1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
SUBROUTINE FREQCY(FMATRX,FREQ,CNORML,REDMAS,TRAVEL,EORC,DELDIP)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION FMATRX(*), REDMAS(*), FREQ(*), CNORML(*), TRAVEL(*)
+,DELDIP(3,*)
LOGICAL EORC
*********************************************************************
*
* FRCE CALCULATES THE FORCE CONSTANTS AND VIBRATIONAL FREQUENCIES
* FOR A MOLECULE. IT USES THE ISOTOPIC MASSES TO WEIGHT THE
* FORCE MATRIX
*
* ON INPUT FMATRX = FORCE MATRIX, OF SIZE NUMAT*3*(NUMAT*3+1)/2.
*
*********************************************************************
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /NLLCOM/ FMAT2D(2*MAXPAR**2), VEC(MAXPAR**2)
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /ATMASS/ ATMASS(NUMATM)
COMMON /KEYWRD/ KEYWRD
COMMON /SCRACH/ OLDF(MAXPAR**2)
COMMON /WORK1 / DUMMY1(NPULAY*4), DUMMY2(NPULAY*2),
. DUMMY3(NPULAY*2), ALBAND(NPULAY*13)
CHARACTER KEYWRD*241
DIMENSION WTMASS(MAXPAR), SHIFT(6), SEC(MAXPAR**2)
COMPLEX SEC, VEC
EQUIVALENCE (SEC,OLDF)
SAVE FACT
DATA FACT/6.023D23/
C
C CONVERSION FACTOR FOR SPEED OF LIGHT AND 2 PI.
C
C2PI=1.D0/(2.998D10*3.141592653598D0*2.D0)
C NOW TO CALCULATE THE VIBRATIONAL FREQUENCIES
C
C FIND CONVERSION CONSTANTS FOR MASS WEIGHTED SYSTEM
IF(INDEX(KEYWRD,' GROUP').NE.0) THEN
CALL SYMT(FMATRX, DELDIP)
IF(INDEX(KEYWRD,' FREQCY').NE.0)THEN
WRITE(6,'(A)')' SYMMETRIZED HESSIAN MATRIX'
C# I=-N3
C# CALL VECPRT(FMATRX,I)
C
C THE FORCE MATRIX IS PRINTED AS AN ATOM-ATOM MATRIX RATHER THAN
C AS A 3N*3N MATRIX, AS THE 3N MATRIX IS VERY CONFUSING!
C
IJ=0
IU=0
DO 159 I=1,NUMAT
IL=IU+1
IU=IL+2
IM1=I-1
JU=0
DO 149 J=1,IM1
JL=JU+1
JU=JL+2
SUM=0.D0
C$DOIT ASIS
DO 139 II=IL,IU
C$DOIT ASIS
DO 139 JJ=JL,JU
139 SUM=SUM+FMATRX((II*(II-1))/2+JJ)**2
IJ=IJ+1
149 CNORML(IJ)=SQRT(SUM)
IJ=IJ+1
159 CNORML(IJ)=SQRT(
1FMATRX(((IL+0)*(IL+1))/2)**2+
2FMATRX(((IL+1)*(IL+2))/2)**2+
3FMATRX(((IL+2)*(IL+3))/2)**2+2.D0*(
4FMATRX(((IL+1)*(IL+2))/2-1)**2+
5FMATRX(((IL+2)*(IL+3))/2-2)**2+
6FMATRX(((IL+2)*(IL+3))/2-1)**2))
I=-NUMAT
CALL VECPRT(CNORML,I)
ENDIF
ENDIF
N3=3*NUMAT
L=0
DO 10 I=1,NUMAT
WEIGHT=1.4142136D0/SQRT(ATMASS(I))
WTMASS(L+1)=WEIGHT
WTMASS(L+2)=WEIGHT
WTMASS(L+3)=WEIGHT
L=L+3
10 WTMASS(L)=WEIGHT
C CONVERT TO MASS WEIGHTED FMATRX
LINEAR=0
DO 20 I=1,N3
DO 20 J=1,I
LINEAR=LINEAR+1
OLDF(LINEAR)= FMATRX(LINEAR)*1.D5
20 FMATRX(LINEAR)=FMATRX(LINEAR)*WTMASS(I)*WTMASS(J)
C
C 1.D5 IS TO CONVERT FROM MILLIDYNES/ANGSTROM TO DYNES/CM.
C
C DIAGONALIZE
I=INDEX(KEYWRD,' K=')
IF(I.NE.0)THEN
C
C GO INTO BRILLOUIN ZONE MODE
C
STEP=READA(KEYWRD,I)
MONO3=READA(KEYWRD(I:),INDEX(KEYWRD(I:),','))*3
CALL BRLZON(FMATRX, FMAT2D, N3, SEC, VEC, ALBAND, MONO3, STEP,1
1)
RETURN
ENDIF
CALL FRAME(FMATRX,NUMAT,1, SHIFT)
CALL RSP(FMATRX,N3,N3,FREQ,CNORML)
DO 30 I=1,N3
J=(FREQ(I)+50.D0)*0.01D0
30 FREQ(I)=FREQ(I)-DBLE(J*100)
DO 40 I=1,N3
40 FREQ(I)=FREQ(I)*1.D5
C
C CALCULATE REDUCED MASSES, STORE IN REDMAS
C
DO 80 I=1,N3
II=(I-1)*N3
SUM=0.D0
DO 70 J=1,N3
JII=J+II
JJ=(J*(J-1))/2
DO 50 K=1,J
50 SUM=SUM+CNORML(JII)*OLDF(JJ+K)*CNORML(K+II)
DO 60 K=J+1,N3
60 SUM=SUM+CNORML(JII)*OLDF((K*(K-1))/2+J)*CNORML(K+II)
70 CONTINUE
SUM1=SUM*2.D0
IF(ABS(FREQ(I)).GT.ABS(SUM)*1.D-20) THEN
SUM=1.D0*SUM/FREQ(I)
ELSE
SUM=0.D0
ENDIF
FREQ(I)=SIGN(SQRT(FACT*ABS(FREQ(I)))*C2PI,FREQ(I))
IF(ABS(FREQ(I)).LT.ABS(SUM1)*1.D+20) THEN
SUM1=SQRT(ABS(FREQ(I)/(SUM1*1.D-5)))
ELSE
SUM1=0.D0
ENDIF
IF(SUM.LT.0.D0.OR.SUM.GT.100)SUM=0.D0
C
C 0.0063024=SQRT(2*A*B*C/N) WHERE
C A=1.196D8 = CONVERSION OF CM**(-1) TO (ERGS = DYNE.ANGSTROMS)
C B=1000.0 = MILLIDYNES TO DYNES
C C=1.D8 = CENTIMETERS TO ANGSTROMS
C N=6.02205D23 = AVOGADRO'S NUMBER
TRAVEL(I)=SUM1*0.0063024D0
IF(TRAVEL(I).GT.1.D0)TRAVEL(I)=0.D0
C# WRITE(6,*)TRAVEL(I)
80 REDMAS(I)=SUM
IF(INDEX(KEYWRD,' GROUP').NE.0) CALL SYMA(FREQ, CNORML)
IF(EORC) THEN
C
C CONVERT NORMAL VECTORS TO CARTESIAN COORDINATES
C (DELETED) AND NORMALIZE SO THAT THE TOTAL MOVEMENT IS 1.0 ANGSTROM.
C
IJ=0
DO 110 I=1,N3
SUM=0.D0
J=0
DO 90 JJ=1,NUMAT
SUM1=0.D0
CNORML(IJ+1)=CNORML(IJ+1)*WTMASS(J+1)
SUM1=SUM1+CNORML(IJ+1)**2
C
CNORML(IJ+2)=CNORML(IJ+2)*WTMASS(J+2)
SUM1=SUM1+CNORML(IJ+2)**2
C
CNORML(IJ+3)=CNORML(IJ+3)*WTMASS(J+3)
SUM1=SUM1+CNORML(IJ+3)**2
C
J=J+3
IJ=IJ+3
90 SUM=SUM+SQRT(SUM1)
SUM=1.D0/SQRT(SUM)
IJ=IJ-N3
DO 100 J=1,N3
IJ=IJ+1
100 CNORML(IJ)=CNORML(IJ)*SUM
110 CONTINUE
C
C RETURN HESSIAN IN MILLIDYNES/ANGSTROM IN FMATRX
C
DO 120 I=1,LINEAR
120 FMATRX(I)=OLDF(I)*1.D-5
ELSE
C
C RETURN HESSIAN AS MASS-WEIGHTED FMATRIX
LINEAR=0
C
DO 130 I=1,N3
DO 130 J=1,I
LINEAR=LINEAR+1
130 FMATRX(LINEAR)=OLDF(LINEAR)*1.D-5*WTMASS(I)*WTMASS(J)
ENDIF
RETURN
END
|