1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
SUBROUTINE DIIS(XP, XPARAM, GP, GRAD, HP, HEAT, HS, NVAR, FRST)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION XP(NVAR), XPARAM(NVAR), GP(NVAR),
1GRAD(NVAR), HS(NVAR*NVAR)
LOGICAL FRST
************************************************************************
* *
* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE *
* *
* THIS INVOLVES SOLVING FOR C IN XPARAM(NEW) = XPARAM' - HG' *
* *
* WHERE XPARAM' = SUM(C(I)XPARAM(I), THE C COEFFICIENTES COMING FROM *
* *
* | B 1 | . | C | = | 0 | *
* | 1 0 | |-L | | 1 | *
* *
* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I *
* H = INVERSE HESSIAN *
* *
* REFERENCE *
* *
* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) *
* *
************************************************************************
************************************************************************
* *
* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN *
* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER *
* (A VARIABLE METRIC METHOD) *
* *
* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA *
* *
* REFERENCE *
* *
* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM *
* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL *
* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, *
* 939-950 (1989). *
* *
* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS *
* *
************************************************************************
COMMON /KEYWRD/ KEYWRD
PARAMETER (MRESET=15, M2=(MRESET+1)*(MRESET+1))
DIMENSION XSET(MRESET*MAXPAR),GSET(MRESET*MAXPAR), ESET(MRESET)
DIMENSION DX(MAXPAR),GSAVE(MAXPAR),
1 ERR(MRESET*MAXPAR),B(M2),BS(M2),BST(M2)
LOGICAL DEBUG, PRINT
CHARACTER*241 KEYWRD
DEBUG=.FALSE.
PRINT=(INDEX(KEYWRD,' DIIS').NE.0)
IF (PRINT) DEBUG=(INDEX(KEYWRD,'DEBUG').NE.0)
IF (PRINT) WRITE(6,'(/,'' ***** BEGIN GDIIS ***** '')')
C
C SPACE SIMPLY LOADS THE CURRENT VALUES OF XPARAM AND GNORM INTO
C THE ARRAYS XSET AND GSET
C
CALL SPACE(MRESET,MSET,XPARAM, GRAD, HEAT, NVAR, XSET, GSET, ESET
1, FRST)
C
C INITIALIZE SOME VARIABLES AND CONSTANTS
C
NDIIS = MSET
MPLUS = MSET + 1
MM = MPLUS * MPLUS
C
C COMPUTE THE APPROXIMATE ERROR VECTORS
C
INV=-NVAR
DO 30 I=1,MSET
INV = INV + NVAR
DO 30 J=1,NVAR
S = 0.D0
KJ=(J*(J-1))/2
DO 10 K=1,J
KJ = KJ+1
10 S = S - HS(KJ) * GSET(INV+K)
DO 20 K=J+1,NVAR
KJ = (K*(K-1))/2+J
20 S = S - HS(KJ) * GSET(INV+K)
30 ERR(INV+J) = S
C
C CONSTRUCT THE GDIIS MATRIX
C
DO 40 I=1,MM
40 B(I) = 1.D0
JJ=0
INV=-NVAR
DO 50 I=1,MSET
INV=INV+NVAR
JNV=-NVAR
DO 50 J=1,MSET
JNV=JNV+NVAR
JJ = JJ + 1
B(JJ)=0.D0
DO 50 K=1,NVAR
50 B(JJ) = B(JJ) + ERR(INV+K) * ERR(JNV+K)
C
DO 60 I=MSET-1,1,-1
DO 60 J=MSET,1,-1
60 B(I*MSET+J+I) = B(I*MSET+J)
DO 70 I=1,MPLUS
B(MPLUS*I) = 1.D0
70 B(MPLUS*MSET+I) = 1.D0
B(MM) = 0.D0
C
C ELIMINATE ERROR VECTORS WITH THE LARGEST NORM
C
80 CONTINUE
DO 90 I=1,MM
90 BS(I) = B(I)
IF (NDIIS .EQ. MSET) GO TO 140
DO 130 II=1,MSET-NDIIS
XMAX = -1.D10
ITERA = 0
DO 110 I=1,MSET
XNORM = 0.D0
INV = (I-1) * MPLUS
DO 100 J=1,MSET
100 XNORM = XNORM + ABS(B(INV + J))
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN
XMAX = XNORM
ITERA = I
IONE = INV + I
ENDIF
110 CONTINUE
DO 120 I=1,MPLUS
INV = (I-1) * MPLUS
DO 120 J=1,MPLUS
JNV = (J-1) * MPLUS
IF (J.EQ.ITERA) B(INV + J) = 0.D0
B(JNV + I) = B(INV + J)
120 CONTINUE
B(IONE) = 1.0D0
130 CONTINUE
140 CONTINUE
C
IF (DEBUG) THEN
C
C OUTPUT THE GDIIS MATRIX
C
WRITE(*,'(/5X,'' GDIIS MATRIX'')')
IJ = 0
DO 150 I=1,MPLUS
DO 150 J=1,I
IJ = IJ + 1
150 BST(IJ) = B( MPLUS * (J-1) + I)
CALL VECPRT(BST,MPLUS)
ENDIF
C
C SCALE DIIS MATRIX BEFORE INVERSION
C
DO 160 I=1,MPLUS
II = MPLUS * (I-1) + I
160 GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II)))
GSAVE(MPLUS) = 1.D0
DO 170 I=1,MPLUS
DO 170 J=1,MPLUS
IJ = MPLUS * (I-1) + J
170 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
C
IF (DEBUG) THEN
C
C OUTPUT SCALED GDIIS MATRIX
C
WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')')
IJ = 0
DO 180 I=1,MPLUS
DO 180 J=1,I
IJ = IJ + 1
180 BST(IJ) = B( MPLUS * (J-1) + I)
CALL VECPRT(BST,MPLUS)
ENDIF
C
C INVERT THE GDIIS MATRIX
C
CALL MINV(B,MPLUS,DET)
C
DO 190 I=1,MPLUS
DO 190 J=1,MPLUS
IJ = MPLUS * (I-1) + J
190 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
C
C COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT
C VECTORS
C
DO 200 K=1,NVAR
XP(K) = 0.D0
GP(K) = 0.D0
DO 200 I=1,MSET
INK = (I-1) * NVAR + K
XP(K) = XP(K) + B(MPLUS*MSET+I) * XSET(INK)
200 GP(K) = GP(K) + B(MPLUS*MSET+I) * GSET(INK)
HP=0.D0
DO 210 I=1,MSET
210 HP=HP+B(MPLUS*MSET+I)*ESET(I)
C
DO 220 K=1,NVAR
220 DX(K) = XPARAM(K) - XP(K)
XNORM = SQRT(DOT(DX,DX,NVAR))
IF (PRINT) THEN
WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',
1 G9.3)') XNORM,DET
WRITE(6,'(10X,''GDIIS COEFFICIENTS'')')
WRITE(6,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET)
ENDIF
C
C THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY!
C
THRES = MAX(10.D0**(-NVAR), 1.D-25)
IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN
IF (PRINT) WRITE(6,'(10X,''THE DIIS MATRIX IS ILL CONDITIONED''
1, /10X,'' - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - '',
2 /10X,''THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE'')')
DO 230 K=1,MM
230 B(K) = BS(K)
NDIIS = NDIIS - 1
IF (NDIIS .GT. 0) GO TO 80
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')')
DO 240 K=1,NVAR
XP(K) = XPARAM(K)
240 GP(K) = GRAD(K)
C
ENDIF
IF (PRINT) WRITE(6,'(/,'' ***** END GDIIS ***** '',/)')
C
RETURN
END
SUBROUTINE SPACE(MRESET, MSET, XPARAM, GRAD, HEAT, NVAR,
1XSET, GSET, ESET, FRST)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION XPARAM(NVAR), GRAD(NVAR)
DIMENSION XSET(MRESET*NVAR),GSET(MRESET*NVAR), ESET(MRESET)
LOGICAL FRST
C
C UPDATE PARAMETER AND GRADIENT SUBSPACE
C
IF(FRST)THEN
NRESET=MIN(NVAR/2,MRESET)
FRST=.FALSE.
MSET=0
ENDIF
C
IF (MSET .EQ. NRESET) THEN
DO 10 I=1,MSET-1
MI = NVAR*(I-1)
NI = NVAR*I
ESET(I)=ESET(I+1)
DO 10 K=1,NVAR
XSET(MI+K) = XSET(NI+K)
10 GSET(MI+K) = GSET(NI+K)
MSET=NRESET-1
ENDIF
C
C STORE THE CURRENT POINT
C
DO 20 K=1,NVAR
NMK = NVAR*MSET+K
XSET(NMK) = XPARAM(K)
20 GSET(NMK) = GRAD(K)
MSET=MSET+1
ESET(MSET)=HEAT
C
RETURN
END
SUBROUTINE MINV(A,N,D)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION A(*)
**********************************************************************
*
* INVERT A MATRIX USING GAUSS-JORDAN METHOD. PART OF DIIS
* A - INPUT MATRIX (MUST BE A GENERAL MATRIX), DESTROYED IN
* COMPUTATION AND REPLACED BY RESULTANT INVERSE.
* N - ORDER OF MATRIX A
* D - RESULTANT DETERMINANT
*
**********************************************************************
DIMENSION M(MAXPAR), L(MAXPAR)
C
C SEARCH FOR LARGEST ELEMENT
C
D=1.0D0
NK=-N
DO 180 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J=K,N
IZ=N*(J-1)
DO 20 I=K,N
IJ=IZ+I
10 IF (ABS(BIGA).LT.ABS(A(IJ)))THEN
BIGA=A(IJ)
L(K)=I
M(K)=J
ENDIF
20 CONTINUE
C
C INTERCHANGE ROWS
C
J=L(K)
IF (J-K) 50,50,30
30 KI=K-N
DO 40 I=1,N
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A(KI)=A(JI)
40 A(JI)=HOLD
C
C INTERCHANGE COLUMNS
C
50 I=M(K)
IF (I-K) 80,80,60
60 JP=N*(I-1)
DO 70 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A(JK)
A(JK)=A(JI)
70 A(JI)=HOLD
C
C DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
C CONTAINED IN BIGA)
C
80 IF (BIGA) 100,90,100
90 D=0.0D0
RETURN
100 DO 120 I=1,N
IF (I-K) 110,120,110
110 IK=NK+I
A(IK)=A(IK)/(-BIGA)
120 CONTINUE
C REDUCE MATRIX
DO 150 I=1,N
IK=NK+I
HOLD=A(IK)
IJ=I-N
DO 150 J=1,N
IJ=IJ+N
IF (I-K) 130,150,130
130 IF (J-K) 140,150,140
140 KJ=IJ-I+K
A(IJ)=HOLD*A(KJ)+A(IJ)
150 CONTINUE
C
C DIVIDE ROW BY PIVOT
C
KJ=K-N
DO 170 J=1,N
KJ=KJ+N
IF (J-K) 160,170,160
160 A(KJ)=A(KJ)/BIGA
170 CONTINUE
C
C PRODUCT OF PIVOTS
C
D=MAX(-1.D25,MIN(1.D25,D))
D=D*BIGA
C
C REPLACE PIVOT BY RECIPROCAL
C
A(KK)=1.0D0/BIGA
180 CONTINUE
C
C FINAL ROW AND COLUMN INTERCHANGE
C
K=N
190 K=(K-1)
IF (K) 260,260,200
200 I=L(K)
IF (I-K) 230,230,210
210 JQ=N*(K-1)
JR=N*(I-1)
DO 220 J=1,N
JK=JQ+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
220 A(JI)=HOLD
230 J=M(K)
IF (J-K) 190,190,240
240 KI=K-N
DO 250 I=1,N
KI=KI+N
HOLD=A(KI)
JI=KI-K+J
A(KI)=-A(JI)
250 A(JI) =HOLD
GO TO 190
260 RETURN
END
|