File: hcore.f

package info (click to toggle)
mopac7 1.15-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, jessie, jessie-kfreebsd, stretch
  • size: 3,748 kB
  • ctags: 5,768
  • sloc: fortran: 35,321; sh: 9,039; ansic: 417; makefile: 80
file content (219 lines) | stat: -rw-r--r-- 6,948 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
      SUBROUTINE HCORE (COORD,H,W, WJ,WK,ENUCLR)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      LOGICAL FLDON
      INCLUDE 'SIZES'
      DIMENSION COORD(3,*),H(*), WJ(N2ELEC), WK(N2ELEC), W(N2ELEC)
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
     2                NCLOSE,NOPEN,NDUMY,FRACT
     3       /MOLORB/ USPD(MAXORB),DUMY(MAXORB)
     4       /KEYWRD/ KEYWRD
      COMMON /EULER / TVEC(3,3), ID
      COMMON /MULTIP/ DD(107),QQ(107),AM(107),AD(107),AQ(107)
      COMMON /CORE  / CORE(107)
      COMMON /FIELD / EFIELD(3)
      COMMON /NUMCAL/ NUMCAL
C COSMO change
      LOGICAL ISEPS, USEPS, UPDA
      COMMON /ISEPS/  ISEPS, USEPS, UPDA
C end of COSMO change
************************************************************************
C
C   HCORE GENERATES THE ONE-ELECTRON MATRIX AND TWO ELECTRON INTEGRALS
C         FOR A GIVEN MOLECULE WHOSE GEOMETRY IS DEFINED IN CARTESIAN
C         COORDINATES.
C
C  ON INPUT  COORD   = COORDINATES OF THE MOLECULE.
C
C  ON OUTPUT  H      = ONE-ELECTRON MATRIX.
C             W      = TWO-ELECTRON INTEGRALS.
C             ENUCLR = NUCLEAR ENERGY
************************************************************************
      CHARACTER*241 KEYWRD, TMPKEY
      LOGICAL FIRST,DEBUG
      SAVE FIRST, IONE, CUTOFF, DEBUG
      DIMENSION E1B(10),E2A(10),DI(9,9), WJD(100), WKD(100)
      DATA ICALCN/0/
      FIRST=(ICALCN.NE.NUMCAL)
      ICALCN=NUMCAL
      IF (FIRST) THEN
         IONE=1
         CUTOFF=1.D10
         IF(ID.NE.0)CUTOFF=60.D0
         IF(ID.NE.0)IONE=0
         DEBUG=(INDEX(KEYWRD,'HCORE') .NE. 0)
*******************************************************************
         XF=0.D0
         YF=0.D0
         ZF=0.D0
         TMPKEY=KEYWRD
         I=INDEX(TMPKEY,' FIELD(')
         IF(I.EQ.0) GOTO 6 
C
C   ERASE ALL TEXT FROM TMPKEY EXCEPT FIELD DATA
C
         TMPKEY(:I)=' '
         TMPKEY(INDEX(TMPKEY,')'):)=' '
C
C   READ IN THE EFFECTIVE FIELD IN X,Y,Z COORDINATES
C
         XF=READA(TMPKEY,I)
         I=INDEX(TMPKEY,',')
         IF(I.EQ.0) GOTO 5 
         TMPKEY(I:I)=' '
         YF=READA(TMPKEY,I)
         I=INDEX(TMPKEY,',')
         IF(I.EQ.0) GOTO 5 
         TMPKEY(I:I)=' '
         ZF=READA(TMPKEY,I)
    5    CONTINUE
         WRITE(6,'(/10X,''THE ELECTRIC FIELD IS'',3F10.5)')XF,YF,ZF
         WRITE(6,'(10X,''IN 8*A.U. (8*27.21/0.529 VOLTS/ANGSTROM)'',/)')
    6    CONTINUE
         EFIELD(1)=XF
         EFIELD(2)=YF
         EFIELD(3)=ZF
C**********************************************************************
      ENDIF
      FLDON = .FALSE.
      IF ((EFIELD(1).NE.0.0D00).OR.(EFIELD(2).NE.0.0D00).OR.
     1    (EFIELD(3).NE.0.0D00)) THEN
         FLDCON = 51.4257D00
         FLDON = .TRUE.
      ENDIF
      DO 10 I=1,(NORBS*(NORBS+1))/2
   10 H(I)=0.D0
      ENUCLR=0.D0
      KR=1
      DO 110 I=1,NUMAT
         IA=NFIRST(I)
         IB=NLAST(I)
         IC=NMIDLE(I)
         NI=NAT(I)
C
C FIRST WE FILL THE DIAGONALS, AND OFF-DIAGONALS ON THE SAME ATOM
C
         DO 30 I1=IA,IB
            I2=I1*(I1-1)/2+IA-1
            DO 20 J1=IA,I1
               I2=I2+1
               H(I2)=0.D0
               IF (FLDON) THEN
                  IO1 = I1 - IA
                  JO1 = J1 - IA
                  IF ((JO1.EQ.0).AND.(IO1.EQ.1)) THEN
                     HTERME = -0.529177D00*DD(NI)*EFIELD(1)*FLDCON
                     H(I2) = HTERME
                  ENDIF
                  IF ((JO1.EQ.0).AND.(IO1.EQ.2)) THEN
                     HTERME = -0.529177D00*DD(NI)*EFIELD(2)*FLDCON
                     H(I2) = HTERME
                  ENDIF
                  IF ((JO1.EQ.0).AND.(IO1.EQ.3)) THEN
                     HTERME = -0.529177D00*DD(NI)*EFIELD(3)*FLDCON
                     H(I2) = HTERME
                  ENDIF
               ENDIF
   20       CONTINUE
            H(I2) = USPD(I1)
            IF (FLDON) THEN
               FNUC = -(EFIELD(1)*COORD(1,I) + EFIELD(2)*COORD(2,I) +
     1              EFIELD(3)*COORD(3,I))*FLDCON
               H(I2) = H(I2) + FNUC
            ENDIF
   30    CONTINUE
C
C   FILL THE ATOM-OTHER ATOM ONE-ELECTRON MATRIX<PSI(LAMBDA)|PSI(SIGMA)>
C
         IM1=I-IONE
         DO 100 J=1,IM1
            HALF=1.D0
            IF(I.EQ.J)HALF=0.5D0
            JA=NFIRST(J)
            JB=NLAST(J)
            JC=NMIDLE(J)
            NJ=NAT(J)
            CALL H1ELEC(NI,NJ,COORD(1,I),COORD(1,J),DI)
            I2=0
            DO 40 I1=IA,IB
               II=I1*(I1-1)/2+JA-1
               I2=I2+1
               J2=0
               JJ=MIN(I1,JB)
               DO 40 J1=JA,JJ
                  II=II+1
                  J2=J2+1
   40       H(II)=H(II)+DI(I2,J2)
C
C   CALCULATE THE TWO-ELECTRON INTEGRALS, W; THE ELECTRON NUCLEAR TERMS
C   E1B AND E2A; AND THE NUCLEAR-NUCLEAR TERM ENUC.
C
            IF(ID.EQ.0) THEN
               CALL ROTATE(NI,NJ,COORD(1,I),COORD(1,J),
     1 W(KR), KR,E1B,E2A,ENUC,CUTOFF)
            ELSE
               KRO=KR
               CALL SOLROT(NI,NJ,COORD(1,I),COORD(1,J),
     1                WJD, WKD,KR,E1B,E2A,ENUC,CUTOFF)
               JJ=0
               DO 50 II=KRO,KR-1
                  JJ=JJ+1
                  WJ(II)=WJD(JJ)
   50          WK(II)=WKD(JJ)
            ENDIF
            ENUCLR = ENUCLR + ENUC
C
C   ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM I.
C
            I2=0
            DO 60 I1=IA,IC
               II=I1*(I1-1)/2+IA-1
               DO 60 J1=IA,I1
                  II=II+1
                  I2=I2+1
   60       H(II)=H(II)+E1B(I2)*HALF
            DO  70 I1=IC+1,IB
               II=(I1*(I1+1))/2
   70       H(II)=H(II)+E1B(1)*HALF
C
C   ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM J.
C
            I2=0
            DO 80 I1=JA,JC
               II=I1*(I1-1)/2+JA-1
               DO 80 J1=JA,I1
                  II=II+1
                  I2=I2+1
   80       H(II)=H(II)+E2A(I2)*HALF
            DO 90 I1=JC+1,JB
               II=(I1*(I1+1))/2
   90       H(II)=H(II)+E2A(1)*HALF
  100    CONTINUE
  110 CONTINUE
C COSMO change
C A. KLAMT 16.7.91
      IF (USEPS) THEN
C The following routine adds the dielectric correction for the electron-core
C interaction to the diagonal elements of H
         CALL ADDHCR (H)
C In the following routine the dielectric correction to the core-core-
C interaction is added to ENUCLR
         CALL ADDNUC (ENUCLR)
      ENDIF
C end of COSMO change
      IF( .NOT. DEBUG) RETURN
      WRITE(6,'(//10X,''ONE-ELECTRON MATRIX FROM HCORE'')')
      CALL VECPRT(H,NORBS)
      J=MIN(400,KR)
      IF(ID.EQ.0) THEN
         WRITE(6,'(//10X,''TWO-ELECTRON MATRIX IN HCORE''/)')
         WRITE(6,120)(W(I),I=1,J)
      ELSE
         WRITE(6,'(//10X,''TWO-ELECTRON J MATRIX IN HCORE''/)')
         WRITE(6,120)(WJ(I),I=1,J)
         WRITE(6,'(//10X,''TWO-ELECTRON K MATRIX IN HCORE''/)')
         WRITE(6,120)(WK(I),I=1,J)
      ENDIF
  120 FORMAT(10F8.4)
      RETURN
      END