File: ef.f

package info (click to toggle)
mopac7 1.15-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,752 kB
  • sloc: fortran: 35,321; sh: 9,039; ansic: 428; makefile: 82
file content (2091 lines) | stat: -rw-r--r-- 97,370 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
      SUBROUTINE EF(XPARAM, NVAR, FUNCT)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DOUBLE PRECISION LAMDA,LAMDA0
      INCLUDE 'SIZES'
      DIMENSION XPARAM(MAXPAR)
**********************************************************************
*
*   EF IS A QUASI NEWTON RAPHSON OPTIMIZATION ROUTINE BASED ON
*      Jacs Simons P-RFO algorithm as implemented by Jon Baker
*      (J.COMP.CHEM. 7, 385). Step scaling to keep length within
*      trust radius is taken from Culot et al. (Theo. Chim. Acta 82, 189)
*      The trust radius can be updated dynamically according to Fletcher.
*      Safeguards on valid step for TS searches based on actual/predicted
*      function change and change in TS mode are own modifications
*
*  ON ENTRY XPARAM = VALUES OF PARAMETERS TO BE OPTIMISED.
*           NVAR   = NUMBER OF PARAMETERS TO BE OPTIMISED.
*
*  ON EXIT  XPARAM = OPTIMISED PARAMETERS.
*           FUNCT  = HEAT OF FORMATION IN KCAL/MOL.
*
*  Current version implementing combined NR, P-RFO and QA algorithm
*      together with thrust radius update and step rejection was
*      made october 1992 by F.Jensen, Odense, DK
*
**********************************************************************
C
      COMMON /MESAGE/ IFLEPO,ISCF
      COMMON /GEOVAR/ NDUM,LOC(2,MAXPAR), IDUMY, XARAM(MAXPAR)
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)
      COMMON /ISTOPE/ AMS(107)
      COMMON /LAST  / LAST
      COMMON /KEYWRD/ KEYWRD
C ***** Modified by Jiro Toyoda at 1994-05-25 *****
C     COMMON /TIME  / TIME0
      COMMON /TIMEC / TIME0
C ***************************** at 1994-05-25 *****
      COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
     2                NCLOSE,NOPEN,NDUMY,FRACT
      COMMON /NUMCAL/ NUMCAL
      COMMON /TIMDMP/ TLEFT, TDUMP
      COMMON /SIGMA2/ GNEXT1(MAXPAR), GMIN1(MAXPAR)
CONVEX      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
CONVEX     1PMAT(MAXPAR*MAXPAR)
      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),
     1PMAT(MAXPAR**2)
CONVEX      COMMON /SCRACH/ PVEC
      COMMON /SCFTYP/ EMIN, LIMSCF
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      COMMON/THREADS/NUM_THREADS
C ***** Modified by Jiro Toyoda at 1994-05-25 *****
C     COMMON/FLUSH/NFLUSH
      COMMON/FLUSHC/NFLUSH
C ***************************** at 1994-05-25 *****

      DIMENSION IPOW(9), EIGVAL(MAXPAR),TVEC(MAXPAR),SVEC(MAXPAR),
     1FX(MAXPAR),HESSC(MAXHES),UC(MAXPAR**2),oldfx(maxpar),
     1oldeig(maxpar),
     $oldhss(maxpar,maxpar),oldu(maxpar,maxpar),ooldf(maxpar)
      DIMENSION BB(MAXPAR,MAXPAR) 

      LOGICAL RESTRT,SCF1,LIMSCF,LOG
      LOGICAL LUPD,lts,lrjk,lorjk,rrscal,donr,gnmin 
      CHARACTER KEYWRD*241
      EQUIVALENCE(IPOW(1),IHESS)
      DATA  ICALCN,ZERO,ONE,TWO    /0,0.D0,1.D0,2.D0/
      DATA tmone /1.0d-1/, TMTWO/1.0D-2/, TMSIX/1.0D-06/
      data three/3.0d0/, four/4.0d0/, 
     1pt25/0.25d0/, pt5/0.50d0/, pt75/0.75d0/
      data demin/2.0d-2/, gmin/5.0d0/
C     GET ALL INITIALIZATION DATA
      IF(ICALCN.NE.NUMCAL) 
     1CALL EFSTR(XPARAM,FUNCT,IHESS,NTIME,ILOOP,IGTHES,
     $MXSTEP,IRECLC,IUPD,DMAX,DDMAX,dmin,TOL2,TOTIME,TIME1,TIME2,nvar,
     $SCF1,LUPD,ldump,log,rrscal,donr,gnmin)
      lts=.false.
      if (negreq.eq.1) lts=.true.
      lorjk=.false.
c     osmin is smallest step for which a ts-mode overlap less than omin
c     will be rejected. for updated hessians there is little hope of
c     better overlap by reducing the step below 0.005. for exact hessian
c     the overlap should go toward one as the step become smaller, but
c     don't allow very small steps 
      osmin=0.005d0
      if(ireclc.eq.1)osmin=0.001d0
      IF (SCF1) THEN
         GNFINA=SQRT(DOT(GRAD,GRAD,NVAR))
         IFLEPO=1
         RETURN
      ENDIF
C     CHECK THAT GEOMETRY IS NOT ALREADY OPTIMIZED
         RMX=SQRT(DOT(GRAD,GRAD,NVAR))
         IF (RMX.LT.TOL2) THEN
            IFLEPO=2
            LAST=1
            RETURN
         ENDIF
C     GET INITIAL HESSIAN. IF ILOOP IS .LE.0 THIS IS AN OPTIMIZATION RESTART 
C     AND HESSIAN SHOULD ALREADY BE AVAILABLE                                   
      IF (ILOOP .GT. 0) CALL GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME)

C     START OF MAIN LOOP
C     WE NOW HAVE GRADIENTS AND A HESSIAN. IF THIS IS THE FIRST
C     TIME THROUGH DON'T UPDATE THE HESSIAN. FOR LATER LOOPS ALSO
C     CHECK IF WE NEED TO RECALCULATE THE HESSIAN
      IFLEPO=0
      itime=0
   10 CONTINUE
c     store various things for possibly omin rejection
      do 30 i=1,nvar
	 oldfx(i)=fx(i)
	 ooldf(i)=oldf(i)
	 oldeig(i)=eigval(i)
	 do 20 j=1,nvar
	    oldhss(i,j)=hess(i,j)
	    oldu(i,j)=u(i,j)
20       continue
30    continue
      IF (IHESS.GE.IRECLC.AND.IFLEPO.NE.15) THEN
         ILOOP=1
         IHESS=0
         if (igthes.ne.3)IGTHES=1
         CALL GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME)
      ENDIF
         IF (IHESS.GT.0) CALL UPDHES(SVEC,TVEC,NVAR,IUPD)
         IF(IPRNT.GE.2) call geout(6)
         IF(IPRNT.GE.2) THEN
            WRITE(6,'('' XPARAM '')')
            WRITE(6,'(5(2I3,F10.4))')(LOC(1,I),LOC(2,I),XPARAM(I),I=1,NV
     1AR)
            WRITE(6,'('' GRADIENTS'')')
            WRITE(6,'(3X,8F9.3)')(GRAD(I),I=1,NVAR)
         ENDIF
C
C        PRINT RESULTS IN CYCLE
         GNFINA=SQRT(DOT(GRAD,GRAD,NVAR))
      TIME2=SECOND()
      if (itime.eq.0) time1=time0
      TSTEP=TIME2-TIME1
      IF (TSTEP.LT.ZERO)TSTEP=ZERO
      TLEFT=TLEFT-TSTEP
      TIME1=TIME2
      itime=itime+1
      IF (TLEFT .LT. TSTEP*TWO) GOTO 280
         IF(LDUMP.EQ.0)THEN
            WRITE(6,40)NSTEP+1,MIN(TSTEP,9999.99D0),
     1MIN(TLEFT,9999999.9D0),MIN(GNFINA,999999.999D0),FUNCT
            IF(LOG)WRITE(11,40)NSTEP+1,MIN(TSTEP,9999.99D0),
     1MIN(TLEFT,9999999.9D0),MIN(GNFINA,999999.999D0),FUNCT
   40       FORMAT(' CYCLE:',I4,' TIME:',F7.2,' TIME LEFT:',F9.1,
     1' GRAD.:',F10.3,' HEAT:',G13.7)
            IF ( NFLUSH.NE.0 ) THEN
               IF ( MOD(NSTEP+1,NFLUSH).EQ.0) THEN
                  call flush(6)
                  call flush(11)
               ENDIF
            ENDIF
         ELSE
            WRITE(6,50)MIN(TLEFT,9999999.9D0),
     1MIN(GNFINA,999999.999D0),FUNCT
            IF(LOG)WRITE(11,50)MIN(TLEFT,9999999.9D0),
     1MIN(GNFINA,999999.999D0),FUNCT
   50       FORMAT(' RESTART FILE WRITTEN,   TIME LEFT:',F9.1,
     1' GRAD.:',F10.3,' HEAT:',G13.7)
            IF ( NFLUSH.NE.0 ) THEN
               IF ( MOD(NSTEP+1,NFLUSH).EQ.0) THEN
                  call flush(6)
                  call flush(11)
               ENDIF
            ENDIF
         ENDIF
         IHESS=IHESS+1
         NSTEP=NSTEP+1
C
C        TEST FOR CONVERGENCE
C
         RMX=SQRT(DOT(GRAD,GRAD,NVAR))
         IF (RMX.LT.TOL2)GOTO 250

      OLDE  = FUNCT
      oldgn = rmx
      DO 60 I=1,NVAR
         OLDF(I)=GRAD(I)
60    CONTINUE
C
C     if the optimization is in cartesian coordinates, we should remove
C     translation and rotation modes. Possible problem if run is in
C     internal but with exactly 3*natoms variable (i.e. dummy atoms
C     are also optimized).
      if (nvar.eq.3*numat) then
	 if (nstep.eq.1) write(6,70)
70       format(1x,'WARNING! EXACTLY 3N VARIABLES. EF ASSUMES THIS IS',
     $  ' A CARTESIAN OPTIMIZATION.',/,1x,'IF THE OPTIMIZATION IS',
     $  ' IN INTERNAL COORDINATES, EF WILL NOT WORK')
	 call prjfc(hess,xparam,nvar)
      endif
      IJ=0
      DO 80 I=1,NVAR
         DO 80 J=1,I
            IJ=IJ+1
            HESSC(IJ)=HESS(J,I)
   80 CONTINUE
CONVEX      CALL HQRII(HESSC,NVAR,NVAR,EIGVAL,UC)
      CALL RSP(HESSC,NVAR,NVAR,EIGVAL,UC)
      IJ=0
      DO 90 I=1,NVAR
	 IF (ABS(EIGVAL(I)).LT.TMSIX) EIGVAL(I)=ZERO
         DO 90 J=1,NVAR
            IJ=IJ+1
            U(J,I)=UC(IJ)
   90 CONTINUE
      IF (IPRNT.GE.3) CALL PRTHES(EIGVAL,NVAR)
      IF (MXSTEP.EQ.0) nstep=0
      IF (MXSTEP.EQ.0) GOTO 280                                                 

      NEG=0                                                                     
      DO 100 I=1,NVAR                                                           
         IF (EIGVAL(I) .LT. ZERO)NEG=NEG+1                                     
  100 CONTINUE                                                                  
      IF (IPRNT.GE.1)WRITE(6,110)NEG,(eigval(i),i=1,neg)
  110 FORMAT(/,10X,'HESSIAN HAS',I3,' NEGATIVE EIGENVALUE(S)',6f7.1,/)
c     if an eigenvalue has been zero out it is probably one of the T,R modes
c     in a cartesian optimization. zero corresponding fx to allow formation
c     of step without these contributions. a more safe criteria for deciding
c     whether this actually is a cartesian optimization should be put in 
c     some day...
      DO 120 I=1,NVAR                                                           
         FX(I)=DOT(U(1,I),GRAD,NVAR)                                            
         if (abs(eigval(i)).eq.zero) fx(i)=zero
  120 CONTINUE                                                                  
	
c     form geometry step d
130   CALL FORMD(EIGVAL,FX,NVAR,DMAX,osmin,LTS,lrjk,lorjk,rrscal,donr) 
c     if lorjk is true, then ts mode overlap is less than omin, reject prev step
      if (lorjk) then
	 if (iprnt.ge.1)write(6,*)'      Now undoing previous step'
	 dmax=odmax
	 dd=odd
	 olde=oolde
	 do i=1,nvar
	    fx(i)=oldfx(i)
	    oldf(i)=ooldf(i)
	    eigval(i)=oldeig(i)
	    do j=1,nvar
	       hess(i,j)=oldhss(i,j)
	       u(i,j)=oldu(i,j)
            enddo
         enddo
         DO 140 I=1,NVAR
            XPARAM(I)=XPARAM(I)-D(I)
            K=LOC(1,I)
            L=LOC(2,I)
            GEO(L,K)=XPARAM(I)
140      CONTINUE
         IF(NDEP.NE.0) CALL SYMTRY
	 dmax=min(dmax,dd)/two
	 odmax=dmax
	 odd=dd
	 nstep=nstep-1
         if (dmax.lt.dmin) goto 230
      if (iprnt.ge.1)write(6,*)
     1'      Finish undoing, now going for new step'
	 goto 130
      endif
C
C  FORM NEW TRIAL XPARAM AND GEO
C
      DO 150 I=1,NVAR
         XPARAM(I)=XPARAM(I)+D(I)
         K=LOC(1,I)
         L=LOC(2,I)
         GEO(L,K)=XPARAM(I)
  150 CONTINUE
      IF(NDEP.NE.0) CALL SYMTRY
C
C     COMPARE PREDICTED E-CHANGE WITH ACTUAL 
C
      depre=zero
      imode=1
      if (mode.ne.0)imode=mode
      do 160 i=1,nvar
	 xtmp=xlamd
	 if (lts .and. i.eq.imode) xtmp=xlamd0
	 if (abs(xtmp-eigval(i)).lt.tmtwo) then
	 ss=zero
	 else
	 ss=skal*fx(i)/(xtmp-eigval(i))
	 endif
	 frodo=ss*fx(i) + pt5*ss*ss*eigval(i)
c        write(6,88)i,fx(i),ss,xtmp,eigval(i),frodo
	 depre=depre+frodo
160   continue
c88   format(i3,f10.3,f10.6,f10.3,4f10.6)
C
C     GET GRADIENT FOR NEW GEOMETRY 
C
      CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)                  
      if(gnmin)gntest=sqrt(dot(grad,grad,nvar))
      DEACT = FUNCT-OLDE
      RATIO = DEACT/DEPRE
      if(iprnt.ge.1)WRITE(6,170)DEACT,DEPRE,RATIO       
  170 FORMAT(5X,'ACTUAL, PREDICTED ENERGY CHANGE, RATIO',2F10.3,F10.5)

      lrjk=.false.
C     if this is a minimum search, don't allow the energy to raise
      if (.not.lts .and. funct.gt.olde) then
	 if (iprnt.ge.1)write(6,180)funct,min(dmax,dd)/two
180      format(1x,'energy raises ',f10.4,' rejecting step, ',
     $             'reducing dmax to',f7.4)
	 lrjk=.true.
      endif
      if (gnmin .and. gntest.gt.oldgn) then
	 if (iprnt.ge.1)write(6,181)gntest,min(dmax,dd)/two
181      format(1x,'gradient norm raises ',f10.4,' rejecting step, ',
     $             'reducing dmax to',f7.4)
	 lrjk=.true.
      endif
      if (lts .and. (ratio.lt.rmin .or. ratio.gt.rmax) .and.
     $(abs(depre).gt.demin .or. abs(deact).gt.demin)) then
	 if (iprnt.ge.1)write(6,190)min(dmax,dd)/two
190   format(1x,'unacceptable ratio,',
     $          ' rejecting step, reducing dmax to',f7.4)
	 lrjk=.true.
      endif
      if (lrjk) then
         DO 200 I=1,NVAR
            XPARAM(I)=XPARAM(I)-D(I)
            K=LOC(1,I)
            L=LOC(2,I)
            GEO(L,K)=XPARAM(I)
200      CONTINUE
         IF(NDEP.NE.0) CALL SYMTRY
	 dmax=min(dmax,dd)/two
         if (dmax.lt.dmin) goto 230
	 goto 130
      endif
      IF(IPRNT.GE.1)WRITE(6,210)DD
  210 FORMAT(5X,'STEPSIZE USED IS',F9.5)
      IF(IPRNT.GE.2) THEN
         WRITE(6,'('' CALCULATED STEP'')')
         WRITE(6,'(3X,8F9.5)')(D(I),I=1,NVAR)
      ENDIF
C
C     POSSIBLE USE DYNAMICAL TRUST RADIUS
      odmax=dmax
      odd=dd
      oolde=olde
      IF (LUPD .and. ( (RMX.gt.gmin) .or.
     $    (abs(depre).gt.demin .or. abs(deact).gt.demin) ) ) THEN
c     Fletcher recommend dmax=dmax/4 and dmax=dmax*2
c     these are are a little more conservative since hessian is being updated
c     don't reduce trust radius due to ratio for min searches
      if (lts .and. ratio.le.tmone .or. ratio.ge.three)
     $    dmax=min(dmax,dd)/two
      if (lts .and. ratio.ge.pt75 .and. ratio.le.(four/three) 
     $                  .and. dd.gt.(dmax-tmsix)) 
     $   dmax=dmax*sqrt(two)
c     allow wider limits for increasing trust radius for min searches
      if (.not.lts .and. ratio.ge.pt5 
     $                  .and. dd.gt.(dmax-tmsix)) 
     $   dmax=dmax*sqrt(two)
c     be brave if  0.90 < ratio < 1.10 ...
      if (abs(ratio-one).lt.tmone) dmax=dmax*sqrt(two)
      dmax=max(dmax,dmin-tmsix)
      dmax=min(dmax,ddmax)
      ENDIF
c     allow stepsize up to 0.1 in the end-game where changes are less 
c     than demin and gradient is less than gmin
      IF (LUPD .and. RMX.lt.gmin .and.
     $   (abs(depre).lt.demin .and. abs(deact).lt.demin) )
     $    dmax=max(dmax,tmone)
      if(iprnt.ge.1)WRITE(6,220)DMAX
 220  FORMAT(5X,'CURRENT TRUST RADIUS = ',F7.5)                  
230   if (dmax.lt.dmin) then
	 write(6,240)dmin
240      format(/,5x,'TRUST RADIUS NOW LESS THAN ',F7.5,' OPTIMIZATION',
     $   ' TERMINATING',/,5X,
     1' GEOMETRY MAY NOT BE COMPLETELY OPTIMIZED')
	 goto 270
      endif

C     CHECK STEPS AND ENOUGH TIME FOR ANOTHER PASS
      if (nstep.ge.mxstep) goto 280
C     IN USER UNFRIENDLY ENVIROMENT, SAVE RESULTS EVERY 1 CPU HRS
      ITTEST=AINT((TIME2-TIME0)/TDUMP)
      IF (ITTEST.GT.NTIME) THEN
         LDUMP=1
         NTIME=MAX(ITTEST,(NTIME+1))
         IPOW(9)=2
         TT0=SECOND()-TIME0
         CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
     1POW)
      ELSE
         LDUMP=0
      ENDIF
C     RETURN FOR ANOTHER CYCLE
      GOTO 10                                                                  
C
C     ****** OPTIMIZATION TERMINATION ******
C
  250 CONTINUE
      WRITE(6,260)RMX,TOL2
  260 FORMAT(/,5X,'RMS GRADIENT =',F9.5,'  IS LESS THAN CUTOFF =',
     1F9.5,//)
  270 IFLEPO=15
      LAST=1
C     SAVE HESSIAN ON FILE 9
      IPOW(9)=2
      TT0=SECOND()-TIME0
      CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
     1POW)
C     CALL COMPFG TO CALCULATE ENERGY FOR FIXING MO-VECTOR BUG
      CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .FALSE.)
      RETURN
  280 CONTINUE
C     WE RAN OUT OF TIME or too many iterations. DUMP RESULTS
      IF (TLEFT .LT. TSTEP*TWO) THEN
         WRITE(6,290)
  290    FORMAT(/,5X,'NOT ENOUGH TIME FOR ANOTHER CYCLE')
      ENDIF
      IF (nstep.ge.mxstep) THEN
         WRITE(6,300)
  300    FORMAT(/,5X,'EXCESS NUMBER OF OPTIMIZATION CYCLES')
      ENDIF
      IPOW(9)=1
      TT0=SECOND()-TIME0
      CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,-NSTEP,NSTEP,BMAT,I
     1POW)
      STOP
      END
      SUBROUTINE EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,IL,JL,BMAT,IPOW)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      CHARACTER ELEMNT*2, KEYWRD*241, KOMENT*81, TITLE*81
      DIMENSION HESS(MAXPAR,*),GRAD(*),BMAT(MAXPAR,*),IPOW(9),
     1 XPARAM(*), PMAT(*)
**********************************************************************
*
* EFSAV STORES AND RETRIEVE DATA USED IN THE EF GEOMETRY
*        OPTIMISATION. VERY SIMILAR TO POWSAV.
*
*  ON INPUT HESS   = HESSIAN MATRIX, PARTIAL OR WHOLE.
*           GRAD   = GRADIENTS.
*           XPARAM = CURRENT STATE OF PARAMETERS.
*           IL     = INDEX OF HESSIAN,
*           JL     = CYCLE NUMBER REACHED SO-FAR.
*           BMAT   = "B" MATRIX!
*           IPOW   = INDICES AND FLAGS.
*           IPOW(9)= 0 FOR RESTORE, 1 FOR DUMP, 2 FOR SILENT DUMP
*
**********************************************************************
      COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR), IDUMY, DUMY(MAXPAR)
      COMMON /ELEMTS/ ELEMNT(107)
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),
     1                     LOCDEP(MAXPAR)
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      COMMON /TITLES/ KOMENT,TITLE
      COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
     1                NA(NUMATM),NB(NUMATM),NC(NUMATM)
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      COMMON /LOCVAR/ LOCVAR(2,MAXPAR)
      COMMON /NUMSCF/ NSCF
      COMMON /KEYWRD/ KEYWRD
      COMMON /VALVAR/ VALVAR(MAXPAR),NUMVAR
      COMMON /DENSTY/ P(MPACK), PA(MPACK), PB(MPACK)
      COMMON /ALPARM/ ALPARM(3,MAXPAR),X0, X1, X2, JLOOP
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
     2                NCLOSE,NOPEN,NDUMY,FRACT
      COMMON /PATH  / LATOM,LPARAM,REACT(200)
      OPEN(UNIT=9,FILE='FOR009',STATUS='UNKNOWN',FORM='UNFORMATTED')
      REWIND 9
      OPEN(UNIT=10,FILE='FOR010',STATUS='UNKNOWN',FORM='UNFORMATTED')
      REWIND 10
      IR=9
      IF(IPOW(9) .EQ. 1 .OR. IPOW(9) .EQ. 2) THEN
         FUNCT1=SQRT(DOT(GRAD,GRAD,NVAR))
         IF(IPOW(9).EQ.1)THEN
            WRITE(6,'(//10X,''CURRENT VALUE OF GRADIENT NORM =''
     1  ,F12.6)')FUNCT1
            WRITE(6,'(/10X,''CURRENT VALUE OF GEOMETRY'',/)')
            CALL GEOUT(6)
         ENDIF
C
C  IPOW(1) AND IPOW(9) ARE USED ALREADY, THE REST ARE FREE FOR USE
C  
         IPOW(8)=NSCF
         WRITE(IR)IPOW,IL,JL,FUNCT,TT0
         WRITE(IR)(XPARAM(I),I=1,NVAR)
         WRITE(IR)(  GRAD(I),I=1,NVAR)
         WRITE(IR)((HESS(J,I),J=1,NVAR),I=1,NVAR)
         WRITE(IR)((BMAT(J,I),J=1,NVAR),I=1,NVAR)
         WRITE(IR)(OLDF(I),I=1,NVAR),(D(I),I=1,NVAR),(VMODE(I),I=1,NVAR)
         WRITE(IR)DD,MODE,NSTEP,NEGREQ
         LINEAR=(NVAR*(NVAR+1))/2
         WRITE(IR)(PMAT(I),I=1,LINEAR)
         LINEAR=(NORBS*(NORBS+1))/2
         WRITE(10)(PA(I),I=1,LINEAR)
         IF(NALPHA.NE.0)WRITE(10)(PB(I),I=1,LINEAR)
         IF(LATOM .NE. 0) THEN
            WRITE(IR)((ALPARM(J,I),J=1,3),I=1,NVAR)
            WRITE(IR)JLOOP,X0, X1, X2
         ENDIF
         CLOSE(9)
         CLOSE(10)
         RETURN
      ELSE
C#         WRITE(6,'(//10X,'' READING DATA FROM DISK''/)')
         READ(IR,END=10,ERR=10)IPOW,IL,JL,FUNCT,TT0
         NSCF=IPOW(8)
         I=TT0/1000000
         TT0=TT0-I*1000000
         WRITE(6,'(//10X,''TOTAL TIME USED SO FAR:'',
     1    F13.2,'' SECONDS'')')TT0
         WRITE(6,'(  10X,''              FUNCTION:'',F17.6)')FUNCT
         READ(IR)(XPARAM(I),I=1,NVAR)
         READ(IR)(  GRAD(I),I=1,NVAR)
         READ(IR)((HESS(J,I),J=1,NVAR),I=1,NVAR)
         READ(IR)((BMAT(J,I),J=1,NVAR),I=1,NVAR)
         READ(IR)(OLDF(I),I=1,NVAR),(D(I),I=1,NVAR),(VMODE(I),I=1,NVAR)
         READ(IR)DD,MODE,NSTEP,NEGREQ
         LINEAR=(NVAR*(NVAR+1))/2
         READ(IR)(PMAT(I),I=1,LINEAR)
         LINEAR=(NORBS*(NORBS+1))/2
C        READ DENSITY MATRIX
         READ(10)(PA(I),I=1,LINEAR)
         IF(NALPHA.NE.0)READ(10)(PB(I),I=1,LINEAR)
         IF(LATOM.NE.0) THEN
            READ(IR)((ALPARM(J,I),J=1,3),I=1,NVAR)
            READ(IR)JLOOP,X0, X1, X2
            IL=IL+1
         ENDIF
         CLOSE(9)
         CLOSE(10)
         RETURN
   10    WRITE(6,'(//10X,''NO RESTART FILE EXISTS!'')')
         STOP
      ENDIF
      END
      SUBROUTINE EFSTR(XPARAM,FUNCT,IHESS,NTIME,ILOOP,IGTHES,MXSTEP,
     $IRECLC,IUPD,DMAX,DDMAX,dmin,TOL2,TOTIME,TIME1,TIME2,nvar,
     $SCF1,LUPD,ldump,log,rrscal,donr,gnmin)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)                                       
      INCLUDE 'SIZES'                                                           
      DIMENSION XPARAM(*)                                                       
C                                                                               
      COMMON /ISTOPE/ AMS(107)                                                  
      COMMON /LAST  / LAST                                                      
      COMMON /KEYWRD/ KEYWRD                                                    
      COMMON /TIMEX / TIME0                                                     
      COMMON /GRADNT/ GRAD(MAXPAR),GNFINA                                       
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),          
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,                
     2                NCLOSE,NOPEN,NDUMY,FRACT                                  
      COMMON /NUMCAL/ NUMCAL                                                    
      COMMON /SCFTYP/ EMIN, LIMSCF
      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),                  
     *PMAT(MAXPAR**2)                                                              
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      DIMENSION IPOW(9)               
      LOGICAL RESTRT,SCF1,LDUM,LUPD,log,rrscal,donr,gnmin 
C ***** Added    by Jiro Toyoda at 1994-05-25 *****
      LOGICAL LIMSCF
C ***************************** at 1994-05-25 *****
      CHARACTER*241 KEYWRD,LINE                                               
      CHARACTER CHDOT*1,ZERO*1,NINE*1,CH*1
      DATA CHDOT,ZERO,NINE   /'.','0','9'/                     
      DATA  ICALCN,ZZERO  /0,0.D0/                          
C     GET ALL INITIALIZATION DATA                                               
         NVAR=ABS(NVAR)
         LDUMP=0
         ICALCN=NUMCAL
         LUPD=(INDEX(KEYWRD,' NOUPD') .EQ. 0)                                
         RESTRT=(INDEX(KEYWRD,'RESTART') .NE. 0)
         LOG    = INDEX(KEYWRD,'NOLOG').EQ.0
         SCF1=(INDEX(KEYWRD,'1SCF') .NE. 0)
         NSTEP=0
         IHESS=0
         LAST=0
         NTIME=0
         ILOOP=1
         IMIN=INDEX(KEYWRD,' EF')
         IF(IMIN.NE.0) THEN
            MODE=0
            IGTHES=0
            IUPD  =2
            NEGREQ=0
	    ddmax=0.5d0
         ENDIF
         LIMSCF=.FALSE.
         ITS=INDEX(KEYWRD,' TS')
         IF(ITS.NE.0) THEN
            MODE=1
            IGTHES=1
            IUPD  =1
            NEGREQ=1
	    rmin=0.0d0
	    rmax=4.0d0
	    omin=0.8d0
	    ddmax=0.3d0
         ENDIF
         rrscal=.false.
         I=INDEX(KEYWRD,' RSCAL') 
         IF(I.NE.0) rrscal=.true.
         donr=.true.
         I=INDEX(KEYWRD,' NONR') 
         IF(I.NE.0) donr=.false.
         gnmin=.false.
         I=INDEX(KEYWRD,' GNMIN') 
         IF(I.NE.0) gnmin=.true.
         IPRNT=0
         IP=INDEX(KEYWRD,' PRNT=') 
         IF(IP.NE.0) IPRNT=READA(KEYWRD,IP) 
         IF(IPRNT.GT.5)IPRNT=5                                                  
         IF(IPRNT.LT.0)IPRNT=0                                                  
         MXSTEP=100                                                             
         I=INDEX(KEYWRD,' CYCLES=')                                             
         IF(I.NE.0) MXSTEP=READA(KEYWRD,I)                                      
	 IF (I.NE.0 .AND. MXSTEP.EQ.0 .AND. IP.EQ.0) IPRNT=3
         IRECLC=999999
         I=INDEX(KEYWRD,' RECALC=')
         IF(I.NE.0) IRECLC=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' IUPD=')
         IF(I.NE.0) IUPD=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' MODE=')
         IF(I.NE.0) MODE=READA(KEYWRD,I)
         DMIN=1.0D-3
         I=INDEX(KEYWRD,' DDMIN=')
         IF(I.NE.0) DMIN=READA(KEYWRD,I)
         DMAX=0.2D0
         I=INDEX(KEYWRD,' DMAX=')
         IF(I.NE.0) DMAX=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' DDMAX=')
         IF(I.NE.0) DDMAX=READA(KEYWRD,I)
         TOL2=1.D+0
C------- modified by I. Cserny, June 21, 1995 -------
         IF(INDEX(KEYWRD,' PREC') .NE. 0) TOL2=1.D-2
C----------------------------------------------------
         I=INDEX(KEYWRD,' GNORM=')
         IF(I.NE.0) TOL2=READA(KEYWRD,I)
         IF(INDEX(KEYWRD,' LET').EQ.0.AND.TOL2.LT.0.01D0)THEN
            WRITE(6,'(/,A)')'  GNORM HAS BEEN SET TOO LOW, RESET TO 0
     1.01. SPECIFY LET AS KEYWORD TO ALLOW GNORM LESS THAN 0.01'
            TOL2=0.01D0
         ENDIF
         I=INDEX(KEYWRD,' HESS=')
         IF(I.NE.0) IGTHES=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' RMIN=')
         IF(I.NE.0) RMIN=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' RMAX=')
         IF(I.NE.0) RMAX=READA(KEYWRD,I)
         I=INDEX(KEYWRD,' OMIN=')
         IF(I.NE.0) OMIN=READA(KEYWRD,I)
         TIME1=TIME0
         TIME2=TIME1
C   DONE WITH ALL INITIALIZING STUFF.
C   CHECK THAT OPTIONS REQUESTED ARE RESONABLE
         IF(NVAR.GT.(3*NUMAT-6) .and. numat.ge.3)WRITE(6,25)
   25    FORMAT(/,'*** WARNING! MORE VARIABLES THAN DEGREES OF FREEDOM',
     1/)
         IF((ITS.NE.0).AND.(IUPD.EQ.2))THEN
            WRITE(6,*)' TS SEARCH AND BFGS UPDATE WILL NOT WORK'
            STOP
         ENDIF
         IF((ITS.NE.0).AND.(IGTHES.EQ.0))THEN
            WRITE(6,*)' TS SEARCH REQUIRE BETTER THAN DIAGONAL HESSIAN'
            STOP
         ENDIF
         IF((IGTHES.LT.0).OR.(IGTHES.GT.3))THEN
            WRITE(6,*)' UNRECOGNIZED HESS OPTION',IGTHES
            STOP
         ENDIF
         IF((OMIN.LT.0.d0).OR.(OMIN.GT.1.d0))THEN
            WRITE(6,*)' OMIN MUST BE BETWEEN 0 AND 1',OMIN
            STOP
         ENDIF
         IF (RESTRT) THEN
C
C   RESTORE DATA. I INDICATES (HESSIAN RESTART OR OPTIMIZATION
C   RESTART). IF I .GT. 0 THEN HESSIAN RESTART AND I IS LAST
C   STEP CALCULATED IN THE HESSIAN. IF I .LE. 0 THEN J (NSTEP)
C   IN AN OPTIMIZATION HAS BEEN DONE.
C
            IPOW(9)=0
	    mtmp=mode
            CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,I,J,BMAT,IPOW)
	    mode=mtmp
            K=TT0/1000000.D0
            TIME0=TIME0-TT0+K*1000000.D0
            ILOOP=I
            IF (I .GT. 0) THEN
               IGTHES=4
               NSTEP=J
               WRITE(6,'(10X,''RESTARTING HESSIAN AT POINT'',I4)')ILOOP
               IF(NSTEP.NE.0)WRITE(6,'(10X,''IN OPTIMIZATION STEP'',I4)'
     1)NSTEP
            ELSE
               NSTEP=J
               WRITE(6,'(//10X,''RESTARTING OPTIMIZATION AT STEP'',I4)')
     1NSTEP
               DO 26 I=1,NVAR
   26          GRAD(I)=ZZERO
               CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)
            ENDIF
         ELSE
C   NOT A RESTART, WE NEED TO GET THE GRADIENTS
            DO 30 I=1,NVAR
   30       GRAD(I)=ZZERO
            CALL COMPFG(XPARAM, .TRUE., FUNCT, .TRUE., GRAD, .TRUE.)
         ENDIF
      return
      end
      SUBROUTINE FORMD(EIGVAL,FX,NVAR,DMAX,
     1osmin,ts,lrjk,lorjk,rrscal,donr)
C     This version forms geometry step by either pure NR, P-RFO or QA
C     algorithm, under the condition that the steplength is less than dmax
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DOUBLE PRECISION LAMDA,lamda0
      INCLUDE 'SIZES'                                                           
      logical ts,rscal,frodo1,frodo2,lrjk,lorjk,rrscal,donr
      DIMENSION EIGVAL(MAXPAR),FX(MAXPAR)                                       
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      DATA ZERO/0.0D0/, HALF/0.5D0/, TWO/2.0D+00/, TOLL/1.0D-8/         
      DATA STEP/5.0D-02/, TEN/1.0D+1/, ONE/1.0D+0/, BIG/1.0D+3/         
      DATA FOUR/4.0D+00/
      DATA TMTWO/1.0D-2/, TMSIX/1.0D-06/, SFIX/1.0D+01/, EPS/1.0D-12/ 
C                                                                       
      MAXIT=999                                                         
      NUMIT=0                                                           
      SKAL=ONE
      rscal=rrscal
      it=0
      jt=1
      if (ts) then
      IF(MODE.NE.0) THEN 
      CALL OVERLP(dmax,osmin,NEWMOD,NVAR,lorjk) 
      if (lorjk) return
C                                                                               
C  ON RETURN FROM OVERLP, NEWMOD IS THE TS MODE
C                                                                               
      IF(NEWMOD.NE.MODE .and. iprnt.ge.1) WRITE(6,1000) MODE,NEWMOD
1000  FORMAT(5X,'WARNING! MODE SWITCHING. WAS FOLLOWING MODE ',I3,             
     $       ' NOW FOLLOWING MODE ',I3)                                         
      MODE=NEWMOD                                                               
      IT=MODE                                                                   
      ELSE
      IT=1
      ENDIF
      eigit=eigval(it)
      IF (IPRNT.GE.1) THEN                                                      
         WRITE(6,900)IT,EIGIT
         WRITE(6,910)(U(I,IT),I=1,NVAR)                                         
900      FORMAT(/,5X,'TS MODE IS NUMBER',I3,' WITH EIGENVALUE',F9.1,/,          
     *5X,'AND COMPONENTS',/)                                                    
910      FORMAT(5X,8F9.4)                                                       
      ENDIF                                                                     
      endif
      if (it.eq.1) jt=2
      eone=eigval(jt)                                                    
      ssmin=max(abs(eone)*eps,(ten*eps))
      ssmax=max(big,abs(eone))
      ssmax=ssmax*big
      sstoll=toll
      d2max=dmax*dmax                                                   
c     write(6,*)'from formd, eone, ssmin, ssmax, sstoll',
c    $eone,ssmin,ssmax,sstoll
      
C  SOLVE ITERATIVELY FOR LAMDA                                          
C  INITIAL GUESS FOR LAMDA IS ZERO EXCEPT NOTE THAT                     
C  LAMDA SHOULD BE LESS THAN EIGVAL(1)                                  
C  START BY BRACKETING ROOT, THEN HUNT IT DOWN WITH BRUTE FORCE BISECT. 
C                                                                       
	 frodo1=.false.
	 frodo2=.false.
         LAMDA=ZERO                                                     
	 lamda0=zero
      if (ts .and. eigit.lt.zero .and. eone.ge.zero .and. donr) then
	 if (iprnt.ge.1) then
	 write(6,*)' ts search, correct hessian, trying pure NR step'
	 endif
	 goto 776
      endif
      if (.not.ts .and. eone.ge.zero .and. donr) then
	 if (iprnt.ge.1) then
	 write(6,*)' min search, correct hessian, trying pure NR step'
	 endif
	 goto 776
      endif
5     if (ts) then
	 lamda0=eigval(it)+sqrt(eigval(it)**2+four*fx(it)**2)
	 lamda0=lamda0*half
         if (iprnt.ge.1)WRITE(6,1030) LAMDA0 
      endif
	 SSTEP = STEP                                                          
         IF(EONE.LE.ZERO) LAMDA=EONE-SSTEP                              
	 IF(EONE.GT.ZERO) SSTEP=EONE                                           
         BL = LAMDA - SSTEP                                             
         BU = LAMDA + SSTEP*HALF                                        
20       FL = ZERO                                                      
         FU = ZERO                                                      
         DO 30 I = 1,NVAR                                               
	    if (i.eq.it) goto 30
            FL   = FL + (FX(I)*FX(I))/(BL-EIGVAL(I))                    
            FU   = FU + (FX(I)*FX(I))/(BU-EIGVAL(I))                    
30       CONTINUE                                                       
         FL = FL - BL                                                   
         FU = FU - BU                                                   
c        write(6,*)'bl,bu,fl,fu from brack'                             
c        write(6,668)bl,bu,fl,fu                                        
c668     format(6f20.15)
         IF (FL*FU .LT. ZERO) GOTO 40                                   
         BL = BL - (EONE-BL)                                            
         BU = BU + HALF*(EONE-BU)                                       
	 IF (BL.LE.-SSMAX) then
	    BL = -SSMAX
	    frodo1=.true.
         endif
	 IF (abs(eone-bu).le.ssmin) then
	    BU = EONE-SSMIN           
	    frodo2=.true.
         endif
         IF (frodo1.and.frodo2) THEN              
            WRITE(6,*)'NUMERICAL PROBLEMS IN BRACKETING LAMDA',
     $                    EONE,BL,BU,FL,FU
	    write(6,*)' going for fixed step size....'                       
	    goto 450                                                           
         ENDIF                                                          
         GOTO 20                                                        
                                                                        
40       CONTINUE                                                       
         NCNT = 0                                                       
         XLAMDA = ZERO                                                  
50       CONTINUE                                                       
         FL = ZERO                                                      
         FU = ZERO                                                      
         FM = ZERO                                                      
	 LAMDA = HALF*(BL+BU)                                                  
         DO 60 I = 1,NVAR                                               
	    if (i.eq.it) goto 60
            FL   = FL + (FX(I)*FX(I))/(BL-EIGVAL(I))                    
            FU   = FU + (FX(I)*FX(I))/(BU-EIGVAL(I))                    
            FM   = FM + (FX(I)*FX(I))/(LAMDA-EIGVAL(I))                 
60       CONTINUE                                                       
         FL = FL - BL                                                   
         FU = FU - BU                                                   
         FM = FM - LAMDA                                                
c        write(6,*)'bl,bu,lamda,fl,fu,fm from search'                   
c        write(6,668)bl,bu,lamda,fl,fu,fm                               
         IF (ABS(XLAMDA-LAMDA).LT.sstoll) GOTO 776
         NCNT = NCNT + 1                                                
         IF (NCNT.GT.1000) THEN                                         
            WRITE(6,*)'TOO MANY ITERATIONS IN LAMDA BISECT',
     $                    BL,BU,LAMDA,FL,FU
            STOP                                                        
         ENDIF                                                          
         XLAMDA = LAMDA                                                 
         IF (FM*FU.LT.ZERO) BL = LAMDA                                  
         IF (FM*FL.LT.ZERO) BU = LAMDA                                  
         GOTO 50                                                        
C                                                                       
776   if (iprnt.ge.1) WRITE(6,1031) LAMDA 
C                                                                       
C  CALCULATE THE STEP                                                   
C                                                                       
      DO 310 I=1,NVAR                                                   
      D(I)=ZERO                                                         
310   CONTINUE                                                          
      DO 330 I=1,NVAR                                                   
      if (lamda.eq.zero .and. abs(eigval(i)).lt.tmtwo) then
      temp=zero
      else
      TEMP=FX(I)/(LAMDA-EIGVAL(I))                                      
      endif
      if (i.eq.it) then
      TEMP=FX(IT)/(LAMDA0-EIGVAL(IT)) 
      endif
      if (iprnt.ge.5) write(6,*)'formd, delta step',i,temp
      DO 320 J=1,NVAR                                                   
      D(J)=D(J)+TEMP*U(J,I)                                             
320   CONTINUE                                                          
330   CONTINUE                                                          
      dd=sqrt(dot(d,d,nvar))
      if(lamda.eq.zero .and. lamda0.eq.zero .and.iprnt.ge.1)
     1 write(6,777)dd
777   format(1x,'pure NR-step has length',f10.5)
      if(lamda.ne.zero .and. lamda0.ne.-lamda .and.iprnt.ge.1) 
     1write(6,778)dd
778   format(1x,'P-RFO-step   has length',f10.5)
      if (dd.lt.(dmax+tmsix)) then
         xlamd=lamda
	 xlamd0=lamda0
         return
      endif
      if (lamda.eq.zero .and. lamda0.eq.zero) goto 5
      if (rscal) then
         SKAL=DMAX/DD
         DO 160 I=1,NVAR
            D(I)=D(I)*SKAL
160      CONTINUE
	 DD=SQRT(DOT(D,D,NVAR))
         IF(IPRNT.GE.1)WRITE(6,170)SKAL
170      FORMAT(5X,'CALCULATED STEP SIZE TOO LARGE, SCALED WITH',F9.5)
         xlamd=lamda
	 xlamd0=lamda0
	 return
      endif

450      LAMDA=ZERO                                                     
	 frodo1=.false.
	 frodo2=.false.
	 SSTEP = STEP                                                          
         IF(EONE.LE.ZERO) LAMDA=EONE-SSTEP                              
	 if (ts .and. -eigit.lt.eone) lamda=-eigit-sstep
	 IF(EONE.GT.ZERO) SSTEP=EONE                                           
         BL = LAMDA - SSTEP                                             
         BU = LAMDA + SSTEP*HALF                                        
520      FL = ZERO                                                      
         FU = ZERO                                                      
         DO 530 I = 1,NVAR                                              
	    if (i.eq.it) goto 530
            FL   = FL + (FX(I)/(BL-EIGVAL(I)))**2                       
            FU   = FU + (FX(I)/(BU-EIGVAL(I)))**2                       
530      CONTINUE                                                       
         if (ts) then
            FL   = FL + (FX(IT)/(BL+EIGVAL(IT)))**2                       
            FU   = FU + (FX(IT)/(BU+EIGVAL(IT)))**2                       
	 endif
         FL = FL - d2max                                                
         FU = FU - d2max                                                
c        write(6,*)'bl,bu,fl,fu from brack2'                            
c        write(6,668)bl,bu,fl,fu                                        
         IF (FL*FU .LT. ZERO) GOTO 540                                  
         BL = BL - (EONE-BL)                                            
         BU = BU + HALF*(EONE-BU)                                       
	 IF (BL.LE.-SSMAX) then
	    BL = -SSMAX
	    frodo1=.true.
         endif
	 IF (abs(eone-bu).le.ssmin) then
	    BU = EONE-SSMIN           
	    frodo2=.true.
         endif
         IF (frodo1.and.frodo2) THEN              
            WRITE(6,*)'NUMERICAL PROBLEMS IN BRACKETING LAMDA',
     $                    EONE,BL,BU,FL,FU
	    write(6,*)' going for fixed level shifted NR step...'
c           both lamda searches failed, go for fixed level shifted nr    
c           this is unlikely to produce anything useful, but maybe we're lucky
	    lamda=eone-sfix                                                    
	    lamda0=eigit+sfix
            rscal=.true.                                                
            goto 776                                                    
         ENDIF                                                          
         GOTO 520                                                       
                                                                        
540      CONTINUE                                                       
         NCNT = 0                                                       
         XLAMDA = ZERO                                                  
550      CONTINUE                                                       
         FL = ZERO                                                      
         FU = ZERO                                                      
         FM = ZERO                                                      
	 LAMDA = HALF*(BL+BU)                                                  
         DO 560 I = 1,NVAR                                              
	    if (i.eq.it) goto 560
            FL   = FL + (FX(I)/(BL-EIGVAL(I)))**2                       
            FU   = FU + (FX(I)/(BU-EIGVAL(I)))**2                       
            FM   = FM + (FX(I)/(LAMDA-EIGVAL(I)))**2                    
560      CONTINUE                                                       
         if (ts) then
            FL   = FL + (FX(IT)/(BL+EIGVAL(IT)))**2                       
            FU   = FU + (FX(IT)/(BU+EIGVAL(IT)))**2                       
            FM   = FM + (FX(IT)/(LAMDA+EIGVAL(IT)))**2                    
	 endif
         FL = FL - d2max                                                
         FU = FU - d2max                                                
         FM = FM - d2max                                                
c        write(6,*)'bl,bu,lamda,fl,fu,fm from search2'                  
c        write(6,668)bl,bu,lamda,fl,fu,fm                               
         IF (ABS(XLAMDA-LAMDA).LT.sstoll) GOTO 570                        
         NCNT = NCNT + 1                                                
         IF (NCNT.GT.1000) THEN                                         
            WRITE(6,*)'TOO MANY ITERATIONS IN LAMDA BISECT',
     $                    BL,BU,LAMDA,FL,FU
            STOP                                                        
         ENDIF                                                          
         XLAMDA = LAMDA                                                 
         IF (FM*FU.LT.ZERO) BL = LAMDA                                  
         IF (FM*FL.LT.ZERO) BU = LAMDA                                  
         GOTO 550                                                       
C                                                                       
570      CONTINUE                                                       
         lamda0=-lamda
         rscal=.true.                                                   
         goto 776                                                       
C                                                                       
1030  FORMAT(1X,'lamda that maximizes along ts modes =   ',F15.5)       
1031  FORMAT(1X,'lamda that minimizes along all modes =  ',F15.5)       
      END                                                               
      SUBROUTINE GETHES(XPARAM,IGTHES,NVAR,iloop,TOTIME) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)                                       
      INCLUDE 'SIZES'                                                           
C     GET THE HESSIAN. DEPENDING ON IGTHES WE GET IT FROM :                     
C                                                                               
C      0 : DIAGONAL MATRIX, DGHSX*I (DEFAULT FOR MIN-SEARCH)                    
C      1 : CALCULATE IT NUMERICALLY (DEFAULT FOR TS-SEARCH)                     
C      2 : READ IN FROM FTN009                                                  
C      3 : CALCULATE IT BY DOUBLE NUMERICAL DIFFERENTIATION
C      4 : READ IN FROM FTN009 (DURING RESTART, PARTLY OR WHOLE,                
C          ALREADY DONE AT THIS POINT)                                          
      COMMON /GEOVAR/ NDUM,LOC(2,MAXPAR), IDUMY, XARAM(MAXPAR)                  
      COMMON /GEOM  / GEO(3,NUMATM), XCOORD(3,NUMATM)
      COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),LOCDEP(MAXPAR)         
      COMMON /LAST  / LAST                                                      
      COMMON /KEYWRD/ KEYWRD                                                    
      COMMON /TIMEX / TIME0                                                     
      COMMON /GRADNT/ GRAD(MAXPAR),GNFINA                                       
      COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),          
     1                NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,                
     2                NCLOSE,NOPEN,NDUMY,FRACT                                  
      COMMON /NUMCAL/ NUMCAL                                                    
      COMMON /SIGMA2/ GNEXT1(MAXPAR), GMIN1(MAXPAR)                             
      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),                  
     *PMAT(MAXPAR**2)                                                              
      COMMON /SCRACH/ PVEC(MAXPAR**2)                                           
      COMMON /TIMDMP/ TLEFT, TDUMP
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      DIMENSION IPOW(9), EIGVAL(MAXPAR),TVEC(MAXPAR),SVEC(MAXPAR),              
     *FX(MAXPAR),HESSC(MAXHES),UC(MAXPAR**2)                                    
      DIMENSION XPARAM(*),tmp(150,150)
      LOGICAL RESTRT,SCF1,LDUM 
      CHARACTER*241 KEYWRD,LINE                                           
      CHARACTER CHDOT*1,ZERO*1,NINE*1,CH*1
      DATA CHDOT,ZERO,NINE  /'.','0','9'/                     
      DATA  ICALCN,ZZERO,ONE,TWO    /0,0.D0,1.D0,2.D0/                          
C
      DATA DGHSS,DGHSA,DGHSD /1000.d0,500.d0,200.d0/          
      DATA XINC /1.d-3/          
C     DGHSX IS HESSIAN DIAGONAL FOR IGTHES=0 (STRETCHING, ANGLE,
C     DIHEDRAL).  THE VALUES SHOULD BE 'OPTIMUM' FOR CYCLOHEXANONE
C     XINC IS STEPSIZE FOR HESSIAN CALCULATION. TESTS SHOWS THAT IT SHOULD
C     BE IN THE RANGE 10(-2) TO 10(-4). 10(-3) APPEARS TO BE 
C     A REASONABLE COMPROMISE BETWEEN ACCURACY AND NUMERICAL PROBLEMS
      IF (IGTHES.EQ.0) THEN
         WRITE(6,60)
   60    FORMAT(/,10X,'DIAGONAL MATRIX USED AS START HESSIAN',/)
         DO 70 I=1,NVAR
            DO 70 J=1,NVAR
               HESS(I,J)=ZZERO
   70    CONTINUE
         IJ=1
         DO 80 J=1,NUMATM
            DO 80 I=1,3
               IF (LOC(2,IJ).EQ.I.AND.LOC(1,IJ).EQ.J)THEN
                  IF (I.EQ.1)HESS(IJ,IJ)=DGHSS
                  IF (I.EQ.2)HESS(IJ,IJ)=DGHSA
                  IF (I.EQ.3)HESS(IJ,IJ)=DGHSD
                  IJ=IJ+1
               ENDIF
   80    CONTINUE
         IJ=IJ-1
         IF(IJ.NE.NVAR)WRITE(*,*)'ERROR IN IGTHES=0,IJ,NVAR',IJ,NVAR
      ENDIF
C
      IF (IGTHES.EQ.2) THEN
         WRITE(6,100)
  100    FORMAT(/,10X,'HESSIAN READ FROM DISK',/)
         IPOW(9)=0
C        USE DUMMY ARRAY FOR CALL EXCEPT FOR HESSIAN
C        TEMPORARY SET NALPHA = 0, THEN WE CAN READ HESSIAN FROM RHF
C        RUN FOR USE IN SAY UHF RUNS
C        ALSO SAVE MODE, TO ALLOW FOLLOWING A DIFFERENT MODE THAN THE ONE
C        CURRENTLY ON RESTART FILE
         nxxx=nalpha
	 nalpha=0
	 mtmp=mode
         CALL EFSAV(TDM,HESS,FDMY,GNEXT1,GMIN1,PMAT,IIDUM,J,BMAT,IPOW)
	 nalpha=nxxx
	 mode=mtmp
	 nstep=0
      ENDIF
      IF((IGTHES.EQ.1).OR.(IGTHES.EQ.3).OR.(IGTHES.EQ.4))THEN
C       IF IGTHES IS .EQ. 4, THEN THIS IS A HESSIAN RESTART.
C       USE GNEXT1 AND DUMMY FOR CALLS TO COMPFG DURING HESSIAN
C       CALCULATION
         IF (IGTHES.EQ.1)WRITE(6,190)
  190    FORMAT(/,10X,'HESSIAN CALCULATED NUMERICALLY',/)
         IF (IGTHES.EQ.3)WRITE(6,191)
  191    FORMAT(/,10X,'HESSIAN CALCULATED DOUBLE NUMERICALLY',/)
            IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
     1    0,(Grad(IF),IF=1,NVAR)
         TIME1=SECOND()
         TSTORE=TIME1
         DO 210 I=ILOOP,NVAR
            XPARAM(I)=XPARAM(I) + XINC
            CALL COMPFG(XPARAM, .TRUE., DUMMY, .TRUE., GNEXT1, .TRUE.)
            IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
     1    I,(GNEXT1(IF),IF=1,NVAR)
            XPARAM(I)=XPARAM(I) - XINC
	    if (igthes.eq.3) then
            XPARAM(I)=XPARAM(I) - XINC
            CALL COMPFG(XPARAM, .TRUE., DUMMY, .TRUE., GMIN1, .TRUE.)
            IF(IPRNT.GE.5)WRITE(6,'(I3,12(8F9.4,/3X))')
     1    -I,(GMIN1(IF),IF=1,NVAR)
            XPARAM(I)=XPARAM(I) + XINC
            DO 199 J=1,NVAR
  199       HESS(I,J)= (GNEXT1(J)-GMIN1(J))/(XINC+XINC)
	    else
            DO 200 J=1,NVAR
  200       HESS(I,J)= (GNEXT1(J)-GRAD(J))/XINC
	    endif
            TIME2=SECOND()
            TSTEP=TIME2-TIME1
            TLEFT=TLEFT-TSTEP
            TIME1=TIME2
            IF( TLEFT .LT. TSTEP*TWO) THEN
C
C  STORE PARTIAL HESSIAN PATRIX
C  STORE GRADIENTS FOR GEOMETRY AND ILOOP AS POSITIVE
               WRITE(6,'(A)')' NOT ENOUGH TIME TO COMPLETE HESSIAN'
               WRITE(6,'(A,I4)')' STOPPING IN HESSIAN AT COORDINATE:',I
               IPOW(9)=1
               TT0=SECOND()-TIME0
               CALL EFSAV(TT0,HESS,FUNCT,GRAD,XPARAM,PMAT,I,NSTEP,BMAT,
     1IPOW)
               STOP
            ENDIF
  210    CONTINUE
C     fix last entry in geo array, this is currently at value-xinc
         K=LOC(1,nvar)
         L=LOC(2,nvar)
         GEO(L,K)=XPARAM(nvar)
         IF(NDEP.NE.0) CALL SYMTRY
c        add all time used back to tleft, this will then be subtracted
c        again in main ef routine
         TIME2=SECOND()
         TSTEP=TIME2-TSTORE
         TLEFT=TLEFT+TSTEP
      ENDIF
C
C     SYMMETRIZE HESSIAN
      DO 220 I=1,NVAR
C$DIR NO_RECURRENCE
         DO 220 J=1,I-1
            HESS(I,J)=(HESS(I,J)+HESS(J,I))/TWO
            HESS(J,I)=HESS(I,J)
  220 CONTINUE
      RETURN
      END
C*MODULE BLAS1   *DECK IDAMAX
      INTEGER FUNCTION IDAMAX(N,DX,INCX)
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION DX(1)
C
C     FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
C     JACK DONGARRA, LINPACK, 3/11/78.
C
      IDAMAX = 0
      IF( N .LT. 1 ) RETURN
      IDAMAX = 1
      IF(N.EQ.1)RETURN
      IF(INCX.EQ.1)GO TO 20
C
C        CODE FOR INCREMENT NOT EQUAL TO 1
C
      IX = 1
      RMAX = ABS(DX(1))
      IX = IX + INCX
      DO 10 I = 2,N
         IF(ABS(DX(IX)).LE.RMAX) GO TO 5
         IDAMAX = I
         RMAX = ABS(DX(IX))
    5    IX = IX + INCX
   10 CONTINUE
      RETURN
C
C        CODE FOR INCREMENT EQUAL TO 1
C
   20 RMAX = ABS(DX(1))
      DO 30 I = 2,N
         IF(ABS(DX(I)).LE.RMAX) GO TO 30
         IDAMAX = I
         RMAX = ABS(DX(I))
   30 CONTINUE
      RETURN
      END
      SUBROUTINE OVERLP(dmax,osmin,NEWMOD,NVAR,lorjk)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      dimension xo(maxpar)
      logical lorjk,first
      data first/.true./
C
C  ON THE FIRST STEP SIMPLY DETERMINE WHICH MODE TO FOLLOW
C
c     IF(NSTEP.EQ.1) THEN
      IF(first) THEN
	 first=.false.
         IF(MODE.GT.NVAR)THEN
            WRITE(6,*)'ERROR!! MODE IS LARGER THAN NVAR',MODE
            STOP
         ENDIF
         IT=MODE
         if (iprnt.ge.1) WRITE(6,40) MODE
   40 FORMAT(5X,'HESSIAN MODE FOLLOWING SWITCHED ON'/
     1     '     FOLLOWING MODE ',I3)
C
      ELSE
C
C  ON SUBSEQUENT STEPS DETERMINE WHICH HESSIAN EIGENVECTOR HAS
C  THE GREATEST OVERLAP WITH THE MODE WE ARE FOLLOWING
C
         IT=1
	 lorjk=.false.
         TOVLP=DOT(U(1,1),VMODE,NVAR)
         TOVLP=ABS(TOVLP)
c        xo(1)=tovlp
         DO 10 I=2,NVAR
            OVLP=DOT(U(1,I),VMODE,NVAR)
            OVLP=ABS(OVLP)
c           xo(i)=ovlp
            IF(OVLP.GT.TOVLP) THEN
               TOVLP=OVLP
               IT=I
            ENDIF
   10    CONTINUE
C
         if (iprnt.ge.5) then
         do j=1,5
         xxx=0.d0
         do i=1,nvar
         if (xo(i).gt.xxx)ix=i
         if (xo(i).gt.xxx)xxx=xo(i)
         enddo
         xo(ix)=0.d0
         write(6,*)'overlaps',ix,xxx
         enddo
         endif

         if(iprnt.ge.1)WRITE(6,30) IT,TOVLP
	 if (tovlp.lt.omin) then
	    if (dmax.gt.osmin) then
	    lorjk=.true.
	    if (iprnt.ge.1)write(6,31)omin
	    return
	    else
	    if (iprnt.ge.1)write(6,32)omin,dmax,osmin
	    endif
         endif
      ENDIF
   30 FORMAT(5X,'OVERLAP OF CURRENT MODE',I3,' WITH PREVIOUS MODE IS ',
     $       F6.3)
   31 FORMAT(5X,'OVERLAP LESS THAN OMIN',
     1F6.3,' REJECTING PREVIOUS STEP')
   32 FORMAT(5X,'OVERLAP LESS THAN OMIN',F6.3,' BUT TRUST RADIUS',F6.3,
     $          ' IS LESS THAN',F6.3,/,5X,' ACCEPTING STEP')
C
C  SAVE THE EIGENVECTOR IN VMODE
C
      DO 20 I=1,NVAR
         VMODE(I)=U(I,IT)
   20 CONTINUE
C
      NEWMOD=IT
      RETURN
C
      END
      SUBROUTINE PRJFC(F,xparam,nvar) 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      INCLUDE 'SIZES'
C                                                                       
C  CALCULATES PROJECTED FORCE CONSTANT MATRIX (F).                      
C  THIS ROUTINE CAME ORIGINALLY FROM POLYRATE. IT IS USED BY PERMISSION
C  OF D. TRUHLAR. THE CURRENT VERSION IS LIFTED FROM GAMESS AND 
C  ADAPTED BY F.JENSEN, ODENSE, DK             
C  IF WE ARE AT A STATIONARY POINT (STPT=.T.), I.E. GNORM .LT. 10,      
C  THEN THE ROTATIONAL AND TRANSLATIONAL MODES ARE PROJECTED OUT        
C  AND THEIR FREQUENCIES BECOME IDENTICAL ZERO. IF NOT AT A STATIONARY  
C  POINT THEN THE MASS-WEIGHTED GRADIENT IS ALSO PROJECTED OUT AND      
C  THE CORRESPONDING FREQUENCY BECOME ZERO.                             
C ************************************************                      
C   X : MASS-WEIGHTED COORDINATE                                        
C   DX: NORMALIZED MASS-WEIGHTED GRADIENT VECTOR                        
C   F : MASS-WEIGHTED FORCE CONSTANT MATRIX                             
C   RM: INVERSION OF SQUARE ROOT OF MASS                                
C   P, COF: BUFFER                                                      
C                                                                       
      COMMON /ATMASS/ ATMASS(NUMATM)
      DIMENSION X(MAXPAR),RM(MAXPAR),F(MAXPAR,MAXPAR),                  
     *          P(MAXPAR,MAXPAR),COF(MAXPAR,MAXPAR)                     
      DIMENSION TENS(3,3,3),ROT(3,3),SCR(3,3),ISCR(6),CMASS(3)          
      dimension coord(3,numatm),dx(maxpar),xparam(maxpar)
      DIMENSION DETX(2)
      EQUIVALENCE (DET,DETX(1))
      PARAMETER (ZERO=0.0d+00, ONE=1.0d+00, EPS=1.0d-14,                
     *           CUT5=1.0d-05, CUT8=1.0d-08)                            
C                                                                       
C TOTALLY ASYMMETRIC CARTESIAN TENSOR.                                  
      DATA TENS/ 0.0d+00,  0.0d+00,  0.0d+00,                           
     X           0.0d+00,  0.0d+00, -1.0d+00,                           
     X           0.0d+00,  1.0d+00,  0.0d+00,                           
     Y           0.0d+00,  0.0d+00,  1.0d+00,                           
     Y           0.0d+00,  0.0d+00,  0.0d+00,                           
     Y          -1.0d+00,  0.0d+00,  0.0d+00,                           
     Z           0.0d+00, -1.0d+00,  0.0d+00,                           
     Z           1.0d+00,  0.0d+00,  0.0d+00,                           
     Z           0.0d+00,  0.0d+00,  0.0d+00  /                         
C                                                                       
      natm=nvar/3                                                        
      nc1=nvar
      ij=1
      do 2 i=1,natm                                                    
	 coord(1,i)=xparam(ij)
	 coord(2,i)=xparam(ij+1)
	 coord(3,i)=xparam(ij+2)
	 ij=ij+3
2     continue                                                          
C     CALCULATE 1/SQRT(MASS)                                            
      L=0                                                               
      DO 3 I=1,NATM                                                     
         TMP=ONE/SQRT(ATMASS(I))                                        
         DO 3 J=1,3                                                     
            L=L+1                                                       
3           RM(L)=TMP                                                   
C     PREPARE GRADIENT                                                  
         DO 4 I=1,NC1                                                   
4        DX(I)=ZERO                                                     
C     FIND CMS AND CALCULATED MASS WEIGHTED COORDINATES                 
      totm=zero                                                         
      cmass(1)=zero                                                     
      cmass(2)=zero                                                     
      cmass(3)=zero                                                     
      DO 6 I=1,NATM                                                     
         TOTM=TOTM+ATMASS(I)                                            
         DO 6 J=1,3                                                     
            CMASS(J)=CMASS(J)+ATMASS(I)*COORD(J,I)                      
6     CONTINUE                                                          
      DO 7 J=1,3                                                        
7     CMASS(J)=CMASS(J)/TOTM                                            
      L=0                                                               
      DO 8 I=1,NATM                                                     
         DO 8 J=1,3                                                     
         TMP=SQRT(ATMASS(I))                                            
             L=L+1                                                      
             X(L)=TMP*(COORD(J,I)-CMASS(J))                             
8     CONTINUE                                                          
c     WRITE(6,9020)                                                     
c     CALL prsq(f,nc1,nc1,maxpar,1)                                          
c9020 FORMAT(/1X,'ENTER THE SUBROUTINE <PRJFC>'//                       
c    *        1X,'UNPROJECTED FORCE CONSTANT MATRIX (HARTREE/BOHR**2)') 
c     WRITE(6,*)' MASS-WEIGHTED COORDINATES AND CORRESPONDING GRADIENT' 
c     DO 9 I=1,NC1                                                      
c9       WRITE(6,*)X(I),DX(I)                                           
C                                                                       
C 2. COMPUTE INERTIA TENSOR.                                            
      DO 10 I=1,3                                                       
       DO 10 J=1,3                                                      
   10   ROT(I,J)=ZERO                                                   
      DO 20 I=1,NATM                                                    
       L=3*(I-1)+1                                                      
       ROT(1,1)=ROT(1,1)+X(L+1)**2+X(L+2)**2                            
       ROT(1,2)=ROT(1,2)-X(L)*X(L+1)                                    
       ROT(1,3)=ROT(1,3)-X(L)*X(L+2)                                    
       ROT(2,2)=ROT(2,2)+X(L)**2+X(L+2)**2                              
       ROT(2,3)=ROT(2,3)-X(L+1)*X(L+2)                                  
   20  ROT(3,3)=ROT(3,3)+X(L)**2+X(L+1)**2                              
      ROT(2,1)=ROT(1,2)                                                 
      ROT(3,1)=ROT(1,3)                                                 
      ROT(3,2)=ROT(2,3)                                                 
C                                                                       
CHECK THE INERTIA TENSOR.                                               
      CHK=ROT(1,1)*ROT(2,2)*ROT(3,3)                                    
      IF(ABS(CHK).GT.CUT8) GO TO 21                                     
c     WRITE(6,23)                                                       
c  23 FORMAT(/1X,'MATRIX OF INERTIA MOMENT')                            
c     CALL PRSQ(ROT,3,3,3,3)                                              
      IF(ABS(ROT(1,1)).GT.CUT8) GO TO 11                                
C X=0                                                                   
      IF(ABS(ROT(2,2)).GT.CUT8) GO TO 12                                
C X,Y=0                                                                 
      IF(ABS(ROT(3,3)).GT.CUT8) GO TO 13                                
      WRITE(6,14) ROT(1,1),ROT(2,2),ROT(3,3)                            
   14 FORMAT(1X,'EVERY DIAGONAL ELEMENTS ARE ZERO ?',3F20.10)           
      RETURN                                                            
C                                                                       
C* 1. X,Y=0 BUT Z.NE.0                                                  
   13 ROT(3,3)=ONE/ROT(3,3)                                             
      GO TO 22                                                          
C Y.NE.0                                                                
   12 IF(ABS(ROT(3,3)).GT.CUT8) GO TO 15                                
C* 2. X,Z=0 BUT Y.NE.0                                                  
      ROT(2,2)=ONE/ROT(2,2)                                             
      GO TO 22                                                          
C X.NE.0                                                                
   11 IF(ABS(ROT(2,2)).GT.CUT8) GO TO 16                                
      IF(ABS(ROT(3,3)).GT.CUT8) GO TO 17                                
C* 3. Y,Z=0 BUT X.NE.0                                                  
      ROT(1,1)=ONE/ROT(1,1)                                             
      GO TO 22                                                          
C* 4. X,Y.NE.0 BUT Z=0                                                  
   16 DET=ROT(1,1)*ROT(2,2)-ROT(1,2)*ROT(2,1)                           
      TRP=ROT(1,1)                                                      
      ROT(1,1)=ROT(2,2)/DET                                             
      ROT(2,2)=TRP/DET                                                  
      ROT(1,2)=-ROT(1,2)/DET                                            
      ROT(2,1)=-ROT(2,1)/DET                                            
      GO TO 22                                                          
C* 5. X,Z.NE.0 BUT Y=0                                                  
   17 DET=ROT(1,1)*ROT(3,3)-ROT(1,3)*ROT(3,1)                           
      TRP=ROT(1,1)                                                      
      ROT(1,1)=ROT(3,3)/DET                                             
      ROT(3,3)=TRP/DET                                                  
      ROT(1,3)=-ROT(1,3)/DET                                            
      ROT(3,1)=-ROT(3,1)/DET                                            
      GO TO 22                                                          
C* 6. Y,Z.NE.0 BUT X=0                                                  
   15 DET=ROT(3,3)*ROT(2,2)-ROT(3,2)*ROT(2,3)                           
      TRP=ROT(3,3)                                                      
      ROT(3,3)=ROT(2,2)/DET                                             
      ROT(2,2)=TRP/DET                                                  
      ROT(3,2)=-ROT(3,2)/DET                                            
      ROT(2,3)=-ROT(2,3)/DET                                            
      GO TO 22                                                          
   21 CONTINUE                                                          
C                                                                       
C.DEBUG.                                                                
c      CALL PRSQ(TENS(1,1,1),3,3,3,3)                                     
c      CALL PRSQ(TENS(1,1,2),3,3,3,3)                                     
c      CALL PRSQ(TENS(1,1,3),3,3,3,3)                                     
c      CALL PRSQ(ROT,3,3,3,3)                                             
C                                                                       
C 4. COMPUTE INVERSION MATRIX OF ROT.                                   
C     CALL MXLNEQ(ROT,3,3,DET,JRNK,EPS,SCR,+0)                          
C     IF(JRNK.LT.3) STOP 1                                              
      INFO=0                                                            
      CALL DGEFA(ROT,3,3,ISCR,INFO)                                     
      IF(INFO.NE.0) STOP                                                
      DET=ZERO                                                          
      CALL DGEDI(ROT,3,3,ISCR,DETX,SCR,1)                                
C                                                                       
   22 CONTINUE                                                          
c     WRITE (6,702)                                                     
c 702 FORMAT(/1X,'INVERSE MATRIX OF MOMENT OF INERTIA.')                
c     CALL PRSQ(ROT,3,3,3,3)                                              
C                                                                       
C 5. TOTAL MASS ---> TOTM.                                              
C                                                                       
C 6. COMPUTE P MATRIX                                                   
C    ----------------                                                   
      DO 100 IP=1,NATM                                                  
       INDX=3*(IP-1)                                                    
       DO 100 JP=1,IP                                                   
        JNDX=3*(JP-1)                                                   
        DO 70 IC=1,3                                                    
         JEND=3                                                         
         IF(JP.EQ.IP) JEND=IC                                           
         DO 70 JC=1,JEND                                                
          SUM=ZERO                                                      
          DO 50 IA=1,3                                                  
           DO 50 IB=1,3                                                 
            IF(TENS(IA,IB,IC).EQ.0) GO TO 50                            
            DO 30 JA=1,3                                                
             DO 30 JB=1,3                                               
              IF(TENS(JA,JB,JC).EQ.0) GO TO 30                          
              SUM=SUM+TENS(IA,IB,IC)*TENS(JA,JB,JC)*ROT(IA,JA)*         
     &                X(INDX+IB)*X(JNDX+JB)                             
   30         CONTINUE                                                  
   50       CONTINUE                                                    
          II=INDX+IC                                                    
          JJ=JNDX+JC                                                    
          P(II,JJ)=SUM+DX(II)*DX(JJ)                                    
          IF(IC.EQ.JC) P(II,JJ)=P(II,JJ)+ONE/(RM(II)*RM(JJ)*TOTM)       
   70     CONTINUE                                                      
  100   CONTINUE                                                        
C                                                                       
C 7. COMPUTE DELTA(I,J)-P(I,J)                                          
      DO 110 I=1,NC1                                                    
       DO 110 J=1,I                                                     
        P(I,J)=-P(I,J)                                                  
        IF(I.EQ.J) P(I,J) = ONE +P(I,J)                                 
  110   CONTINUE                                                        
C                                                                       
C 8. NEGLECT SMALLER VALUES THAN 10**-8.                                
      DO 120 I=1,NC1                                                    
       DO 120 J=1,I                                                     
        IF(ABS(P(I,J)).LT.CUT8) P(I,J)=ZERO                             
        P(J,I)=P(I,J)                                                   
  120   CONTINUE                                                        
C                                                                       
C.DEBUG.                                                                
c     WRITE(6,703)                                                      
c 703 FORMAT(/1X,'PROJECTION MATRIX')                                   
c     CALL PRSQ(P,NC1,NC1,NC1)                                          
c     CALL PRSQ(P,NC1,NC1,maxpar,3)                                       
C                                                                       
C 10. POST AND PREMULTIPLY F BY P.                                      
C     USE COF FOR SCRATCH.                                              
      DO 150 I=1,NC1                                                    
       DO 150 J=1,NC1                                                   
        SUM=ZERO                                                        
        DO 140 K=1,NC1                                                  
  140    SUM=SUM+F(I,K)*P(K,J)                                          
  150   COF(I,J)=SUM                                                    
C                                                                       
C 11. COMPUTE P*F*P.                                                    
      DO 200 I=1,NC1                                                    
       DO 200 J=1,NC1                                                   
        SUM=ZERO                                                        
        DO 190 K=1,NC1                                                  
  190    SUM=SUM+P(I,K)*COF(K,J)                                        
  200   F(I,J)=SUM                                                      
C                                                                       
c     WRITE(6,9030)                                                     
c     CALL prsq(f,nc1,nc1,maxpar,1)                                          
c9030 FORMAT(/1X,'LEAVE THE SUBROUTINE <PRJFC>'//                       
c    *        1X,'PROJECTED FORCE CONSTANT MATRIX (HARTREE/BOHR**2)')   
      RETURN                                                            
      END                                                               
      SUBROUTINE PRTHES(EIGVAL,NVAR)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)                                       
      INCLUDE 'SIZES'
      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR),BMAT(MAXPAR,MAXPAR),                  
     *PMAT(MAXPAR**2)                                                              
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),                        
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
      DIMENSION EIGVAL(MAXPAR)
         IF (IPRNT.GE.4) THEN                                                   
         WRITE(6,*)' '                                                          
         WRITE(6,*)'              HESSIAN MATRIX'                               
         LOW=1                                                                  
         NUP=8                                                                  
540      NUP=MIN(NUP,NVAR)                                                      
         WRITE(6,1000) (I,I=LOW,NUP)                                            
         DO 550 I=1,NVAR                                                        
         WRITE(6,1010) I,(HESS(I,J),J=LOW,NUP)                                  
550      CONTINUE                                                               
         NUP=NUP+8                                                              
         LOW=LOW+8                                                              
         IF(LOW.LE.NVAR) GOTO 540                                               
         ENDIF                                                                  
         WRITE(6,*)' '                                                          
         WRITE(6,*)'              HESSIAN EIGENVALUES AND -VECTORS'             
         LOW=1                                                                  
         NUP=8                                                                  
560      NUP=MIN(NUP,NVAR)                                                      
         WRITE(6,1000) (I,I=LOW,NUP)                                            
         WRITE(6,1020) (EIGVAL(I),I=LOW,NUP)                                    
         DO 570 I=1,NVAR                                                        
         WRITE(6,1030) I,(U(I,J),J=LOW,NUP)                                     
570      CONTINUE                                                               
         NUP=NUP+8                                                              
         LOW=LOW+8                                                              
         IF(LOW.LE.NVAR) GOTO 560                                               
1000     FORMAT(/,3X,8I9)                                                       
1010     FORMAT(1X,I3,8F9.1)                                                    
1020     FORMAT(/,4X,8F9.1,/)                                                   
1030     FORMAT(1X,I3,8F9.4)                                                    
      RETURN
      END
      SUBROUTINE UPDHES(SVEC,TVEC,NVAR,IUPD)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      INCLUDE 'SIZES'
      DIMENSION TVEC(*),SVEC(*)
      LOGICAL FIRST
      COMMON/OPTEF/OLDF(MAXPAR),D(MAXPAR),VMODE(MAXPAR),
     $U(MAXPAR,MAXPAR),DD,rmin,rmax,omin,xlamd,xlamd0,skal,
     $MODE,NSTEP,NEGREQ,IPRNT
CONVEX      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR*3)
      COMMON /NLLCOM/ HESS(MAXPAR,MAXPAR), BMAT(MAXPAR,MAXPAR),
     .                PMAT(MAXPAR**2)
      COMMON /GRADNT/ GRAD(MAXPAR),GNFINA
C
      DATA ZERO/0.0D0/
C
C  UPDATING OF THE HESSIAN
C  DEPENDS ON CURRENT GRADIENTS, OLD GRADIENTS AND THE
C  CORRECTION VECTOR USED ON THE LAST CYCLE
C  SVEC & TVEC ARE FOR TEMPORARY STORAGE
C
C  2 UPDATING PROCEDURES ARE POSSIBLE
C  (I)   THE POWELL UPDATE
C        THIS PRESERVES THE SYMMETRIC CHARACTER OF THE HESSIAN
C        WHILST ALLOWING ITS EIGENVALUE STRUCTURE TO CHANGE.
C        IT IS THE DEFAULT UPDATE FOR A TRANSITION STATE SEARCH
C  (II)  THE BFGS UPDATE
C        THIS UPDATE HAS THE IMPORTANT CHARACTERISTIC OF RETAINING
C        POSITIVE DEFINITENESS (NOTE: THIS IS NOT RIGOROUSLY
C        GUARANTEED, BUT CAN BE CHECKED FOR BY THE PROGRAM).
C        IT IS THE DEFAULT UPDATE FOR A MINIMUM SEARCH
C
C     SWITCH : IUPD
C       IUPD = 0  :  SKIP UPDATE
C       IUPD = 1  :  POWELL
C       IUPD = 2  :  BFGS
C
      IF (.NOT. FIRST) THEN
         FIRST=.TRUE.
         IF(IPRNT.GE.2) THEN
            IF (IUPD.EQ.0)WRITE(6,90)
            IF (IUPD.EQ.1)WRITE(6,80)
            IF (IUPD.EQ.2)WRITE(6,120)
         ENDIF
      ENDIF
      IF(IUPD.EQ.0) RETURN
CONVEX      DO 10 I=1,NVAR
CONVEX         TVEC(I)=ZERO
CONVEX         DO 10 J=1,NVAR
CONVEX            TVEC(I)=TVEC(I) + HESS(I,J)*D(J)
CONVEX   10 CONTINUE
      DO 5 I=1,NVAR
         TVEC(I)=ZERO
 5    CONTINUE
      DO 10 J=1,NVAR
         DO 10 I=1,NVAR
            TVEC(I)=TVEC(I) + HESS(I,J)*D(J)
   10 CONTINUE
C
      IF(IUPD.EQ.1) THEN
C
C   (I) POWELL UPDATE
C
         DO 20 I=1,NVAR
            TVEC(I)=GRAD(I)-OLDF(I)-TVEC(I)
            sVEC(I)=GRAD(I)-OLDF(I)
   20    CONTINUE
         DDS=DD*DD
         DDTD=DOT(TVEC,D,NVAR)
         DDTD=DDTD/DDS
C
CONVEX         DO 40 I=1,NVAR
CONVEX            DO 30 J=1,I
CONVEX               TEMP=TVEC(I)*D(J) + D(I)*TVEC(J) - D(I)*DDTD*D(J)
CONVEX               HESS(I,J)=HESS(I,J)+TEMP/DDS
CONVEX               HESS(J,I)=HESS(I,J)
CONVEX   30       CONTINUE
CONVEX   40    CONTINUE
         DO 40 I=2,NVAR
C$DIR NO_RECURRENCE
            DO 30 J=1,I-1
               TEMP=TVEC(I)*D(J) + D(I)*TVEC(J) - D(I)*DDTD*D(J)
               HESS(I,J)=HESS(I,J)+TEMP/DDS
               HESS(J,I)=HESS(I,J)
   30       CONTINUE
   40    CONTINUE
         DO 45 I=1,NVAR
            TEMP=D(I)*(2.0D0*TVEC(I) - D(I)*DDTD)
            HESS(I,I)=HESS(I,I)+TEMP/DDS
 45      CONTINUE
C
      ENDIF
      IF (IUPD.EQ.2) THEN
C
C  (II) BFGS UPDATE
C
         DO 50 I=1,NVAR
            SVEC(I)=GRAD(I)-OLDF(I)
   50    CONTINUE
         DDS=DOT(SVEC,D,NVAR)
C
C  IF DDS IS NEGATIVE, RETENTION OF POSITIVE DEFINITENESS IS NOT
C  GUARANTEED. PRINT A WARNING AND SKIP UPDATE THIS CYCLE.
C
cfrj With the current level shift technique I think the Hessian should
cfrj be allowed to aquire negative eigenvalues. Without updating the
cfrj optimization has the potential of stalling
cfrj     IF(DDS.LT.ZERO) THEN
cfrj        WRITE(6,100)
cfrj        WRITE(6,110)
cfrj        RETURN
cfrj     ENDIF
C
         DDTD=DOT(D,TVEC,NVAR)
C
CONVEX         DO 70 I=1,NVAR
CONVEX            DO 60 J=1,I
CONVEX               TEMP= (SVEC(I)*SVEC(J))/DDS - (TVEC(I)*TVEC(J))/DDTD
CONVEX               HESS(I,J)=HESS(I,J)+TEMP
CONVEX               HESS(J,I)=HESS(I,J)
CONVEX   60       CONTINUE
CONVEX   70    CONTINUE
         DO 70 I=2,NVAR
C$DIR NO_RECURRENCE
            DO 60 J=1,I-1
               TEMP= (SVEC(I)*SVEC(J))/DDS - (TVEC(I)*TVEC(J))/DDTD
               HESS(I,J)=HESS(I,J)+TEMP
               HESS(J,I)=HESS(I,J)
   60       CONTINUE
   70    CONTINUE
         DO 75 I=1,NVAR
            TEMP= (SVEC(I)*SVEC(I))/DDS - (TVEC(I)*TVEC(I))/DDTD
            HESS(I,I)=HESS(I,I)+TEMP
 75      CONTINUE
      ENDIF
C
      RETURN
C
   80 FORMAT(/,5X,'HESSIAN IS BEING UPDATED USING THE POWELL UPDATE',/)
   90 FORMAT(/,5X,'HESSIAN IS NOT BEING UPDATED',/)
c 100 FORMAT(5X,'WARNING! HEREDITARY POSITIVE DEFINITENESS ENDANGERED')
c 110 FORMAT(5X,'UPDATE SKIPPED THIS CYCLE')
  120 FORMAT(/,5X,'HESSIAN IS BEING UPDATED USING THE BFGS UPDATE',/)
      END
C*MODULE BLAS1   *DECK DAXPY
      SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION DX(1),DY(1)
C
C     CONSTANT TIMES A VECTOR PLUS A VECTOR.
C           DY(I) = DY(I) + DA * DX(I)
C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.
C
      IF(N.LE.0)RETURN
      IF (DA .EQ. 0.0D+00) RETURN
      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
C
C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C          NOT EQUAL TO 1
C
      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
        DY(IY) = DY(IY) + DA*DX(IX)
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN
C
C        CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C        CLEAN-UP LOOP
C
   20 M = MOD(N,4)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DY(I) = DY(I) + DA*DX(I)
   30 CONTINUE
      IF( N .LT. 4 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,4
        DY(I) = DY(I) + DA*DX(I)
        DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
        DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
        DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
   50 CONTINUE
      RETURN
      END

C ***********************************************************************
c     below are math routines needed for prjfc. they are basicly just
c     matrix diagonalization routines and should at some point be replaced
c     with the diagonalization routine used in the rest of the program.
c     the routines below have been lifted from GAMESS
C ***********************************************************************

      SUBROUTINE DGEDI(A,LDA,N,IPVT,DET,WORK,JOB)                       
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION A(LDA,1),DET(2),WORK(1),IPVT(1)                         
C                                                                       
C     DGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX            
C     USING THE FACTORS COMPUTED BY DGECO OR DGEFA.                     
C                                                                       
C     ON ENTRY                                                          
C                                                                       
C        A       DOUBLE PRECISION(LDA, N)                               
C                THE OUTPUT FROM DGECO OR DGEFA.                        
C                                                                       
C        LDA     INTEGER                                                
C                THE LEADING DIMENSION OF THE ARRAY  A .                
C                                                                       
C        N       INTEGER                                                
C                THE ORDER OF THE MATRIX  A .                           
C                                                                       
C        IPVT    INTEGER(N)                                             
C                THE PIVOT VECTOR FROM DGECO OR DGEFA.                  
C                                                                       
C        WORK    DOUBLE PRECISION(N)                                    
C                WORK VECTOR.  CONTENTS DESTROYED.                      
C                                                                       
C        JOB     INTEGER                                                
C                = 11   BOTH DETERMINANT AND INVERSE.                   
C                = 01   INVERSE ONLY.                                   
C                = 10   DETERMINANT ONLY.                               
C                                                                       
C     ON RETURN                                                         
C                                                                       
C        A       INVERSE OF ORIGINAL MATRIX IF REQUESTED.               
C                OTHERWISE UNCHANGED.                                   
C                                                                       
C        DET     DOUBLE PRECISION(2)                                    
C                DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.           
C                OTHERWISE NOT REFERENCED.                              
C                DETERMINANT = DET(1) * 10.0**DET(2)                    
C                WITH  1.0 .LE. ABS(DET(1)) .LT. 10.0                   
C                OR  DET(1) .EQ. 0.0 .                                  
C                                                                       
C     ERROR CONDITION                                                   
C                                                                       
C        A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS     
C        A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.           
C        IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY      
C        AND IF DGECO HAS SET RCOND .GT. 0.0 OR DGEFA HAS SET           
C        INFO .EQ. 0 .                                                  
C                                                                       
C     LINPACK. THIS VERSION DATED 08/14/78 .                            
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.      
C                                                                       
C     SUBROUTINES AND FUNCTIONS                                         
C                                                                       
C     BLAS DAXPY,DSCAL,DSWAP                                            
C     FORTRAN ABS,MOD                                                   
C                                                                       
C     COMPUTE DETERMINANT                                               
C                                                                       
      IF (JOB/10 .EQ. 0) GO TO 70                                       
         DET(1) = 1.0D+00                                               
         DET(2) = 0.0D+00                                               
         TEN = 10.0D+00                                                 
         DO 50 I = 1, N                                                 
            IF (IPVT(I) .NE. I) DET(1) = -DET(1)                        
            DET(1) = A(I,I)*DET(1)                                      
C        ...EXIT                                                        
            IF (DET(1) .EQ. 0.0D+00) GO TO 60                           
   10       IF (ABS(DET(1)) .GE. 1.0D+00) GO TO 20                      
               DET(1) = TEN*DET(1)                                      
               DET(2) = DET(2) - 1.0D+00                                
            GO TO 10                                                    
   20       CONTINUE                                                    
   30       IF (ABS(DET(1)) .LT. TEN) GO TO 40                          
               DET(1) = DET(1)/TEN                                      
               DET(2) = DET(2) + 1.0D+00                                
            GO TO 30                                                    
   40       CONTINUE                                                    
   50    CONTINUE                                                       
   60    CONTINUE                                                       
   70 CONTINUE                                                          
C                                                                       
C     COMPUTE INVERSE(U)                                                
C                                                                       
      IF (MOD(JOB,10) .EQ. 0) GO TO 150                                 
         DO 100 K = 1, N                                                
            A(K,K) = 1.0D+00/A(K,K)                                     
            T = -A(K,K)                                                 
            CALL DSCAL(K-1,T,A(1,K),1)                                  
            KP1 = K + 1                                                 
            IF (N .LT. KP1) GO TO 90                                    
            DO 80 J = KP1, N                                            
               T = A(K,J)                                               
               A(K,J) = 0.0D+00                                         
               CALL DAXPY(K,T,A(1,K),1,A(1,J),1)                        
   80       CONTINUE                                                    
   90       CONTINUE                                                    
  100    CONTINUE                                                       
C                                                                       
C        FORM INVERSE(U)*INVERSE(L)                                     
C                                                                       
         NM1 = N - 1                                                    
         IF (NM1 .LT. 1) GO TO 140                                      
         DO 130 KB = 1, NM1                                             
            K = N - KB                                                  
            KP1 = K + 1                                                 
            DO 110 I = KP1, N                                           
               WORK(I) = A(I,K)                                         
               A(I,K) = 0.0D+00                                         
  110       CONTINUE                                                    
            DO 120 J = KP1, N                                           
               T = WORK(J)                                              
               CALL DAXPY(N,T,A(1,J),1,A(1,K),1)                        
  120       CONTINUE                                                    
            L = IPVT(K)                                                 
            IF (L .NE. K) CALL DSWAP(N,A(1,K),1,A(1,L),1)               
  130    CONTINUE                                                       
  140    CONTINUE                                                       
  150 CONTINUE                                                          
      RETURN                                                            
      END                                                               
      SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)                               
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION A(LDA,1),IPVT(1)                                        
C                                                                       
C     DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION.  
C                                                                       
C     DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED            
C     DIRECTLY WITH A SAVING IN TIME IF  RCOND  IS NOT NEEDED.          
C     (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) .                   
C                                                                       
C     ON ENTRY                                                          
C                                                                       
C        A       DOUBLE PRECISION(LDA, N)                               
C                THE MATRIX TO BE FACTORED.                             
C                                                                       
C        LDA     INTEGER                                                
C                THE LEADING DIMENSION OF THE ARRAY  A .                
C                                                                       
C        N       INTEGER                                                
C                THE ORDER OF THE MATRIX  A .                           
C                                                                       
C     ON RETURN                                                         
C                                                                       
C        A       AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS         
C                WHICH WERE USED TO OBTAIN IT.                          
C                THE FACTORIZATION CAN BE WRITTEN  A = L*U  WHERE       
C                L  IS A PRODUCT OF PERMUTATION AND UNIT LOWER          
C                TRIANGULAR MATRICES AND  U  IS UPPER TRIANGULAR.       
C                                                                       
C        IPVT    INTEGER(N)                                             
C                AN INTEGER VECTOR OF PIVOT INDICES.                    
C                                                                       
C        INFO    INTEGER                                                
C                = 0  NORMAL VALUE.                                     
C                = K  IF  U(K,K) .EQ. 0.0 .  THIS IS NOT AN ERROR       
C                     CONDITION FOR THIS SUBROUTINE, BUT IT DOES        
C                     INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO  
C                     IF CALLED.  USE  RCOND  IN DGECO FOR A RELIABLE   
C                     INDICATION OF SINGULARITY.                        
C                                                                       
C     LINPACK. THIS VERSION DATED 08/14/78 .                            
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.      
C                                                                       
C     SUBROUTINES AND FUNCTIONS                                         
C                                                                       
C     BLAS DAXPY,DSCAL,IDAMAX                                           
C                                                                       
C     GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING                        
C                                                                       
      INFO = 0                                                          
      NM1 = N - 1                                                       
      IF (NM1 .LT. 1) GO TO 70                                          
      DO 60 K = 1, NM1                                                  
         KP1 = K + 1                                                    
C                                                                       
C        FIND L = PIVOT INDEX                                           
C                                                                       
         L = IDAMAX(N-K+1,A(K,K),1) + K - 1                             
         IPVT(K) = L                                                    
C                                                                       
C        ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED          
C                                                                       
         IF (A(L,K) .EQ. 0.0D+00) GO TO 40                              
C                                                                       
C           INTERCHANGE IF NECESSARY                                    
C                                                                       
            IF (L .EQ. K) GO TO 10                                      
               T = A(L,K)                                               
               A(L,K) = A(K,K)                                          
               A(K,K) = T                                               
   10       CONTINUE                                                    
C                                                                       
C           COMPUTE MULTIPLIERS                                         
C                                                                       
            T = -1.0D+00/A(K,K)                                         
            CALL DSCAL(N-K,T,A(K+1,K),1)                                
C                                                                       
C           ROW ELIMINATION WITH COLUMN INDEXING                        
C                                                                       
            DO 30 J = KP1, N                                            
               T = A(L,J)                                               
               IF (L .EQ. K) GO TO 20                                   
                  A(L,J) = A(K,J)                                       
                  A(K,J) = T                                            
   20          CONTINUE                                                 
               CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)                  
   30       CONTINUE                                                    
         GO TO 50                                                       
   40    CONTINUE                                                       
            INFO = K                                                    
   50    CONTINUE                                                       
   60 CONTINUE                                                          
   70 CONTINUE                                                          
      IPVT(N) = N                                                       
      IF (A(N,N) .EQ. 0.0D+00) INFO = N                                 
      RETURN                                                            
      END                                                               
C*MODULE BLAS1   *DECK DSCAL
      SUBROUTINE  DSCAL(N,DA,DX,INCX)
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION DX(*)
C
C     SCALES A VECTOR BY A CONSTANT.
C           DX(I) = DA * DX(I)
C     USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.
C
      IF(N.LE.0)RETURN
      IF(INCX.EQ.1)GO TO 20
C
C        CODE FOR INCREMENT NOT EQUAL TO 1
C
      NINCX = N*INCX
      DO 10 I = 1,NINCX,INCX
        DX(I) = DA*DX(I)
   10 CONTINUE
      RETURN
C
C        CODE FOR INCREMENT EQUAL TO 1
C
C
C        CLEAN-UP LOOP
C
   20 M = MOD(N,5)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DX(I) = DA*DX(I)
   30 CONTINUE
      IF( N .LT. 5 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,5
        DX(I) = DA*DX(I)
        DX(I + 1) = DA*DX(I + 1)
        DX(I + 2) = DA*DX(I + 2)
        DX(I + 3) = DA*DX(I + 3)
        DX(I + 4) = DA*DX(I + 4)
   50 CONTINUE
      RETURN
      END
C*MODULE BLAS1   *DECK DSWAP
      SUBROUTINE  DSWAP (N,DX,INCX,DY,INCY)
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION DX(*),DY(*)
C
C     INTERCHANGES TWO VECTORS.
C           DX(I) <==> DY(I)
C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.
C
      IF(N.LE.0)RETURN
      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
C
C       CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C         TO 1
C
      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
        DTEMP = DX(IX)
        DX(IX) = DY(IY)
        DY(IY) = DTEMP
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN
C
C       CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C       CLEAN-UP LOOP
C
   20 M = MOD(N,3)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DTEMP = DX(I)
        DX(I) = DY(I)
        DY(I) = DTEMP
   30 CONTINUE
      IF( N .LT. 3 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,3
        DTEMP = DX(I)
        DX(I) = DY(I)
        DY(I) = DTEMP
        DTEMP = DX(I + 1)
        DX(I + 1) = DY(I + 1)
        DY(I + 1) = DTEMP
        DTEMP = DX(I + 2)
        DX(I + 2) = DY(I + 2)
        DY(I + 2) = DTEMP
   50 CONTINUE
      RETURN
      END