMNT(107)
COMMON /LAST / LAST
COMMON /MESAGE/ IFLEPO,ISCF
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SIMBOL/ SIMBOL(MAXPAR)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /COORD / COORD(3,NUMATM)
***********************************************************************
*
* FORCE CALCULATES THE FORCE CONSTANTS FOR THE MOLECULE, AND THE
* VIBRATIONAL FREQUENCIES. ISOTOPIC SUBSTITUTION IS ALLOWED.
*
***********************************************************************
COMMON /EULER / TVEC(3,3), ID
COMMON /SCFTYP/ EMIN, LIMSCF
COMMON /SCRACH/ STORE(MAXPAR**2)
DIMENSION XPARAM(MAXPAR), GR(3,NUMATM),
1DELDIP(3,MAXPAR), TRDIP(3,MAXPAR),LOCOLD(2,MAXPAR)
2,REDMAS(MAXPAR), SHIFT(6), DIPT(MAXPAR), TRAVEL(MAXPAR)
3, ROT(3,3), GEOREF(3,NUMATM), NAR(NUMATM), NBR(NUMATM),NCR(NUMATM)
CHARACTER KEYWRD*241, KEYS(241)*1, ELEMNT*2, SIMBOL*10
LOGICAL RESTRT, LINEAR, DEBUG, BARTEL, PRNT, LARGE, LIMSCF
EQUIVALENCE (GRAD(1), GR(1,1)), (KEYWRD,KEYS(1))
C
C TEST GEOMETRY TO SEE IF IT IS OPTIMIZED
TIME2=-1.D9
CALL GMETRY(GEO,COORD)
NVAOLD=NVAR
DO 10 I=1,NVAR
LOCOLD(1,I)=LOC(1,I)
10 LOCOLD(2,I)=LOC(2,I)
NVAR=0
NDEOLD=NDEP
NDEP=0
NUMAT=0
IF(LABELS(1) .NE. 99) NUMAT=1
DO 30 I=2,NATOMS
IF(LABELS(I).EQ.99) GOTO 30
IF(I.EQ.2)ILIM=1
IF(I.EQ.3)ILIM=2
IF(I.GT.3)ILIM=3
C
C IS IT A POLYMER?
C
IF(LABELS(I).EQ.107) THEN
ILIM=1
ELSE
NUMAT=NUMAT+1
ENDIF
C$DOIT ASIS
DO 20 J=1,ILIM
NVAR=NVAR+1
LOC(1,NVAR)=I
LOC(2,NVAR)=J
20 XPARAM(NVAR)=GEO(J,I)
30 CONTINUE
C
C IF A RESTART, THEN TSCF AND TDER WILL BE FAULTY, THEREFORE SET TO -1
C
TSCF=-1.D0
TDER=-1.D0
PRNT=(INDEX(KEYWRD,'RC=') .EQ. 0)
DEBUG=(INDEX(KEYWRD,'DFORCE') .NE. 0)
LARGE=(INDEX(KEYWRD,'LARGE') .NE. 0)
BARTEL=(INDEX(KEYWRD,'NLLSQ') .NE. 0)
RESTRT=(INDEX(KEYWRD,'RESTART') .NE. 0)
TIME1=SECOND()
IF (RESTRT) THEN
C
C CHECK TO SEE IF CALCULATION IS IN NLLSQ OR FORCE.
C
IF(BARTEL)GOTO 50
C
C CALCULATION IS IN FORCE
C
GOTO 90
ENDIF
CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .FALSE.)
IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
1'' KCALS/MOLE'')')ESCF
TIME2=SECOND()
TSCF=TIME2-TIME1
CALL COMPFG( XPARAM, .TRUE., ESCF1, .FALSE., GRAD, .TRUE.)
TIME3=SECOND()
TDER=TIME3-TIME2
IF(PRNT)WRITE(6,'(//10X,''INTERNAL COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM'',2X,''BOND'',9X,'' ANGLE'',10X,''DIHEDRAL'',/)')
L=0
IU=0
DO 40 I=1,NATOMS
IF(LABELS(I).EQ.99) GOTO 40
L=L+1
IL=IU+1
IF(I .EQ. 1) IU=IL-1
IF(I .EQ. 2) IU=IL
IF(I .EQ. 3) IU=IL+1
IF(I .GT. 3) IU=IL+2
IF(LABELS(I).EQ.107)IU=IL
IF(PRNT)WRITE(6,'(I6,4X,A2,F13.6,2F13.6)')
1L,ELEMNT(LABELS(I)),(GRAD(J),J=IL,IU)
40 CONTINUE
C TEST SUM OF GRADIENTS
GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
IF(PRNT)WRITE(6,'(//10X,''GRADIENT NORM ='',F10.5)') GNORM
IF(GNORM.LT.10.D0) GOTO 70
IF(INDEX(KEYWRD,' LET ') .NE. 0) THEN
WRITE(6,'(///1X,''** GRADIENT IS VERY LARGE, BUT SINCE "LET"'',
1'' IS USED, CALCULATION WILL CONTINUE'')')
GOTO 90
ENDIF
WRITE(6,'(///1X,''** GRADIENT IS TOO LARGE TO ALLOW '',
1 ''FORCE MATRIX TO BE CALCULATED, (LIMIT=10) **'',//)')
50 CONTINUE
DO 60 I=1,NVAR
60 SIMBOL(I)='---'
WRITE(6,'(//10X,'' GEOMETRY WILL BE OPTIMIZED FIRST'')')
IF(BARTEL) THEN
WRITE(6,'(15X,''USING NLLSQ'')')
CALL NLLSQ(XPARAM,NVAR)
ELSE
WRITE(6,'(15X,''USING FLEPO'')')
CALL FLEPO(XPARAM,NVAR,ESCF)
C
C DID FLEPO USE ALL THE TIME ALLOWED?
C
IF(IFLEPO.EQ.-1) RETURN
ENDIF
LIMSCF=.FALSE.
CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .TRUE.)
CALL WRITMO(TIME1,ESCF)
WRITE(6,'(//10X,''GRADIENT NORM ='',F10.7)') GNORM
CALL GMETRY(GEO,COORD)
70 CONTINUE
DO 80 J=1,NATOMS
NAR(J)=NA(J)
NBR(J)=NB(J)
NCR(J)=NC(J)
DO 80 I=1,3
80 GEOREF(I,J)=GEO(I,J)
C
C NOW TO CALCULATE THE FORCE MATRIX
C
C CHECK OUT SYMMETRY
90 CONTINUE
C
C NEED TO ENSURE THAT XYZINT WILL WORK CORRECTLY BEFORE CALL
C TO DRC.
C
L=0
DO 100 I=1,NATOMS
IF(LABELS(I).NE.99)THEN
L=L+1
LABELS(L)=LABELS(I)
ENDIF
100 CONTINUE
NATOMS=NUMAT
CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
CALL GMETRY(GEO,COORD)
IF(INDEX(KEYWRD,'THERMO').NE.0 .AND.GNORM.GT.1.D0) THEN
WRITE(6,'(//30X,''**** WARNING ****'',//
110X,'' GRADIENT IS VERY LARGE FOR A THERMO CALCULATION'',/
210X,'' RESULTS ARE LIKELY TO BE INACCURATE IF THERE ARE'')')
WRITE(6,'(10X,'' ANY LOW-LYING VIBRATIONS (LESS THAN ABOUT ''
1,''400CM-1)'')')
WRITE(6,'(10X,'' GRADIENT NORM SHOULD BE LESS THAN ABOUT '',
1''0.2 FOR THERMO'',/10X,'' TO GIVE ACCURATE RESULTS'')')
ENDIF
IF(TSCF.GT.0.D0) THEN
WRITE(6,'(//10X,''TIME FOR SCF CALCULATION ='',F8.2)')TSCF
WRITE(6,'(//10X,''TIME FOR DERIVATIVES ='',F8.2)')TDER
ENDIF
IF(NDEP.GT.0) THEN
WRITE(6,'(//10X,''SYMMETRY WAS SPECIFIED, BUT '',
1''CANNOT BE USED HERE'')')
NDEP=0
ENDIF
IF(PRNT)CALL AXIS(COORD,NUMAT,A,B,C,WTMOL,2,ROT)
NVIB=3*NUMAT-6
IF(ABS(C).LT.1.D-20)NVIB=NVIB+1
IF(ID.NE.0)NVIB=3*NUMAT-3
IF(PRNT) THEN
WRITE(6,'(/9X,''ORIENTATION OF MOLECULE IN FORCE CALCULATION'')
1')
WRITE(6,'(/,4X,''NO.'',7X,''ATOM'',9X,''X'',
19X,''Y'',9X,''Z'',/)')
ENDIF
L=0
DO 110 I=1,NATOMS
IF(LABELS(I) .EQ. 99) GOTO 110
L=L+1
IF(PRNT)WRITE(6,'(I6,7X,I3,4X,3F10.4)')
1 L,LABELS(I),(COORD(J,L),J=1,3)
110 CONTINUE
CALL FMAT(FMATRX, NVIB, TSCF, TDER, DELDIP,ESCF)
NA(1)=0
DO 120 J=1,NATOMS
NA(J)=NAR(J)
NB(J)=NBR(J)
NC(J)=NCR(J)
DO 120 I=1,3
120 GEO(I,J)=GEOREF(I,J)
IF(NVIB.LT.0)THEN
NDEP=NDEOLD
NVAR=0
RETURN
ENDIF
C
C THE FORCE MATRIX IS PRINTED AS AN ATOM-ATOM MATRIX RATHER THAN
C AS A 3N*3N MATRIX, AS THE 3N MATRIX IS VERY CONFUSING!
C
IJ=0
IU=0
DO 150 I=1,NUMAT
IL=IU+1
IU=IL+2
IM1=I-1
JU=0
DO 140 J=1,IM1
JL=JU+1
JU=JL+2
SUM=0.D0
C$DOIT ASIS
DO 130 II=IL,IU
C$DOIT ASIS
DO 130 JJ=JL,JU
130 SUM=SUM+FMATRX((II*(II-1))/2+JJ)**2
IJ=IJ+1
140 STORE(IJ)=SQRT(SUM)
IJ=IJ+1
150 STORE(IJ)=SQRT(
1FMATRX(((IL+0)*(IL+1))/2)**2+
2FMATRX(((IL+1)*(IL+2))/2)**2+
3FMATRX(((IL+2)*(IL+3))/2)**2+2.D0*(
4FMATRX(((IL+1)*(IL+2))/2-1)**2+
5FMATRX(((IL+2)*(IL+3))/2-2)**2+
6FMATRX(((IL+2)*(IL+3))/2-1)**2))
IF(DEBUG) THEN
WRITE(6,'(//10X,'' FULL FORCE MATRIX, INVOKED BY "DFORCE"'')')
I=-NVAR
CALL VECPRT(FMATRX,I)
ENDIF
IF(PRNT)THEN
WRITE(6,'(//10X,'' FORCE MATRIX IN MILLIDYNES/ANGSTROM'')')
CALL VECPRT(STORE,NUMAT)
ENDIF
L=(NVAR*(NVAR+1))/2
DO 160 I=1,L
160 STORE(I)=FMATRX(I)
IF(PRNT) CALL AXIS(COORD,NUMAT,A,B,C,SUM,0,ROT)
IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
1'' KCALS/MOLE'')')ESCF
IF(LARGE)THEN
CALL FRAME(STORE,NUMAT,0, SHIFT)
CALL RSP(STORE,NVAR,NVAR,FREQ,CNORML)
DO 170 I=NVIB+1,NVAR
J=(FREQ(I)+50.D0)*0.01D0
170 FREQ(I)=FREQ(I)-J*100
IF(PRNT)THEN
WRITE(6,'(//10X,''TRIVIAL VIBRATIONS, SHOULD BE ZERO'')')
WRITE(6,'(/, F9.4,''=TX'',F9.4,''=TY'',F9.4,''=TZ'',
1 F9.4,''=RX'',F9.4,''=RY'',F9.4,''=RZ'')')
2(FREQ(I),I=NVIB+1,NVAR)
WRITE(6,'(//10X,''FORCE CONSTANTS IN MILLIDYNES/ANGSTROM''
1,'' (= 10**5 DYNES/CM)'',/)')
WRITE(6,'(8F10.5)')(FREQ(I),I=1,NVIB)
C CONVERT TO WEIGHTED FMAT
WRITE(6,'(//10X,'' ASSOCIATED EIGENVECTORS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVIB,I,NVAR)
ENDIF
ENDIF
CALL FREQCY(FMATRX,FREQ,CNORML,REDMAS,TRAVEL,.TRUE.,DELDIP)
C
C CALCULATE ZERO POINT ENERGY
C
C
C THESE CONSTANTS TAKEN FROM HANDBOOK OF CHEMISTRY AND PHYSICS 62ND ED.
C N AVOGADRO'S NUMBER = 6.022045*10**23
C H PLANCK'S CONSTANT = 6.626176*10**(-34)JHZ
C C SPEED OF LIGHT = 2.99792458*10**10 CM/SEC
C CONST=0.5*N*H*C/(1000*4.184)
CONST=1.4295718D-3
SUM=0.D0
DO 180 I=1,NVAR
180 SUM=SUM+FREQ(I)
SUM=SUM*CONST
IF(PRNT)
1WRITE(6,'(//10X,'' ZERO POINT ENERGY''
2, F12.3,'' KILOCALORIES PER MOLE'')')SUM
SUMM=0.D0
DO 230 I=1,NVAR
SUM1=1.D-20
C$DOIT VBEST
DO 190 J=1,NVAR
190 SUM1=SUM1+CNORML(J+(I-1)*NVAR)**2
SUM1=1.D0/SQRT(SUM1)
C$DOIT ASIS
DO 200 K=1,3
200 GRAD(K)=0.D0
C$DOIT ASIS
DO 220 K=1,3
SUM=0.D0
C$DOIT VBEST
DO 210 J=1,NVAR
210 SUM=SUM+CNORML(J+(I-1)*NVAR)*DELDIP(K,J)
SUMM=SUMM+ABS(SUM)
220 TRDIP(K,I)=SUM*SUM1
DIPT(I)=SQRT(TRDIP(1,I)**2+TRDIP(2,I)**2+TRDIP(3,I)**2)
230 CONTINUE
IF(PRNT)THEN
WRITE(6,'(//3X,'' THE LAST'',I2,'' VIBRATIONS ARE THE'',
1'' TRANSLATION AND ROTATION MODES'')')NVAR-NVIB
WRITE(6,'(3X,'' THE FIRST THREE OF THESE BEING TRANSLATIONS'',
1'' IN X, Y, AND Z, RESPECTIVELY'')')
ENDIF
IF(PRNT.AND.LARGE)THEN
WRITE(6,'(//10X,'' FREQUENCIES, REDUCED MASSES AND '',
1''VIBRATIONAL DIPOLES''/)')
NTO6=NVAR/6
NREM6=NVAR-NTO6*6
IINC1=-5
IF (NTO6.LT.1) GO TO 250
DO 240 I=1,NTO6
WRITE (6,'(/)')
IINC1=IINC1+6
IINC2=IINC1+5
WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
WRITE (6,'('' FREQ(I)'',6F10.4,/)') (FREQ(J),J=IINC1,IINC2)
WRITE (6,'('' MASS(I)'',6F10.5,/)') (REDMAS(J),J=IINC1,IINC2
1)
WRITE (6,'('' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
WRITE (6,'('' DIPZ(I)'',6F10.5,/)') (TRDIP(3,J),J=IINC1,IINC
12)
WRITE (6,'('' DIPT(I)'',6F10.5)')
1 (DIPT(J),J=IINC1,IINC2)
240 CONTINUE
250 CONTINUE
IF (NREM6.LT.1) GO TO 260
WRITE (6,'(/)')
IINC1=IINC1+6
IINC2=IINC1+(NREM6-1)
WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
WRITE (6,'('' FREQ(I)'',6F10.4)') (FREQ(J),J=IINC1,IINC2)
WRITE (6,'(/,'' MASS(I)'',6F10.5)') (REDMAS(J),J=IINC1,IINC2)
WRITE (6,'(/,'' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
WRITE (6,'('' DIPZ(I)'',6F10.5)') (TRDIP(3,J),J=IINC1,IINC2)
WRITE (6,'(/,'' DIPT(I)'',6F10.5)')
1 (DIPT(J),J=IINC1,IINC2)
260 CONTINUE
ENDIF
IF(PRNT)THEN
WRITE(6,'(//10X,'' NORMAL COORDINATE ANALYSIS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
ENDIF
C
C CARRY OUT IRC IF REQUESTED.
C
IF(INDEX(KEYWRD,'IRC')+INDEX(KEYWRD,'DRC').eq.677)THEN
DO 270 I=1,NVAR
LOC(1,I)=0
270 LOC(2,I)=0
NVAR=NVAOLD
DO 280 I=1,NVAR
LOC(1,I)=LOCOLD(1,I)
280 LOC(2,I)=LOCOLD(2,I)
CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
LAST=1
CALL DRC(CNORML,FREQ)
NA(1)=0
NDEP=NDEOLD
NVAR=0
DO 290 I=1,3
DO 290 J=1,NATOMS
290 GEO(I,J)=GEOREF(I,J)
RETURN
ENDIF
CALL FREQCY(FMATRX,FREQ,CNORML,DELDIP,DELDIP,.FALSE.,DELDIP)
WRITE(6,'(//10X,'' MASS-WEIGHTED COORDINATE ANALYSIS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
CALL ANAVIB(COORD,FREQ,DIPT,NVAR,CNORML,STORE,
1FMATRX,TRAVEL,REDMAS)
IF(INDEX(KEYWRD,'THERMO').NE.0) THEN
CALL GMETRY(GEO,COORD)
I=INDEX(KEYWRD,' ROT')
IF(I.NE.0) THEN
SYM=READA(KEYWRD,I)
ELSE
SYM=1
ENDIF
LINEAR=(ABS(A*B*C) .LT. 1.D-10)
I=INDEX(KEYWRD,' TRANS')
C
C "I" IS GOING TO MARK THE BEGINNING OF THE GENUINE VIBRATIONS.
C
IF(I.NE.0)THEN
I=INDEX(KEYWRD,' TRANS=')
IF(I.NE.0)THEN
I=1+READA(KEYWRD,I)
J=NVIB-I+1
WRITE(6,'(//1X,''THE LOWEST'',I3,'' VIBRATIONS ARE NOT'',
1/,'' TO BE USED IN THE THERMO CALCULATION'')')I-1
ELSE
WRITE(6,'(//10X,''SYSTEM IS A TRANSITION STATE'')')
I=2
J=NVIB-1
ENDIF
ELSE
WRITE(6,'(//10X,''SYSTEM IS A GROUND STATE'')')
I=1
J=NVIB
ENDIF
CALL THERMO(A,B,C,LINEAR,SYM,WTMOL,FREQ(I),J,ESCF)
ENDIF
NA(1)=0
NVAR=0
NDEP=NDEOLD
DO 300 I=1,3
DO 300 J=1,NATOMS
300 GEO(I,J)=GEOREF(I,J)
RETURN
END
|