1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
SUBROUTINE DERNVO(COORD,DXYZ)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*), DXYZ(*)
***********************************************************************
*
* IMPLEMENTATION OF ANALYTICAL FORMULATION FOR OPEN SHELL OR CI,
* VARIABLES FINITE DIFFERENCE METHODS,
* STATISTICAL ESTIMATE OF THE ERRORS,
* BY D. LIOTARD
* LABORATOIRE DE CHIMIE STRUCTURALE
* UNIVERSITE DE PAU ET DES PAYS DE L'ADOUR
* AVENUE DE L'UNIVERSITE, 64000, PAU (FRANCE)
*
*
* MODIFIED BY JJPS TO CONFORM TO MOPAC CONVENTIONS
* (NOTE BY JJPS: PROF. LIOTARD'S TECHNIQUE WORKS. IF THIS
* IMPLEMENTATION DOES NOT WORK, THE REASON IS A FAULT INTRODUCED
* BY JJPS, AND DOES NOT REFLECT ON PROF. LIOTARD'S ABILITY)
*
*
* AS THE WAVE FUNCTION IS NOT VARIATIONALLY OPTIMIZED, I.E.
* HALF-ELECTRON OR CI, THE DERIVATIVES OF THE 1 AND 2-ELECTRON
* INTEGRALS IN A.O. BASIS ARE EVALUATED IN CARTESIAN COORDINATES
* BY A 1 OR 2 POINTS FINITE DIFFERENCE FORMULA AND STORED.
* THUS ONE GETS THE NON-RELAXED (I.E. FROZEN ELECTRONIC CLOUD)
* CONTRIBUTION TO THE FOCK EIGENVALUES AND 2-ELECTRON INTEGRALS IN
* AN M.O. BASIS. THE NON-RELAXED GRADIENT COMES FROM THE
* NON-RELAXED C.I. MATRIX DERIVATIVE (SUBROUTINE DERI1).
* THE DERIVATIVES OF THE M.O. COEFFICIENTS ARE THEN WORKED OUT
* ITERATIVELY (OK FOR BOTH CLOSED SHELLS AND HALF-ELECTRON CASES)
* AND STORED. THUS ONE GETS THE ELECTRONIC RELAXATION CONTRIBUTION TO
* THE FOCK EIGENVALUES AND 2-ELECTRON INTEGRALS IN M.O. BASIS.
* FINALLY THE RELAXATION CONTRIBUTION TO THE C.I. MATRIX DERIVATIVE
* GIVES THE RELAXATION CONTRIBUTION TO THE GRADIENT (ROUTINE DERI2).
*
*
* COORD HOLDS THE CARTESIAN COORDINATES.
* INPUT
* DXYZ NOT DEFINED.
* EXIT
* DXYZ DERIVATIVES OF ENERGY W.R.T CARTESIAN COORDINATES,
* IN KCAL/MOL/ANGSTROM (3 * NUMAT OF THESE)
*
***********************************************************************
C
C NW2 and NW3 should be set to *something*, probably sizes of WORK2
C and WORK3 arrays? Since the code works with NW2 and NW3 set to zero
C by implicit initialization, we can as well do it explicitly.... -P.S.
C
PARAMETER (NW2=0,NW3=0)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM)
1 ,NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA
2 ,NCLOSE,NOPEN,NDUMY,FRACT
COMMON /GRADNT/ GRAD(MAXPAR),GNORM
COMMON /CIBITS/ NMOS,LAB,NELEC,NBO(3)
COMMON /NUMCAL/ NUMCAL
1 /KEYWRD/ KEYWRD
2 /VECTOR/ C(MORB2),EIGS(MAXORB),CBETA(MORB2)
3,EIGB(MAXORB)
COMMON /FOKMAT/ FDUMY(MPACK), SCALAR(MPACK)
COMMON /NVOMAT/ DIAG(MPACK/2)
COMMON /WORK1 / FMOOFF(NPULAY*4), FMOON(NPULAY*4),
1WORK2(9*NPULAY), WORK3(4*NPULAY)
DIMENSION FBWO(5*MAXPAR)
CHARACTER KEYWRD*241, BLANK*60
DIMENSION DXYZR(MAXPAR), EIGBB(6*MAXPAR)
LOGICAL DEBUG, DCAR, LARGE, RELAXD, FORCE
DATA ICALCN /0/
C
C SELECT THE REQUIRED OPTION AND READ KEYWORDS
C --------------------------------------------
C
IF(ICALCN.NE.NUMCAL) THEN
THROLD=0.08D0
DEBUG = (INDEX(KEYWRD,'DERNVO') .NE. 0)
LARGE = (INDEX(KEYWRD,'LARGE') .NE. 0)
FORCE = (INDEX(KEYWRD,'FORC') .NE. 0)
DCAR = (INDEX(KEYWRD,'FORC') + INDEX(KEYWRD,'PREC') .NE. 0)
IF(DCAR)THROLD=0.004D0
DO 11 I=1,NVAX
11 DXYZR(I)=0.D0
C ACTUAL SIZES FOR C.I. GRADIENT CALCULATION.
NBO(1)=NCLOSE
NBO(2)=NOPEN-NCLOSE
NBO(3)=NORBS-NOPEN
MINEAR=NBO(2)*NBO(1)+NBO(3)*NOPEN
NINEAR=(NMOS*(NMOS+1))/2+1
ICALCN = NUMCAL
ENDIF
C SCALING ROW FACTORS TO SPEED CV OF RELAXATION PROCEDURE.
C# CALL TIMER('BEFORE DERI0')
CALL DERI0 (EIGS,NORBS,SCALAR,DIAG,FRACT,NBO)
C# CALL TIMER('AFTER DERI0')
NVAX=3*NUMAT
C
C BECAUSE DERI2 IS CPU INTENSIVE, AND THE CONTRIBUTION TO THE
C DERVIATIVE DUE TO RELAXATION OF THE ELECTRON CLOUD IS RELATIVELY
C INSENSITIVE TO CHANGES IN GEOMETRY, WHERE POSSIBLE ONLY CALCULATE
C THE DERIVATIVE EVERY 2 CALLS TO DERNVO
C
SUM=0.D0
IF(DCAR)THEN
DO 10 I=1,NVAX
10 DXYZR(I)=0.D0
RELAXD=.FALSE.
ENDIF
DO 20 I=1,NVAX
20 SUM=SUM+ABS(DXYZR(I))
RELAXD=(SUM.GT.1.D-7)
C
C IF DXYZR CONTAINS DATA, USE IT AND FLUSH AFTER USE.
C
ILAST=0
30 IFIRST=ILAST+1
J=2
IF(MIN(NW2,NW3)/MAX(MINEAR,NINEAR).LT.10)J=1
ILAST=MIN(NVAX,ILAST+J)
J=1-MINEAR
K=1-NINEAR
DO 40 I=IFIRST,ILAST
K=K+NINEAR
J=J+MINEAR
C
C NON-RELAXED CONTRIBUTION (FROZEN ELECTRONIC CLOUD) IN DXYZ
C AND NON-RELAXED FOCK MATRICES IN FMOOFF AND FMOON.
C CONTENTS OF F-MO-OFF: OPEN-CLOSED, VIRTUAL-CLOSED, AND VIRTUAL-OPEN
C CONTENTS OF F-MO-ON: CLOSED-CLOSED, OPEN-OPEN AND VIRTUAL-VIRTUAL
C OVER M.O. INDICES
C
C# CALL TIMER('BEFORE DERI1')
CALL DERI1(C,NORBS,COORD,I,CBETA,DXYZ(I),FMOOFF(J),MINEAR
1 ,FMOON(K),WORK2,WORK2(6*MPACK),WORK3)
C# CALL TIMER('AFTER DERI1')
40 CONTINUE
IF(DEBUG)THEN
IF(IFIRST.EQ.1.AND.LARGE)THEN
WRITE(6,*)' CONTENTS OF FMOOFF '
WRITE(6,*)' OPEN-CLOSED'
WRITE(6,'(7X,I3,5I12)')(J,J=NCLOSE+1,NOPEN)
DO 50 I=1,NCLOSE
50 WRITE(6,'(I3,6F12.6)')I,(FMOOFF(J),J=(I-1)*NBO(2)+1,I*NBO(2)
1)
C
C
WRITE(6,*)' VIRTUAL-CLOSED'
K=NCLOSE*NBO(2)
WRITE(6,'(7X,I3,5I12)')(J,J=NOPEN+1,MIN(NOPEN+6,NORBS))
DO 60 I=1,NCLOSE
60 WRITE(6,'(I3,6F12.6)')I,
1 (FMOOFF(J+K),J=(I-1)*NBO(3)+1,MIN(6+(I-1)*NBO(3),I*NBO(3)))
K=NCLOSE*NBO(2)+NBO(3)*NCLOSE
C
C
WRITE(6,*)' VIRTUAL-OPEN'
WRITE(6,'(7X,I3,4I12)')(J,J=NCLOSE+1,NOPEN)
DO 70 I=1,MIN(6,NBO(3))
70 WRITE(6,'(I3,6F12.6)')I+NOPEN,
1 (FMOOFF(J+K),J=(I-1)*NBO(2)+1,MIN((I-1)*NBO(2)+6,I*NBO(2)))
WRITE(6,*)' CONTENTS OF FMOON (ACTIVE-SPACE -- ACTIVE SPACE)
1'
K=(NMOS*(NMOS-1))/2
LL=1
BLANK=' '
DO 80 I=1,NMOS
L=LL+NMOS-I-1
WRITE(6,'(A,5F12.6)')BLANK(:12*I),(FMOON(J),J=LL,L),FMOON
1(K+I)
80 LL=L+1
ENDIF
ENDIF
C COMPUTE THE ELECTRONIC RELAXATION CONTRIBUTION.
C
C DERNVO PROVIDES THE FOLLOWING SCRATCH AREAS TO DERI2: EIGB, WORK2,
C WORK3, FBWO, CBETA. THESE ARE DIMENSIONED ON ENTRY TO DERI2
C WHICH IS WHY THEY ARE NOT DECLARED THERE. THEY ARE NOT USED
C AT ALL IN DERNVO.
C
C# CALL TIMER('BEFORE DERI2')
IF(.NOT.RELAXD)
1 CALL DERI2 (C,EIGS,NORBS,MINEAR,FMOOFF
2 ,FMOON,EIGBB, NINEAR,ILAST-IFIRST+1
3 ,CBETA,WORK2,NW2,DXYZR(IFIRST)
4 ,WORK3,NW3,FBWO,THROLD)
C# CALL TIMER('AFTER DERI2')
IF (ILAST.LT.NVAX) GO TO 30
IF(DEBUG)THEN
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 90 I=1,NUMAT
SUMX=SUMX+DXYZ(I*3-2)
SUMY=SUMY+DXYZ(I*3-1)
90 SUMZ=SUMZ+DXYZ(I*3)
WRITE(6,*)' CARTESIAN DERIVATIVES DUE TO FROZEN CORE'
WRITE(6,'('' ATOM X Y Z'')')
DO 100 I=1,NUMAT
100 WRITE(6,'(I4,3F12.7)')I,DXYZ(I*3-2),DXYZ(I*3-1),DXYZ(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 110 I=1,NUMAT
SUMX=SUMX+DXYZR(I*3-2)
SUMY=SUMY+DXYZR(I*3-1)
110 SUMZ=SUMZ+DXYZR(I*3)
WRITE(6,*)' CARTESIAN DERIVATIVES DUE TO RELAXING CORE'
WRITE(6,'('' ATOM X Y Z'')')
DO 120 I=1,NUMAT
120 WRITE(6,'(I4,3F12.7)')I,DXYZR(I*3-2),DXYZR(I*3-1),DXYZR(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
ENDIF
DO 130 I=1,NVAX
130 DXYZ(I)=DXYZ(I)+DXYZR(I)
IF(RELAXD)THEN
DO 140 I=1,NVAX
140 DXYZR(I)=0.D0
ENDIF
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 150 I=1,NUMAT
SUMX=SUMX+DXYZ(I*3-2)
SUMY=SUMY+DXYZ(I*3-1)
150 SUMZ=SUMZ+DXYZ(I*3)
SUM=MAX(1.D-10,ABS(SUMX)+ABS(SUMY)+ABS(SUMZ))
C
C HERE IS A ROUGH BUT SIMPLE METHOD FOR DEFINING THROLD FOR DERI2
C IT MAY NEED MORE WORK
C
IF(.NOT. FORCE .AND. GNORM .GT. 0.001D0)
1 THROLD=THROLD*SQRT(GNORM/(SUM*100.D0))
THROLD=MIN(2.D0,MAX(0.002D0,THROLD))
IF(DEBUG)THEN
WRITE(6,*)'CARTESIAN DERIVATIVES FROM ANALYTICAL C.I. CALCULATI
1ON'
WRITE(6,'('' ATOM X Y Z'')')
DO 160 I=1,NUMAT
160 WRITE(6,'(I4,3F12.7)')I,DXYZ(I*3-2),DXYZ(I*3-1),DXYZ(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
ENDIF
RETURN
END
|