File: diis.f

package info (click to toggle)
mopac7 1.15-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,752 kB
  • sloc: fortran: 35,321; sh: 9,039; ansic: 428; makefile: 82
file content (397 lines) | stat: -rw-r--r-- 11,709 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
      SUBROUTINE DIIS(XP, XPARAM, GP, GRAD, HP, HEAT, HS, NVAR, FRST)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION XP(NVAR), XPARAM(NVAR), GP(NVAR),
     1GRAD(NVAR), HS(NVAR*NVAR)
      LOGICAL FRST
************************************************************************
*                                                                      *
*     DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE         *
*                                                                      *
*     THIS INVOLVES SOLVING FOR C IN XPARAM(NEW) = XPARAM' - HG'       *
*                                                                      *
*  WHERE XPARAM' = SUM(C(I)XPARAM(I), THE C COEFFICIENTES COMING FROM  *
*                                                                      *
*                   | B   1 | . | C | = | 0 |                          *
*                   | 1   0 |   |-L |   | 1 |                          *
*                                                                      *
* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J)  GRAD(I) = GRADIENT ON CYCLE I     *
*                              H    = INVERSE HESSIAN                  *
*                                                                      *
*                          REFERENCE                                   *
*                                                                      *
*  P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984)    *
*                                                                      *
************************************************************************
************************************************************************
*                                                                      *
*     GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN    *
*     THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER *
*     (A VARIABLE METRIC METHOD)                                       *
*                                                                      *
*     WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA     *
*                                                                      *
*                              REFERENCE                               *
*                                                                      *
*      "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM   *
*     GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL  *
*     LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10,    *
*     939-950 (1989).                                                  *
*                                                                      *
*     MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS        *
*                                                                      *
************************************************************************
      COMMON /KEYWRD/ KEYWRD
      PARAMETER (MRESET=15, M2=(MRESET+1)*(MRESET+1))
      DIMENSION  XSET(MRESET*MAXPAR),GSET(MRESET*MAXPAR), ESET(MRESET)
      DIMENSION DX(MAXPAR),GSAVE(MAXPAR),
     1 ERR(MRESET*MAXPAR),B(M2),BS(M2),BST(M2)
      LOGICAL DEBUG, PRINT
      CHARACTER*241 KEYWRD
      DEBUG=.FALSE.
      PRINT=(INDEX(KEYWRD,' DIIS').NE.0)
      IF (PRINT) DEBUG=(INDEX(KEYWRD,'DEBUG').NE.0)
      IF (PRINT)  WRITE(6,'(/,''      ***** BEGIN GDIIS ***** '')')
C
C  SPACE SIMPLY LOADS THE CURRENT VALUES OF XPARAM AND GNORM INTO
C  THE ARRAYS XSET AND GSET
C
      CALL SPACE(MRESET,MSET,XPARAM, GRAD, HEAT, NVAR, XSET, GSET, ESET
     1, FRST)
C
C     INITIALIZE SOME VARIABLES AND CONSTANTS
C
      NDIIS = MSET
      MPLUS = MSET + 1
      MM = MPLUS * MPLUS
C
C     COMPUTE THE APPROXIMATE ERROR VECTORS
C
      INV=-NVAR
      DO 30 I=1,MSET
         INV = INV + NVAR
         DO 30 J=1,NVAR
            S = 0.D0
            KJ=(J*(J-1))/2
            DO 10 K=1,J
               KJ = KJ+1
   10       S = S - HS(KJ) * GSET(INV+K)
            DO 20 K=J+1,NVAR
               KJ = (K*(K-1))/2+J
   20       S = S - HS(KJ) * GSET(INV+K)
   30 ERR(INV+J) = S
C
C     CONSTRUCT THE GDIIS MATRIX
C
      DO 40 I=1,MM
   40 B(I) = 1.D0
      JJ=0
      INV=-NVAR
      DO 50 I=1,MSET
         INV=INV+NVAR
         JNV=-NVAR
         DO 50 J=1,MSET
            JNV=JNV+NVAR
            JJ = JJ + 1
            B(JJ)=0.D0
            DO 50 K=1,NVAR
   50 B(JJ) = B(JJ) + ERR(INV+K) * ERR(JNV+K)
C
      DO 60 I=MSET-1,1,-1
         DO 60 J=MSET,1,-1
   60 B(I*MSET+J+I) = B(I*MSET+J)
      DO 70 I=1,MPLUS
         B(MPLUS*I) = 1.D0
   70 B(MPLUS*MSET+I) = 1.D0
      B(MM) = 0.D0
C
C     ELIMINATE ERROR VECTORS WITH THE LARGEST NORM
C
   80 CONTINUE
      DO 90 I=1,MM
   90 BS(I) = B(I)
      IF (NDIIS .EQ. MSET) GO TO 140
      DO 130 II=1,MSET-NDIIS
         XMAX = -1.D10
         ITERA = 0
         DO 110 I=1,MSET
            XNORM = 0.D0
            INV = (I-1) * MPLUS
            DO 100 J=1,MSET
  100       XNORM = XNORM + ABS(B(INV + J))
            IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN
               XMAX = XNORM
               ITERA = I
               IONE = INV + I
            ENDIF
  110    CONTINUE
         DO 120 I=1,MPLUS
            INV = (I-1) * MPLUS
            DO 120 J=1,MPLUS
               JNV = (J-1) * MPLUS
               IF (J.EQ.ITERA) B(INV + J) = 0.D0
               B(JNV + I) = B(INV + J)
  120    CONTINUE
         B(IONE) = 1.0D0
  130 CONTINUE
  140 CONTINUE
C
      IF (DEBUG) THEN
C
C     OUTPUT THE GDIIS MATRIX
C
         WRITE(*,'(/5X,'' GDIIS MATRIX'')')
         IJ = 0
         DO 150 I=1,MPLUS
            DO 150 J=1,I
               IJ = IJ + 1
  150    BST(IJ) = B( MPLUS * (J-1) + I)
         CALL VECPRT(BST,MPLUS)
      ENDIF
C
C     SCALE DIIS MATRIX BEFORE INVERSION
C
      DO 160 I=1,MPLUS
         II = MPLUS * (I-1) + I
  160 GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II)))
      GSAVE(MPLUS) = 1.D0
      DO 170 I=1,MPLUS
         DO 170 J=1,MPLUS
            IJ = MPLUS * (I-1) + J
  170 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
C
      IF (DEBUG) THEN
C
C     OUTPUT SCALED GDIIS MATRIX
C
         WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')')
         IJ = 0
         DO 180 I=1,MPLUS
            DO 180 J=1,I
               IJ = IJ + 1
  180    BST(IJ) = B( MPLUS * (J-1) + I)
         CALL VECPRT(BST,MPLUS)
      ENDIF
C
C     INVERT THE GDIIS MATRIX
C
      CALL MINV(B,MPLUS,DET)
C
      DO 190 I=1,MPLUS
         DO 190 J=1,MPLUS
            IJ = MPLUS * (I-1) + J
  190 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
C
C     COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT
C     VECTORS
C
      DO 200 K=1,NVAR
         XP(K) = 0.D0
         GP(K) = 0.D0
         DO 200 I=1,MSET
            INK = (I-1) * NVAR + K
            XP(K) = XP(K) + B(MPLUS*MSET+I) * XSET(INK)
  200 GP(K) = GP(K) + B(MPLUS*MSET+I) * GSET(INK)
      HP=0.D0
      DO 210 I=1,MSET
  210 HP=HP+B(MPLUS*MSET+I)*ESET(I)
C
      DO 220 K=1,NVAR
  220 DX(K) = XPARAM(K) - XP(K)
      XNORM = SQRT(DOT(DX,DX,NVAR))
      IF (PRINT) THEN
         WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',
     1 G9.3)') XNORM,DET
         WRITE(6,'(10X,''GDIIS COEFFICIENTS'')')
         WRITE(6,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET)
      ENDIF
C
C     THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY!
C
      THRES = MAX(10.D0**(-NVAR), 1.D-25)
      IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN
         IF (PRINT) WRITE(6,'(10X,''THE DIIS MATRIX IS ILL CONDITIONED''
     1, /10X,'' - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - '',
     2 /10X,''THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE'')')
         DO 230 K=1,MM
  230    B(K) = BS(K)
         NDIIS = NDIIS - 1
         IF (NDIIS .GT. 0) GO TO 80
         IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')')
         DO 240 K=1,NVAR
            XP(K) = XPARAM(K)
  240    GP(K) = GRAD(K)
C
      ENDIF
      IF (PRINT)  WRITE(6,'(/,''      ***** END GDIIS ***** '',/)')
C
      RETURN
      END
      SUBROUTINE SPACE(MRESET, MSET, XPARAM, GRAD, HEAT, NVAR,
     1XSET, GSET, ESET, FRST)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION XPARAM(NVAR), GRAD(NVAR)
      DIMENSION XSET(MRESET*NVAR),GSET(MRESET*NVAR), ESET(MRESET)
      LOGICAL FRST
C
C     UPDATE PARAMETER AND GRADIENT SUBSPACE
C
      IF(FRST)THEN
         NRESET=MIN(NVAR/2,MRESET)
         FRST=.FALSE.
         MSET=0
      ENDIF
C
      IF (MSET .EQ. NRESET) THEN
         DO 10 I=1,MSET-1
            MI = NVAR*(I-1)
            NI = NVAR*I
            ESET(I)=ESET(I+1)
            DO 10 K=1,NVAR
               XSET(MI+K) = XSET(NI+K)
   10    GSET(MI+K) = GSET(NI+K)
         MSET=NRESET-1
      ENDIF
C
C     STORE THE CURRENT POINT
C
      DO 20 K=1,NVAR
         NMK = NVAR*MSET+K
         XSET(NMK) = XPARAM(K)
   20 GSET(NMK) = GRAD(K)
      MSET=MSET+1
      ESET(MSET)=HEAT
C
      RETURN
      END
      SUBROUTINE MINV(A,N,D)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION A(*)
**********************************************************************
*
*     INVERT A MATRIX USING GAUSS-JORDAN METHOD.  PART OF DIIS
*     A - INPUT MATRIX (MUST BE A GENERAL MATRIX), DESTROYED IN
*        COMPUTATION AND REPLACED BY RESULTANT INVERSE.
*     N - ORDER OF MATRIX A
*     D - RESULTANT DETERMINANT
*
**********************************************************************
      DIMENSION M(MAXPAR), L(MAXPAR)
C
C     SEARCH FOR LARGEST ELEMENT
C
      D=1.0D0
      NK=-N
      DO 180 K=1,N
         NK=NK+N
         L(K)=K
         M(K)=K
         KK=NK+K
         BIGA=A(KK)
         DO 20 J=K,N
            IZ=N*(J-1)
            DO 20 I=K,N
               IJ=IZ+I
   10          IF (ABS(BIGA).LT.ABS(A(IJ)))THEN
                  BIGA=A(IJ)
                  L(K)=I
                  M(K)=J
               ENDIF
   20    CONTINUE
C
C     INTERCHANGE ROWS
C
         J=L(K)
         IF (J-K) 50,50,30
   30    KI=K-N
         DO 40 I=1,N
            KI=KI+N
            HOLD=-A(KI)
            JI=KI-K+J
            A(KI)=A(JI)
   40    A(JI)=HOLD
C
C     INTERCHANGE COLUMNS
C
   50    I=M(K)
         IF (I-K) 80,80,60
   60    JP=N*(I-1)
         DO 70 J=1,N
            JK=NK+J
            JI=JP+J
            HOLD=-A(JK)
            A(JK)=A(JI)
   70    A(JI)=HOLD
C
C     DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
C     CONTAINED IN BIGA)
C
   80    IF (BIGA) 100,90,100
   90    D=0.0D0
         RETURN
  100    DO 120 I=1,N
            IF (I-K) 110,120,110
  110       IK=NK+I
            A(IK)=A(IK)/(-BIGA)
  120    CONTINUE
C  REDUCE MATRIX
         DO 150 I=1,N
            IK=NK+I
            HOLD=A(IK)
            IJ=I-N
            DO 150 J=1,N
               IJ=IJ+N
               IF (I-K) 130,150,130
  130          IF (J-K) 140,150,140
  140          KJ=IJ-I+K
               A(IJ)=HOLD*A(KJ)+A(IJ)
  150    CONTINUE
C
C     DIVIDE ROW BY PIVOT
C
         KJ=K-N
         DO 170 J=1,N
            KJ=KJ+N
            IF (J-K) 160,170,160
  160       A(KJ)=A(KJ)/BIGA
  170    CONTINUE
C
C     PRODUCT OF PIVOTS
C
         D=MAX(-1.D25,MIN(1.D25,D))
         D=D*BIGA
C
C     REPLACE PIVOT BY RECIPROCAL
C
         A(KK)=1.0D0/BIGA
  180 CONTINUE
C
C     FINAL ROW AND COLUMN INTERCHANGE
C
      K=N
  190 K=(K-1)
      IF (K) 260,260,200
  200 I=L(K)
      IF (I-K) 230,230,210
  210 JQ=N*(K-1)
      JR=N*(I-1)
      DO 220 J=1,N
         JK=JQ+J
         HOLD=A(JK)
         JI=JR+J
         A(JK)=-A(JI)
  220 A(JI)=HOLD
  230 J=M(K)
      IF (J-K) 190,190,240
  240 KI=K-N
      DO 250 I=1,N
         KI=KI+N
         HOLD=A(KI)
         JI=KI-K+J
         A(KI)=-A(JI)
  250 A(JI) =HOLD
      GO TO 190
  260 RETURN
      END