1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
SUBROUTINE XYZINT(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XYZ(3,*), NA(*), NB(*), NC(*), GEO(3,*)
***********************************************************************
*
* XYZINT WORKS OUT THE INTERNAL COORDINATES OF A MOLECULE.
* THE "RULES" FOR THE CONNECTIVITY ARE AS FOLLOWS:
* ATOM I IS DEFINED AS BEING AT A DISTANCE FROM THE NEAREST
* ATOM J, ATOM J ALREADY HAVING BEEN DEFINED.
* ATOM I MAKES AN ANGLE WITH ATOM J AND THE ATOM K, WHICH HAS
* ALREADY BEEN DEFINED, AND IS THE NEAREST ATOM TO J
* ATOM I MAKES A DIHEDRAL ANGLE WITH ATOMS J, K, AND L. L HAVING
* BEEN DEFINED AND IS THE NEAREST ATOM TO K, AND J, K AND L
* HAVE A CONTAINED ANGLE IN THE RANGE 15 TO 165 DEGREES,
* IF POSSIBLE.
*
* IF(NA(2).EQ.-1 OR -2 THEN THE ORIGINAL CONNECTIVITY IS USED.
*
* NOTE THAT GEO AND XYZ MUST NOT BE THE SAME IN THE CALL.
*
* ON INPUT XYZ = CARTESIAN ARRAY OF NUMAT ATOMS
* DEGREE = 1 IF ANGLES ARE TO BE IN RADIANS
* DEGREE = 57.29578 IF ANGLES ARE TO BE IN DEGREES
*
***********************************************************************
COMMON /GEOOK/ IGEOOK
COMMON /NUMCAL/ NUMCAL
DATA ICALCN/0/
IGEOOK=99
IF(.NOT.(ICALCN.NE.NUMCAL).AND.NA(2).EQ.-1 .OR. NA(2).EQ.-2)THEN
NA(2)=1
DO 10 I=2,NUMAT
J=NA(I)
IF(I.GT.3)CALL DIHED(XYZ,I,J,NB(I),NC(I),GEO(3,I))
IF(I.GT.2)CALL BANGLE(XYZ,I,J,NB(I),GEO(2,I))
GEO(1,I)=SQRT((XYZ(1,I)-XYZ(1,J))**2+
1 (XYZ(2,I)-XYZ(2,J))**2+
2 (XYZ(3,I)-XYZ(3,J))**2)
10 CONTINUE
ELSE
IF(NA(2).EQ.-1)ICALCN=NUMCAL
DO 30 I=1,NUMAT
NA(I)=2
NB(I)=3
NC(I)=4
IM1=I-1
IF(IM1.EQ.0)GOTO 30
SUM=1.D30
DO 20 J=1,IM1
R=(XYZ(1,I)-XYZ(1,J))**2+
1 (XYZ(2,I)-XYZ(2,J))**2+
2 (XYZ(3,I)-XYZ(3,J))**2
IF(R.LT.SUM.AND.NA(J).NE.J.AND.NB(J).NE.J) THEN
SUM=R
K=J
ENDIF
20 CONTINUE
C
C ATOM I IS NEAREST TO ATOM K
C
NA(I)=K
IF(I.GT.2)NB(I)=NA(K)
IF(I.GT.3)NC(I)=NB(K)
C
C FIND ANY ATOM TO RELATE TO NA(I)
C
30 CONTINUE
ENDIF
NA(1)=0
NB(1)=0
NC(1)=0
NB(2)=0
NC(2)=0
NC(3)=0
CALL XYZGEO(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO)
RETURN
END
SUBROUTINE XYZGEO(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XYZ(3,*), NA(*), NB(*), NC(*), GEO(3,*)
***********************************************************************
*
* XYZGEO CONVERTS COORDINATES FROM CARTESIAN TO INTERNAL.
*
* ON INPUT XYZ = ARRAY OF CARTESIAN COORDINATES
* NUMAT= NUMBER OF ATOMS
* NA = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED
* BY DISTANCE
* NB = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED
* BY ANGLE
* NC = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED
* BY DIHEDRAL
*
* ON OUTPUT GEO = INTERNAL COORDINATES IN ANGSTROMS, RADIANS,
* AND RADIANS
*
***********************************************************************
DO 30 I=2,NUMAT
J=NA(I)
K=NB(I)
L=NC(I)
IF(I.LT.3) GOTO 30
II=I
CALL BANGLE(XYZ,II,J,K,GEO(2,I))
GEO(2,I)=GEO(2,I)*DEGREE
IF(I.LT.4) GOTO 30
C
C MAKE SURE DIHEDRAL IS MEANINGLFUL
C
CALL BANGLE(XYZ,J,K,L,ANGL)
TOL=0.2617994D0
IF(ANGL.GT.3.1415926D0-TOL.OR.ANGL.LT.TOL)THEN
C
C ANGLE IS UNSATISFACTORY, LET'S SEARCH FOR ANOTHER ATOM FOR
C DEFINING THE DIHEDRAL.
10 SUM=100.D0
DO 20 I1=1,II-1
R=(XYZ(1,I1)-XYZ(1,K))**2+
1 (XYZ(2,I1)-XYZ(2,K))**2+
2 (XYZ(3,I1)-XYZ(3,K))**2
IF(R.LT.SUM.AND.I1.NE.J.AND.I1.NE.K) THEN
CALL BANGLE(XYZ,J,K,I1,ANGL)
IF(ANGL.LT.3.1415926D0-TOL.AND.ANGL.GT.TOL)THEN
SUM=R
L=I1
NC(II)=L
ENDIF
ENDIF
20 CONTINUE
IF(SUM.GT.99.D0.AND.TOL.GT.0.1D0)THEN
C
C ANYTHING WITHIN 5 DEGREES?
C
TOL=0.087266D0
GOTO 10
ENDIF
ENDIF
CALL DIHED(XYZ,II,J,K,L,GEO(3,I))
GEO(3,I)=GEO(3,I)*DEGREE
30 GEO(1,I)= SQRT((XYZ(1,I)-XYZ(1,J))**2+
1 (XYZ(2,I)-XYZ(2,J))**2+
2 (XYZ(3,I)-XYZ(3,J))**2)
GEO(1,1)=0.D0
GEO(2,1)=0.D0
GEO(3,1)=0.D0
GEO(2,2)=0.D0
GEO(3,2)=0.D0
GEO(3,3)=0.D0
RETURN
END
SUBROUTINE BANGLE(XYZ,I,J,K,ANGLE)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XYZ(3,*)
*********************************************************************
*
* BANGLE CALCULATES THE ANGLE BETWEEN ATOMS I,J, AND K. THE
* CARTESIAN COORDINATES ARE IN XYZ.
*
*********************************************************************
D2IJ = (XYZ(1,I)-XYZ(1,J))**2+
1 (XYZ(2,I)-XYZ(2,J))**2+
2 (XYZ(3,I)-XYZ(3,J))**2
D2JK = (XYZ(1,J)-XYZ(1,K))**2+
1 (XYZ(2,J)-XYZ(2,K))**2+
2 (XYZ(3,J)-XYZ(3,K))**2
D2IK = (XYZ(1,I)-XYZ(1,K))**2+
1 (XYZ(2,I)-XYZ(2,K))**2+
2 (XYZ(3,I)-XYZ(3,K))**2
XY = SQRT(D2IJ*D2JK)
TEMP = 0.5D0 * (D2IJ+D2JK-D2IK) / XY
IF (TEMP .GT. 1.0D0) TEMP=1.0D0
IF (TEMP .LT. -1.0D0) TEMP=-1.0D0
ANGLE = ACOS( TEMP )
RETURN
END
SUBROUTINE DIHED(XYZ,I,J,K,L,ANGLE)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XYZ(3,*)
*********************************************************************
*
* DIHED CALCULATES THE DIHEDRAL ANGLE BETWEEN ATOMS I, J, K,
* AND L. THE CARTESIAN COORDINATES OF THESE ATOMS
* ARE IN ARRAY XYZ.
*
* DIHED IS A MODIFIED VERSION OF A SUBROUTINE OF THE SAME NAME
* WHICH WAS WRITTEN BY DR. W. THEIL IN 1973.
*
*********************************************************************
XI1=XYZ(1,I)-XYZ(1,K)
XJ1=XYZ(1,J)-XYZ(1,K)
XL1=XYZ(1,L)-XYZ(1,K)
YI1=XYZ(2,I)-XYZ(2,K)
YJ1=XYZ(2,J)-XYZ(2,K)
YL1=XYZ(2,L)-XYZ(2,K)
ZI1=XYZ(3,I)-XYZ(3,K)
ZJ1=XYZ(3,J)-XYZ(3,K)
ZL1=XYZ(3,L)-XYZ(3,K)
C ROTATE AROUND Z AXIS TO PUT KJ ALONG Y AXIS
DIST= SQRT(XJ1**2+YJ1**2+ZJ1**2)
COSA=ZJ1/DIST
IF(COSA.GT.1.0D0) COSA=1.0D0
IF(COSA.LT.-1.0D0) COSA=-1.0D0
DDD=1.0D0-COSA**2
IF(DDD.LE.0.0) GO TO 10
YXDIST=DIST* SQRT(DDD)
IF(YXDIST.GT.1.0D-6) GO TO 20
10 CONTINUE
XI2=XI1
XL2=XL1
YI2=YI1
YL2=YL1
COSTH=COSA
SINTH=0.D0
GO TO 30
20 COSPH=YJ1/YXDIST
SINPH=XJ1/YXDIST
XI2=XI1*COSPH-YI1*SINPH
XL2=XL1*COSPH-YL1*SINPH
YI2=XI1*SINPH+YI1*COSPH
YJ2=XJ1*SINPH+YJ1*COSPH
YL2=XL1*SINPH+YL1*COSPH
C ROTATE KJ AROUND THE X AXIS SO KJ LIES ALONG THE Z AXIS
COSTH=COSA
SINTH=YJ2/DIST
30 CONTINUE
YI3=YI2*COSTH-ZI1*SINTH
YL3=YL2*COSTH-ZL1*SINTH
CALL DANG(XL2,YL3,XI2,YI3,ANGLE)
IF (ANGLE .LT. 0.) ANGLE=4.0D0* ASIN(1.0D00)+ANGLE
IF (ANGLE .GE. 6.2831853D0 ) ANGLE=0.D0
RETURN
END
SUBROUTINE DANG(A1,A2,B1,B2,RCOS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
**********************************************************************
*
* DANG DETERMINES THE ANGLE BETWEEN THE POINTS (A1,A2), (0,0),
* AND (B1,B2). THE RESULT IS PUT IN RCOS.
*
**********************************************************************
ZERO=1.0D-6
IF( ABS(A1).LT.ZERO.AND. ABS(A2).LT.ZERO) GO TO 10
IF( ABS(B1).LT.ZERO.AND. ABS(B2).LT.ZERO) GO TO 10
ANORM=1.0D0/ SQRT(A1**2+A2**2)
BNORM=1.0D0/ SQRT(B1**2+B2**2)
A1=A1*ANORM
A2=A2*ANORM
B1=B1*BNORM
B2=B2*BNORM
SINTH=(A1*B2)-(A2*B1)
COSTH=A1*B1+A2*B2
IF(COSTH.GT.1.0D0) COSTH=1.0D0
IF(COSTH.LT.-1.0D0) COSTH=-1.0D0
RCOS= ACOS(COSTH)
IF( ABS(RCOS).LT.4.0D-4) GO TO 10
IF(SINTH.GT.0.D0) RCOS=4.0D0* ASIN(1.0D00)-RCOS
RCOS=-RCOS
RETURN
10 RCOS=0.0D0
RETURN
END
|