1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
SUBROUTINE DERI1(C,NORBS,COORD,NUMBER,WORK,GRAD
1 ,F,MINEAR,FD,WMAT,HMAT,FMAT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION WMAT(MPACK),HMAT(MPACK*2),FMAT(MPACK*2)
*********************************************************************
*
* DERI1 COMPUTE THE NON-RELAXED DERIVATIVE OF THE NON-VARIATIONALLY
* OPTIMIZED WAVEFUNCTION ENERGY WITH RESPECT TO ONE CARTESIAN
* COORDINATE AT A TIME
* AND
* COMPUTE THE NON-RELAXED FOCK MATRIX DERIVATIVE IN M.O BASIS AS
* REQUIRED IN THE RELAXATION SECTION (ROUTINE 'DERI2').
*
* INPUT
* C(NORBS,NORBS) : M.O. COEFFICIENTS.
* COORD : CARTESIAN COORDINATES ARRAY.
* NUMBER : LOCATION OF THE REQUIRED VARIABLE IN COORD.
* WORK : WORK ARRAY OF SIZE N*N.
* WMAT : WORK ARRAYS FOR d<PQ|RS> (2-CENTERS A.O)
* OUTPUT
* C,COORD,NUMBER : NOT MODIFIED.
* GRAD : DERIVATIVE OF THE HEAT OF FORMATION WITH RESPECT TO
* COORD(NUMBER), WITHOUT RELAXATION CORRECTION.
* F(MINEAR) : NON-RELAXED FOCK MATRIX DERIVATIVE WITH RESPECT TO
* COORD(NUMBER), EXPRESSED IN M.O BASIS, SCALED AND
* PACKED, OFF-DIAGONAL BLOCKS ONLY.
* FD : IDEM BUT UNSCALED, DIAGONAL BLOCKS, C.I-ACTIVE ONLY.
*
************************************************************************
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM)
1 ,NLAST(NUMATM), NDUMY1, NELECS,NALPHA,NBETA
2 ,NCLOSE,NOPEN,NDUMY,FRACT
3 /VECTOR/ CDUM(MORB2),EIGS(MAXORB),WDUM(MORB2),EIGB(MAXORB)
4 /DENSTY/ P(MPACK), PA(MPACK), PB(MPACK)
COMMON /CIBITS/ NMOS,LAB,NELEC,NBO(3)
1 /HMATRX/ H(MPACK)
2 /XYIJKL/ XY(NMECI,NMECI,NMECI,NMECI)
3 /CIVECT/ CONF(NMECI**4+NMECI**2+1)
COMMON /FOKMAT/ FDUMY(MPACK), SCALAR(MPACK)
COMMON /NVOMAT/ DIAG(MPACK/2)
1 /KEYWRD/ KEYWRD
COMMON /NUMCAL/ NUMCAL
DIMENSION COORD(*),C(NORBS,NORBS),WORK(NORBS,NORBS),F(*),FD(*)
CHARACTER KEYWRD*241
LOGICAL DEBUG
DATA ICALCN /0/
C
IF(ICALCN.NE.NUMCAL) THEN
DEBUG=INDEX(KEYWRD,'DERI1').NE.0
IPRT=6
LINEAR=NORBS*(NORBS+1)/2
ICALCN=NUMCAL
ENDIF
IF(DEBUG) CALL TIMER('BEFORE DERI1')
STEP=1.D-3
C
C 2 POINTS FINITE DIFFERENCE TO GET THE INTEGRAL DERIVATIVES
C ----------------------------------------------------------
C STORED IN HMAT AND WMAT, WITHOUT DIVIDING BY THE STEP SIZE.
C
NATI=(NUMBER-1)/3+1
NATX=NUMBER-3*(NATI-1)
CALL DHCORE (COORD,HMAT,WMAT,ENUCL2,NATI,NATX,STEP)
C
C HMAT HOLDS THE ONE-ELECTRON DERIVATIVES OF ATOM NATI FOR DIRECTION
C NATX W.R.T. ALL OTHER ATOMS
C WMAT HOLDS THE TWO-ELECTRON DERIVATIVES OF ATOM NATI FOR DIRECTION
C NATX W.R.T. ALL OTHER ATOMS
STEP=0.5D0/STEP
C
C NON-RELAXED FOCK MATRIX DERIVATIVE IN A.O BASIS.
C ------------------------------------------------
C STORED IN FMAT, DIVIDED BY STEP.
C
CALL SCOPY (LINEAR,HMAT,1,FMAT,1)
CALL DFOCK2 (FMAT,P,PA,WMAT,NUMAT,NFIRST,NMIDLE,NLAST,NATI)
C
C FMAT HOLDS THE ONE PLUS TWO - ELECTRON DERIVATIVES OF ATOM NATI FOR
C DIRECTION NATX W.R.T. ALL OTHER ATOMS
C
C DERIVATIVE OF THE SCF-ONLY ENERGY (I.E BEFORE C.I CORRECTION)
C
GRAD=(HELECT(NORBS,P,HMAT,FMAT)+ENUCL2)*STEP
C TAKE STEP INTO ACCOUNT IN FMAT
DO 10 I=1,LINEAR
10 FMAT(I)=FMAT(I)*STEP
C
C RIGHT-HAND SIDE SUPER-VECTOR F = C' FMAT C USED IN RELAXATION
C -----------------------------------------------------------
C STORED IN NON-STANDARD PACKED FORM IN F(MINEAR) AND FD.
C THE SUPERVECTOR IS THE NON-RELAXED FOCK MATRIX DERIVATIVE IN
C M.O BASIS: F(IJ)= ( (C' * FOCK * C)(I,J) ) WITH I.GT.J .
C F IS SCALED AND PACKED IN SUPERVECTOR FORM WITH
C THE CONSECUTIVE FOLLOWING OFF-DIAGONAL BLOCKS:
C 1) OPEN-CLOSED I.E. F(IJ)=F(I,J) WITH I OPEN & J CLOSED
C AND I RUNNING FASTER THAN J,
C 2) VIRTUAL-CLOSED SAME RULE OF ORDERING,
C 3) VIRTUAL-OPEN SAME RULE OF ORDERING.
C FD IS PACKED OVER THE C.I-ACTIVE M.O WITH
C THE CONSECUTIVE DIAGONAL BLOCKS:
C 1) CLOSED-CLOSED IN CANONICAL ORDER, WITHOUT THE
C DIAGONAL ELEMENTS,
C 2) OPEN-OPEN SAME RULE OF ORDERING,
C 3) VIRTUAL-VIRTUAL SAME RULE OF ORDERING.
C
C PART 1 : WORK(N,N) = FMAT(N,N) * C(N,N)
DO 20 I=1,NORBS
20 CALL SUPDOT (WORK(1,I),FMAT,C(1,I),NORBS,1)
C
C PART 2 : F(IJ) = (C' * WORK)(I,J) ... OFF-DIAGONAL BLOCKS.
L=1
IF(NBO(2).NE.0 .AND. NBO(1).NE.0) THEN
C OPEN-CLOSED
CALL MTXM (C(1,NBO(1)+1),NBO(2),WORK,NORBS,F(L),NBO(1))
L=L+NBO(2)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(1).NE.0) THEN
C VIRTUAL-CLOSED
CALL MTXM (C(1,NOPEN+1),NBO(3),WORK,NORBS,F(L),NBO(1))
L=L+NBO(3)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(2).NE.0) THEN
C VIRTUAL-OPEN
CALL MTXM (C(1,NOPEN+1),NBO(3),WORK(1,NBO(1)+1),NORBS,F(L),NBO(
12))
ENDIF
C SCALE F ACCORDING TO THE DIAGONAL METRIC TENSOR 'SCALAR '.
DO 30 I=1,MINEAR
30 F(I)=F(I)*SCALAR(I)
IF(DEBUG)THEN
WRITE(6,*)' F IN DERI1'
J=MIN(20,MINEAR)
WRITE(6,'(5F12.6)')(F(I),I=1,J)
ENDIF
C
C PART 3 : SUPER-VECTOR FD, C.I-ACTIVE DIAGONAL BLOCKS, UNSCALED.
L=1
NEND=0
DO 50 LOOP=1,3
NINIT=NEND+1
NEND =NEND+NBO(LOOP)
N1=MAX(NINIT,NELEC+1 )
N2=MIN(NEND ,NELEC+NMOS)
IF(N2.LT.N1) GO TO 50
DO 40 I=N1,N2
IF(I.GT.NINIT) THEN
CALL MXM (C(1,I),1,WORK(1,NINIT),NORBS,FD(L),I-NINIT)
L=L+I-NINIT
ENDIF
40 CONTINUE
50 CONTINUE
C
C NON-RELAXED C.I CORRECTION TO THE ENERGY DERIVATIVE.
C ----------------------------------------------------
C
C C.I-ACTIVE FOCK EIGENVALUES DERIVATIVES, STORED IN FD(CONTINUED).
LCUT=L
DO 60 I=NELEC+1,NELEC+NMOS
FD(L)=DOT(C(1,I),WORK(1,I),NORBS)
60 L=L+1
C
C C.I-ACTIVE 2-ELECTRONS INTEGRALS DERIVATIVES. STORED IN XY.
C FMAT IS USED HERE AS SCRATCH SPACE
C
CALL DIJKL1 (C(1,NELEC+1),NORBS,NATI,WMAT,FMAT,HMAT,FMAT)
DO 70 I=1,NMOS
DO 70 J=1,NMOS
DO 70 K=1,NMOS
DO 70 L=1,NMOS
70 XY(I,J,K,L)=XY(I,J,K,L)*STEP
C
C BUILD THE C.I MATRIX DERIVATIVE, STORED IN WMAT.
CALL MECID (FD(LCUT-NELEC),GSE,EIGB,WORK)
IF(DEBUG)THEN
WRITE(6,*)' GSE:',GSE
C# WRITE(6,*)' EIGB:',(EIGB(I),I=1,10)
C# WRITE(6,*)' WORK:',(WORK(I,1),I=1,10)
ENDIF
CALL MECIH (WORK,WMAT,NMOS,LAB)
C
C NON-RELAXED C.I CONTRIBUTION TO THE ENERGY DERIVATIVE.
CALL SUPDOT (WORK,WMAT,CONF,LAB,1)
GRAD=(GRAD+DOT(CONF,WORK,LAB))*23.061D0
IF(DEBUG) THEN
WRITE(IPRT,'('' * * * GRADIENT COMPONENT NUMBER'',I4)')NUMBER
WRITE(IPRT,'('' NON-RELAXED C.I-ACTIVE FOCK EIGENVALUES '',
1 ''DERIVATIVES (E.V.)'')')
WRITE(IPRT,'(8F10.4)')(FD(LCUT-1+I),I=1,NMOS)
WRITE(IPRT,'('' NON-RELAXED 2-ELECTRONS DERIVATIVES (E.V.)''/
1'' I J K L d<I(1)J(1)|K(2)L(2)>'')')
DO 80 I=1,NMOS
DO 80 J=1,I
DO 80 K=1,I
LL=K
IF(K.EQ.I) LL=J
DO 80 L=1,LL
80 WRITE(IPRT,'(4I5,F20.10)')
1 NELEC+I,NELEC+J,NELEC+K,NELEC+L,XY(I,J,K,L)
WRITE(IPRT,'('' NON-RELAXED GRADIENT COMPONENT'',F10.4,
1'' KCAL/MOLE'')')GRAD
CALL TIMER('AFTER DERI1')
ENDIF
RETURN
END
SUBROUTINE DHCORE (COORD,H,W,ENUCLR,NATI,NATX,STEP)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*),H(*),W(*)
C
C DHCORE GENERATES THE 1-ELECTRON AND 2-ELECTRON INTEGRALS DERIVATIVES
C WITH RESPECT TO THE CARTESIAN COORDINATE COORD (NATX,NATI).
C
C INPUT
C COORD : CARTESIAN COORDINATES OF THE MOLECULE.
C NATI,NATX : INDICES OF THE MOVING COORDINATE.
C STEP : STEP SIZE OF THE 2-POINTS FINITE DIFFERENCE.
C OUTPUT
C H : 1-ELECTRON INTEGRALS DERIVATIVES (PACKED CANONICAL).
C W : 2-ELECTRON INTEGRALS DERIVATIVES (ORDERED AS REQUIRED
C IN DFOCK2 AND DIJKL1).
C ENUCLR : NUCLEAR ENERGY DERIVATIVE.
C
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
3 /MOLORB/ USPD(MAXORB),DUMY(MAXORB)
4 /KEYWRD/ KEYWRD
5 /WMATRX/ WDUMMY(N2ELEC*2)
CHARACTER*241 KEYWRD
LOGICAL FIRST,MINDO
DIMENSION E1B(10),DE1B(10),E2A(10),DE2A(10)
1 ,DI(9,9),DDI(9,9),WJD(101),DWJD(101)
2,NB(0:8)
DATA NB/1,0,0,10,0,0,0,0,45/
DATA FIRST/.TRUE./
IF (FIRST) THEN
CUTOFF=1.D10
FIRST=.FALSE.
MINDO=INDEX(KEYWRD,'MINDO') .NE. 0
ENDIF
DO 10 I=1,(NORBS*(NORBS+1))/2
10 H(I)=0
ENUCLR=0.D0
KR=1
NROW=0
I=NATI
CSAVE=COORD(NATX,NATI)
IA=NFIRST(NATI)
IB=NLAST(NATI)
IC=NMIDLE(NATI)
NI=NAT(NATI)
NROW=-NB(IB-IA)
DO 20 J=1,NUMAT
20 NROW=NROW+NB(NLAST(J)-NFIRST(J))
C# NCOL=NB(NLAST(NATI)-NFIRST(NATI))
NBAND2=0
DO 120 J=1,NUMAT
IF (J.EQ.NATI) GO TO 120
JA=NFIRST(J)
JB=NLAST(J)
JC=NMIDLE(J)
NJ=NAT(J)
COORD(NATX,NATI)=CSAVE+STEP
CALL H1ELEC(NI,NJ,COORD(1,NATI),COORD(1,J),DI)
C
C THE FOLLOWING STYLE WAS NECESSARY TO GET ROUND A BUG IN THE
C GOULD COMPILER
C
COORD(NATX,NATI)=CSAVE+STEP*(-1.D0)
CALL H1ELEC(NI,NJ,COORD(1,NATI),COORD(1,J),DDI)
C
C FILL THE ATOM-OTHER ATOM ONE-ELECTRON MATRIX.
C
I2=0
IF (IA.GT.JA) THEN
DO 30 I1=IA,IB
IJ=I1*(I1-1)/2+JA-1
I2=I2+1
J2=0
DO 30 J1=JA,JB
IJ=IJ+1
J2=J2+1
30 H(IJ)=H(IJ)+(DI(I2,J2)-DDI(I2,J2))
ELSE
DO 40 I1=JA,JB
IJ=I1*(I1-1)/2+IA-1
I2=I2+1
J2=0
DO 40 J1=IA,IB
IJ=IJ+1
J2=J2+1
40 H(IJ)=H(IJ)+(DI(J2,I2)-DDI(J2,I2))
ENDIF
C
C CALCULATE THE TWO-ELECTRON INTEGRALS, W; THE ELECTRON NUCLEAR TERM
C E1B AND E2A; AND THE NUCLEAR-NUCLEAR TERM ENUC.
C
KRO=KR
NBAND2=NBAND2+NB(NLAST(J)-NFIRST(J))
IF (MINDO) THEN
COORD(NATX,NATI)=CSAVE+STEP
CALL ROTATE (NI,NJ,COORD(1,NATI),COORD(1,J)
1 ,WJD,KR,E1B,E2A,ENUC,CUTOFF)
KR=KRO
COORD(NATX,NATI)=CSAVE+STEP*(-1.D0)
CALL ROTATE (NI,NJ,COORD(1,NATI),COORD(1,J)
1 ,DWJD,KR,DE1B,DE2A,DENUC,CUTOFF)
IF (KR.GT.KRO) THEN
DO 50 K=1,KR-KRO+1
50 W(KRO+K-1)=WJD(K)-DWJD(K)
ENDIF
ELSE
COORD(NATX,NATI)=CSAVE+STEP
CALL ROTATE (NI,NJ,COORD(1,NATI),COORD(1,J)
1 ,WJD,KR,E1B,E2A,ENUC,CUTOFF)
KR=KRO
COORD(NATX,NATI)=CSAVE+STEP*(-1.D0)
CALL ROTATE (NI,NJ,COORD(1,NATI),COORD(1,J)
1 ,DWJD,KR,DE1B,DE2A,DENUC,CUTOFF)
IF (KR.GT.KRO) THEN
DO 60 K=1,KR-KRO+1
60 WJD(K)=WJD(K)-DWJD(K)
J7=0
DO 70 I1=KRO,KR
J7=J7+1
70 W(I1)=WJD(J7)
ENDIF
ENDIF
COORD(NATX,NATI)=CSAVE
ENUCLR = ENUCLR + ENUC-DENUC
C
C ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM I.
C
I2=0
DO 80 I1=IA,IC
II=I1*(I1-1)/2+IA-1
DO 80 J1=IA,I1
II=II+1
I2=I2+1
80 H(II)=H(II)+E1B(I2)-DE1B(I2)
C CONTRIB D, CNDO.
DO 90 I1=IC+1,IB
II=(I1*(I1+1))/2
90 H(II)=H(II)+E1B(1)-DE1B(1)
C
C ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM J.
C
I2=0
DO 100 I1=JA,JC
II=I1*(I1-1)/2+JA-1
DO 100 J1=JA,I1
II=II+1
I2=I2+1
100 H(II)=H(II)+E2A(I2)-DE2A(I2)
C CONTRIB D, CNDO.
DO 110 I1=JC+1,JB
II=(I1*(I1+1))/2
110 H(II)=H(II)+E2A(1)-DE2A(1)
120 CONTINUE
C
C 'SIZE' OF H IS NROW * NCOL
C
RETURN
END
|