1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
|
SUBROUTINE ESP
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C***********************************************************************
C
C THIS IS A DRIVER ROUTINE FOR ELECTROSTATIC POTENTIAL GENERATION
C WRITTEN BY K.M.MERZ FEB. 1989 AT UCSF
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
CHARACTER*241 KEYWRD
C
C SET STANDARD PARAMETERS FOR THE SURFACE GENERATION
C
IF(INDEX(KEYWRD,'SCALE=') .NE. 0)THEN
SCALE = READA(KEYWRD,INDEX(KEYWRD,'SCALE='))
ELSE
SCALE = 1.4D0
ENDIF
C
IF(INDEX(KEYWRD,'DEN=') .NE. 0)THEN
DEN = READA(KEYWRD,INDEX(KEYWRD,'DEN='))
ELSE
DEN = 1.0D0
ENDIF
C
IF(INDEX(KEYWRD,'SCINCR=') .NE. 0)THEN
SCINCR = READA(KEYWRD,INDEX(KEYWRD,'SCINCR='))
ELSE
SCINCR = 0.20D0
ENDIF
C
IF(INDEX(KEYWRD,'NSURF=') .NE. 0)THEN
N = READA(KEYWRD,INDEX(KEYWRD,'NSURF='))
ELSE
N = 4
ENDIF
C
TIME1=SECOND()
C
C NOW CALCULATE THE SURFACE POINTS
C
IF(INDEX(KEYWRD,'WILLIAMS') .NE. 0) THEN
CALL PDGRID
ELSE
DO 10 I = 1,N
CALL SURFAC(SCALE,DEN,I)
SCALE = SCALE + SCINCR
10 CONTINUE
ENDIF
C
C NEXT CALCULATE THE ESP AT THE POINTS CALCULATED BY SURFAC
C
CALL POTCAL
C
C END OF CALCULATION
C
TIME1=SECOND()-TIME1
WRITE(6,20) 'TIME TO CALCULATE ESP:',TIME1,' SECONDS'
20 FORMAT(/9X,A,F8.2,A)
RETURN
END
SUBROUTINE PDGRID
C
C ROUTINE TO CALCULATE WILLIAMS SURFACE
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION IZ(100),XYZ(3,100),VDERW(53),DIST(100)
DIMENSION XMIN(3),XMAX(3),COORD(3,NUMATM)
COMMON /GEOM/ GEO(3,NUMATM)
COMMON /GEOKST/ NATOMS,LABELS(NUMATM), NABC(3*NUMATM)
C
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP),WORK1D(4*MESP)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
C
DATA VDERW/53*0.0D0/
VDERW(1)=2.4D0
VDERW(5)=3.0D0
VDERW(6)=2.9D0
VDERW(7)=2.7D0
VDERW(8)=2.6D0
VDERW(9)=2.55D0
VDERW(15)=3.1D0
VDERW(16)=3.05D0
VDERW(17)=3.0D0
VDERW(35)=3.15D0
VDERW(53)=3.35D0
SHELL=1.2D0
NESP=0
GRID=0.8D0
CLOSER=0.D0
C CHECK IF VDERW IS DEFINED FOR ALL ATOMS
C
C CONVERT INTERNAL TO CARTESIAN COORDINATES
C
CALL GMETRY(GEO,COORD)
C
C STRIP COORDINATES AND ATOM LABEL FOR DUMMIES (I.E. 99)
C
ICNTR = 0
DO 20 I=1,NATOMS
DO 10 J=1,3
10 CO(J,I) = COORD(J,I)
IF(LABELS(I) .EQ. 99) GOTO 20
ICNTR = ICNTR + 1
IAN(ICNTR) = LABELS(I)
20 CONTINUE
NATOM=ICNTR
C
DO 30 I=1,NATOM
J=IAN(I)
IF (VDERW(J).EQ.0.0D0) GO TO 40
30 CONTINUE
GO TO 50
40 CONTINUE
WRITE(6,*) 'VAN DER WAALS'' RADIUS NOT DEFINED FOR ATOM',I
WRITE(6,*) 'IN WILLIAMS SURFACE ROUTINE PDGRID!'
STOP
C NOW CREATE LIMITS FOR A BOX
50 DO 100 IX = 1,3
XMIN(IX)= 100000.0D0
XMAX(IX)=-100000.0D0
DO 90 IA = 1,NATOM
IF (CO(IX,IA)-XMIN(IX))60,70,70
60 XMIN(IX)=CO(IX,IA)
70 IF (CO(IX,IA)-XMAX(IX))90,90,80
80 XMAX(IX)=CO(IX,IA)
90 CONTINUE
100 CONTINUE
C ADD (OR SUBTRACT) THE MAXIMUM VDERW PLUS SHELL
VDMAX=0.0D0
DO 110 I=1,53
IF (VDERW(I).GT.VDMAX) VDMAX=VDERW(I)
110 CONTINUE
DO 120 I=1,3
XMIN(I)=XMIN(I)-VDMAX-SHELL
120 XMAX(I)=XMAX(I)+VDMAX+SHELL
C STEP GRID BACK FROM ZERO TO FIND STARTING POINTS
XSTART=0.0D0
130 XSTART=XSTART-GRID
IF (XSTART.GT.XMIN(1)) GO TO 130
YSTART=0.0D0
140 YSTART=YSTART-GRID
IF (YSTART.GT.XMIN(2)) GO TO 140
ZSTART=0.0D0
150 ZSTART=ZSTART-GRID
IF (ZSTART.GT.XMIN(3)) GO TO 150
NPNT=0
ZGRID=ZSTART
160 YGRID=YSTART
170 XGRID=XSTART
180 DO 190 L=1,NATOM
JZ=IAN(L)
DIST(L)=SQRT((CO(1,L)-XGRID)**2+(CO(2,L)-YGRID)**2+
1 (CO(3,L)-ZGRID)**2)
C REJECT GRID POINT IF ANY ATOM IS TOO CLOSE
IF(DIST(L).LT.(VDERW(JZ)-CLOSER)) GO TO 220
190 CONTINUE
C BUT AT LEAST ONE ATOM MUST BE CLOSE ENOUGH
DO 200 L=1,NATOM
JZ=IAN(L)
IF(DIST(L).GT.(VDERW(JZ)+SHELL)) GO TO 200
GO TO 210
200 CONTINUE
GO TO 220
210 NPNT=NPNT+1
NESP=NESP+1
POTPT(1,NESP)=XGRID
POTPT(2,NESP)=YGRID
POTPT(3,NESP)=ZGRID
220 XGRID=XGRID+GRID
IF (XGRID.LE.XMAX(1)) GO TO 180
YGRID=YGRID+GRID
IF (YGRID.LE.XMAX(2)) GO TO 170
ZGRID=ZGRID+GRID
IF (ZGRID.LE.XMAX(3)) GO TO 160
RETURN
END
C***********************************************************************
SUBROUTINE SURFAC(SCALE,DENS,IPT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C***********************************************************************
C
C THIS SUBROUTINE CALCULATES THE MOLECULAR SURFACE OF A MOLECULE
C GIVEN THE COORDINATES OF ITS ATOMS. VAN DER WAALS' RADII FOR
C THE ATOMS AND THE PROBE RADIUS MUST ALSO BE SPECIFIED.
C
C ON INPUT SCALE = INITIAL VAN DER WAALS' SCALE FACTOR
C DENS = DENSITY OF POINTS PER UNIT AREA
C
C THIS SUBROUTINE WAS LIFTED FROM MICHAEL CONNOLLY'S SURFACE
C PROGRAM FOR UCSF GRAPHICS SYSTEM BY U.CHANDRA SINGH AND
C P.A.KOLLMAN AND MODIFIED FOR USE IN QUEST. K.M.MERZ
C ADAPTED AND CLEANED UP THIS PROGRAM FOR USE IN AMPAC/MOPAC
C IN FEB. 1989 AT UCSF.
C
C***********************************************************************
COMMON /GEOM/ GEO(3,NUMATM)
COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
1 NA(NUMATM),NB(NUMATM),NC(NUMATM)
COMMON /KEYWRD/ KEYWRD
C
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP),PAD1(2*MESP),RAD(MESP),IAS(MESP)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
C
CHARACTER*241 KEYWRD
C
C CARTESIAN COORDINATE AND ATOM LABELS
C
DIMENSION COORD(3,NUMATM),VANDER(100)
DIMENSION CON(3,1000),ROT(3,3)
C
C NEIGHBOR ARRAYS
C
C THIS SAME DIMENSION FOR THE MAXIMUM NUMBER OF NEIGHBORS
C IS USED TO DIMENSION ARRAYS IN THE LOGICAL FUNCTION COLLID
C
DIMENSION INBR(200),CNBR(3,200),RNBR(200)
LOGICAL SNBR(200),MNBR(200)
C
C ARRAYS FOR ALL ATOMS
C
C IATOM, JATOM AND KATOM COORDINATES
C
DIMENSION CI(3), IELDAT(56), TEMP0(3)
C
C GEOMETRIC CONSTRUCTION VECTORS
C
DIMENSION CW(3,2)
C
C LOGICAL VARIABLES
C
LOGICAL SI
C
C LOGICAL FUNCTIONS
C
LOGICAL COLLID
C
C DATA FOR VANDER VALL RADII
C
CHARACTER MARKER*3, MARKSS*3, MYNAM*3, IELDAT*4, NAMATM*4
DATA VANDER/1.20D0,1.20D0,1.37D0,1.45D0,1.45D0,1.50D0,1.50D0,
1 1.40D0,1.35D0,1.30D0,1.57D0,1.36D0,1.24D0,1.17D0,
2 1.80D0,1.75D0,1.70D0,17*0.0D0,2.3D0,65*0.0D0/
DATA MARKER/'A '/,MARKSS/'SS0'/,MYNAM/'UC '/
C
DATA IELDAT/' BQ',' H ',' HE',' LI',' BE',' B ',
1 ' C ',' N ',' O ',' F ',' NE',' NA',
2 ' MG',' AL',' SI',' P ',' S ',' CL',
3 ' AR',' K ',' CA',' SC',' TI',' V ',
4 ' CR',' MN',' FE',' CO',' NI',' CU',
5 ' ZN',' GA',' GE',' AS',' SE',' BR',
6 ' KR',' RB',' SR',' Y',' ZR',' NB',
7 ' MO',' TC',' RU',' RH',' PD',' AG',
8 ' CD',' IN',' SN',' SB',' TE',' I',
9 ' X',' CS'/
PI=4.D0*ATAN(1.D0)
C INSERT VAN DER WAAL RADII FOR ZINC
VANDER(30)=1.00D0
C
C CONVERT INTERNAL TO CARTESIAN COORDINATES
C
CALL GMETRY(GEO,COORD)
C
C STRIP COORDINATES AND ATOM LABEL FOR DUMMIES (I.E. 99)
C
ICNTR = 0
DO 20 I=1,NATOMS
DO 10 J=1,3
10 CO(J,I) = COORD(J,I)
IF(LABELS(I) .EQ. 99) GOTO 20
ICNTR = ICNTR + 1
IAN(ICNTR) = LABELS(I)
20 CONTINUE
C
C ONLY VAN DER WAALS' TYPE SURFACE IS GENERATED
C
IOP = 1
RW =0.0D0
NATOM = ICNTR
DEN = DENS
DO 30 I=1,NATOM
IPOINT = IAN(I)
RAD(I) = VANDER(IPOINT)*SCALE
IF (RAD(I) .LT. 0.01D0) THEN
WRITE(6,'(T2,''VAN DER WAALS'''' RADIUS FOR ATOM '',I3,
1 '' IS ZERO, SUPPLY A VALUE IN SUBROUTINE SURFAC)''
2 )')
ENDIF
IAS(I) = 2
30 CONTINUE
C
C BIG LOOP FOR EACH ATOM
C
DO 110 IATOM = 1, NATOM
IF (IAS(IATOM) .EQ. 0) GO TO 110
C
C TRANSFER VALUES FROM LARGE ARRAYS TO IATOM VARIABLES
C
NAMATM =IELDAT(IAN(IATOM)+1)
RI = RAD(IATOM)
SI = IAS(IATOM) .EQ. 2
DO 40 K = 1,3
CI(K) = CO(K,IATOM)
40 CONTINUE
C
C GATHER THE NEIGHBORING ATOMS OF IATOM
C
NNBR = 0
DO 60 JATOM = 1, NATOM
IF (IATOM .EQ. JATOM .OR. IAS(JATOM) .EQ. 0) GO TO 60
D2 = DIST2(CI,CO(1,JATOM))
IF (D2 .GE. (2*RW+RI+RAD(JATOM)) ** 2) GO TO 60
C
C WE HAVE A NEW NEIGHBOR
C TRANSFER ATOM COORDINATES, RADIUS AND SURFACE REQUEST NUMBER
C
NNBR = NNBR + 1
IF (NNBR .GT. 200)THEN
WRITE (6,'(''ERROR'',2X,''TOO MANY NEIGHBORS:'',I5)')NNBR
STOP
ENDIF
INBR(NNBR) = JATOM
DO 50 K = 1,3
CNBR(K,NNBR) = CO(K,JATOM)
50 CONTINUE
RNBR(NNBR) = RAD(JATOM)
SNBR(NNBR) = IAS(JATOM) .EQ. 2
60 CONTINUE
C
C CONTACT SURFACE
C
IF (.NOT. SI) GO TO 110
NCON = (4 * PI * RI ** 2) * DEN
IF (NCON .GT. 1000) NCON = 1000
C
C THIS CALL MAY DECREASE NCON SOMEWHAT
C
IF ( NCON .EQ. 0) THEN
WRITE(6,'(T2,''VECTOR LENGTH OF ZERO IN SURFAC'')')
STOP
ENDIF
CALL GENUN(CON,NCON)
AREA = (4 * PI * RI ** 2) / NCON
C
C CONTACT PROBE PLACEMENT LOOP
C
DO 100 I = 1,NCON
DO 70 K = 1,3
CW(K,1) = CI(K) + (RI + RW) * CON(K,I)
70 CONTINUE
C
C CHECK FOR COLLISION WITH NEIGHBORING ATOMS
C
IF (COLLID(CW(1,1),RW,CNBR,RNBR,MNBR,NNBR,1,
1 JNBR,KNBR)) GO TO 100
DO 80 KK=1,3
TEMP0(KK) =CI(KK)+RI*CON(KK,I)
80 CONTINUE
C
C STORE POINT IN POTPT AND INCREMENT NESP
C
NESP = NESP + 1
IF (NESP .GT. MESP) THEN
WRITE(6,90)
90 FORMAT(/'ERROR - TO MANY POINTS GENERATED IN SURFAC')
WRITE(6,'('' REDUCE NSURF, SCALE, DEN, OR SCINCR'')')
STOP
ENDIF
POTPT(1,NESP) = TEMP0(1)
POTPT(2,NESP) = TEMP0(2)
POTPT(3,NESP) = TEMP0(3)
100 CONTINUE
110 CONTINUE
RETURN
END
C****************************************************************
FUNCTION DIST2(A,B)
C
C DETERMINE DISTANCES BETWEEN NEIGHBORING ATOMS
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3)
DIMENSION B(3)
DIST2 = (A(1)-B(1))**2 + (A(2)-B(2))**2 + (A(3)-B(3))**2
RETURN
END
C****************************************************************
LOGICAL FUNCTION COLLID(CW,RW,CNBR,RNBR,MNBR,NNBR,ISHAPE,
1JNBR,KNBR)
C****************************************************************
C
C COLLISION CHECK OF PROBE WITH NEIGHBORING ATOMS
C USED BY SURFAC ONLY.
C
C****************************************************************
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CW(3)
DIMENSION CNBR(3,200)
DIMENSION RNBR(200)
LOGICAL MNBR(200)
IF (NNBR .LE. 0) GO TO 20
C
C CHECK WHETHER PROBE IS TOO CLOSE TO ANY NEIGHBOR
C
DO 10 I = 1, NNBR
IF (ISHAPE .GT. 1 .AND. I .EQ. JNBR) GO TO 10
IF (ISHAPE .EQ. 3 .AND. (I .EQ. KNBR .OR. .NOT. MNBR(I)))
1 GO TO 10
SUMRAD = RW + RNBR(I)
VECT1 = DABS(CW(1) - CNBR(1,I))
IF (VECT1 .GE. SUMRAD) GO TO 10
VECT2 = DABS(CW(2) - CNBR(2,I))
IF (VECT2 .GE. SUMRAD) GO TO 10
VECT3 = DABS(CW(3) - CNBR(3,I))
IF (VECT3 .GE. SUMRAD) GO TO 10
SR2 = SUMRAD ** 2
DD2 = VECT1 ** 2 + VECT2 ** 2 + VECT3 ** 2
IF (DD2 .LT. SR2) GO TO 30
10 CONTINUE
20 CONTINUE
COLLID = .FALSE.
GO TO 40
30 CONTINUE
COLLID = .TRUE.
40 CONTINUE
RETURN
END
C****************************************************************
SUBROUTINE GENUN(U,N)
C****************************************************************
C
C GENERATE UNIT VECTORS OVER SPHERE. USED BY SURFAC ONLY.
C
C****************************************************************
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION U(3,N)
PI=4.D0*ATAN(1.D0)
NEQUAT = SQRT(N * PI)
NVERT = NEQUAT/2
NU = 0
DO 20 I = 1,NVERT+1
FI = (PI * (I-1)) / NVERT
Z = COS(FI)
XY = SIN(FI)
NHOR = NEQUAT * XY
IF (NHOR .LT. 1) NHOR = 1
DO 10 J = 1,NHOR
FJ = (2.D0 * PI * (J-1)) / NHOR
X = DCOS(FJ) * XY
Y = DSIN(FJ) * XY
IF (NU .GE. N) GO TO 30
NU = NU + 1
U(1,NU) = X
U(2,NU) = Y
U(3,NU) = Z
10 CONTINUE
20 CONTINUE
30 CONTINUE
N = NU
RETURN
END
C***********************************************************************
SUBROUTINE POTCAL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C***********************************************************************
C
C THIS SUBROUTINE CALCULATES THE TOTAL ELECTROSTATIC POTENTIAL
C THE NUCLEAR CONTRIBUTION IS EVALUATED BY NUCPOT
C THE ELECTRONIC CONTRIBUTION IS EVALUATED BY ELESP
C ESPFIT FITS THE QUANTUM POTENTIAL TO A CLASSICAL POINT CHARGE
C MODEL.
C THIS SUBROUTINE WAS WRITTEN BY B.H.BESLER AND K.M.MERZ IN FEB.
C 1989 AT UCSF
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /CORE/ TORE(107)
COMMON /ELEMTS/ ELEMNT(107)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /DIPSTO/ UX,UY,UZ,CH(NUMATM)
COMMON /ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),QSC(NUMATM+4),CF, ESPFD(MAXORB**2-NUMATM-5)
CHARACTER*241 KEYWRD
CHARACTER *2 ELEMNT
LOGICAL DEBUG,WRTESP,CEQUIV(NUMATM,NUMATM)
C
C DEBUG PRINTING - RESULTS IN COPIOUS OUTPUT
C
DEBUG = (INDEX(KEYWRD,'DEBUG') .NE. 0)
C
C
CALL ELESP
BOHR = 0.529167D00
C
C NOW FIT THE ELECTROSTATIC POTENTIAL
C
WRITE(6,'(//12X,''ELECTROSTATIC POTENTIAL CHARGES'',/)')
IZ=0
IF(INDEX(KEYWRD,'CHARGE=') .NE. 0) IZ=READA(KEYWRD,INDEX(KEYWRD,
1'CHARGE='))
C
C DIPOLAR CONSTRAINTS IF DESIRED
C
IF(INDEX(KEYWRD,'DIPOLE') .NE. 0) THEN
IDIP = 1
IF(IZ .NE. 0)THEN
IDIP = 0
WRITE(6,'(/12X,'' DIPOLE CONSTRAINTS NOT USED'')')
WRITE(6,'(12X,'' CHARGED MOLECULE'',/)')
ENDIF
ELSE
IDIP = 0
ENDIF
IF (IDIP .EQ. 1) THEN
WRITE(6,'(/12X,''DIPOLE CONSTRAINTS WILL BE USED'',/)')
ENDIF
C
C GET X,Y,Z DIPOLE COMPONENTS IF DESIRED
C
IF(INDEX(KEYWRD,'DIPX=') .NE. 0) THEN
DX = READA(KEYWRD,INDEX(KEYWRD,'DIPX='))
ELSE
DX = UX
ENDIF
IF(INDEX(KEYWRD,'DIPY=') .NE. 0) THEN
DY = READA(KEYWRD,INDEX(KEYWRD,'DIPY='))
ELSE
DY = UY
ENDIF
IF(INDEX(KEYWRD,'DIPZ=') .NE. 0) THEN
DZ = READA(KEYWRD,INDEX(KEYWRD,'DIPZ='))
ELSE
DZ = UZ
ENDIF
CALL ESPFIT(IDIP,NATOM,NESP,IZ,ESP,POTPT,CO,DX,DY,DZ,RMS,RRMS)
C
C WRITE OUT OUR RESULTS TO CHANNEL 6
C THE CHARGES ARE SCALED TO REPRODUCE 6-31G* CHARGES FOR MNDO ONLY
C AM1 AND MINDO/3 CHARGES ARE NOT SCALED DUE TO THE LOW COORELATION
C COEFFICIENT. SEE BESLER,MERZ,KOLLMAN IN J. COMPUT. CHEM.
C (IN PRESS)
C
IF((INDEX(KEYWRD,'AM1') .NE. 0) .OR.
1(INDEX(KEYWRD,'MINDO') .NE. 0) .OR.
2(INDEX(KEYWRD,'PM3') .NE. 0))THEN
WRITE(6,'(15X,''ATOM NO. TYPE CHARGE'')')
DO 10 I=1,NATOM
WRITE(6,'(17X,I2,9X,A2,1X,F10.4)')I,ELEMNT(IAN(I)),Q(I)
10 CONTINUE
ELSE
C
C MNDO CALCULATION-SCALE THE CHARGES. TEST FOR SLOPE KEYWORD
C
IF(INDEX(KEYWRD,'SLOPE=') .NE. 0) THEN
SLOPE = READA(KEYWRD,INDEX(KEYWRD,'SLOPE='))
ELSE
SLOPE = 1.422D0
ENDIF
DO 20 I=1,NATOM
QSC(I) = SLOPE*Q(I)
20 CONTINUE
WRITE(6,'(7X,''ATOM NO. TYPE CHARGE SCALED CHARGE'')')
DO 30 I=1,NATOM
WRITE(6,'(9X,I2,9X,A2,1X,F10.4,2X,F10.4)')I,ELEMNT(IAN(I
1)), Q(I),QSC(I)
30 CONTINUE
ENDIF
WRITE(6,'(/12X,A,4X,I6)') 'THE NUMBER OF POINTS IS:',NESP
WRITE(6,'(12X,A,4X,F9.4)') 'THE RMS DEVIATION IS:',RMS
WRITE(6,'(12X,A,3X,F9.4)') 'THE RRMS DEVIATION IS:',RRMS
C
C CALCULATE DIPOLE MOMENT IF NEUTRAL MOLECULE
C
IF (IZ .NE. 0) THEN
GO TO 60
ELSE
WRITE(6,40)
40 FORMAT (//5X,'DIPOLE MOMENT EVALUATED FROM '
1,'THE POINT CHARGES',/)
DO 50 I=1,NATOM
DIPX=DIPX+CO(1,I)*Q(I)/BOHR
DIPY=DIPY+CO(2,I)*Q(I)/BOHR
DIPZ=DIPZ+CO(3,I)*Q(I)/BOHR
50 CONTINUE
DIP=SQRT(DIPX**2+DIPY**2+DIPZ**2)
WRITE(6,'(12X,'' X Y Z TOTAL'')')
WRITE(6,'(8X,4F9.4)')DIPX*CF,DIPY*CF,DIPZ*CF,DIP*CF
ENDIF
60 CONTINUE
C DETERMINE WHICH CHARGES SHOULD BE EQUIVALENT BY SYMMETRY AND
C AVERAGE THEM IF DESIRED
IF(INDEX(KEYWRD,'SYMAVG') .NE. 0) THEN
DO 70 I=1,NATOM
DO 70 J=1,NATOM
CEQUIV(I,J)=.FALSE.
IF(ABS(ABS(CH(I))-ABS(CH(J))) .LT. 1.D-5) CEQUIV(I,J)=.T
1RUE.
70 CONTINUE
DO 90 I=1,NATOM
IEQ=0
QSC(I)=0.D0
DO 80 J=1,NATOM
IF(CEQUIV(I,J)) THEN
QSC(I)=QSC(I)+ABS(Q(J))
IEQ=IEQ+1
ENDIF
80 CONTINUE
CH(I)=Q(I)/ABS(Q(I))*QSC(I)/IEQ
90 CONTINUE
WRITE(6,*) ' '
WRITE(6,*)' ELECTROSTATIC POTENTIAL CHARGES AVERAGED FOR'
WRITE(6,*)' SYMMETRY EQUIVALENT ATOMS'
WRITE(6,*) ' '
IF((INDEX(KEYWRD,'AM1') .NE. 0) .OR.
1(INDEX(KEYWRD,'MINDO') .NE. 0) .OR.
2(INDEX(KEYWRD,'PM3') .NE. 0))THEN
WRITE(6,'(7X,''ATOM NO. TYPE CHARGE'')')
DO 100 I=1,NATOM
WRITE(6,'(9X,I2,9X,A2,1X,F10.4)')I,ELEMNT(IAN(I)),
1 CH(I)
100 CONTINUE
ELSE
WRITE(6,'(7X,''ATOM NO. TYPE CHARGE SCALED CHARGE'')
1')
DO 110 I=1,NATOM
WRITE(6,'(9X,I2,9X,A2,1X,F10.4,2X,F10.4)')I,ELEMNT(IA
1N(I)), CH(I),CH(I)*SLOPE
110 CONTINUE
ENDIF
ENDIF
RETURN
END
SUBROUTINE ELESP
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C***********************************************************************
C ELESP LOADS THE STO-6G BASIS SET ONTO THE ATOMS, PERFOMS THE
C DEORTHOGONALIZATION OF THE COEFFICIENTS AND EVALUATES THE
C ELECTRONIC CONTRIBUTION TO THE ESP. IT WAS WRITTEN BY B.H.BESLER
C AND K.M.MERZ IN FEB. 1989 AT UCSF.
C
C***********************************************************************
CHARACTER*241 KEYWRD
DOUBLE PRECISION NORM,OVL
LOGICAL CALLED,POTWRT,RST,STO3G
INCLUDE 'SIZES'
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /VECTOR/ C(MORB2*2+MAXORB*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /KEYWRD/ KEYWRD
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
6 /CORE / TORE(107)
7 /EXPONT/ ZS(107),ZP(107),ZD(107)
*
* END OF MINDO/3 COMMON BLOCKS
*
COMMON /INDX/ INDC(MAXORB)
DIMENSION CESPM2(MAXORB,MAXORB),SLA(10)
DIMENSION CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB)
DATA BOHR/0.529167D0/
PI=4.D0*ATAN(1.D0)
C
C PUT STO-6G BASIS SET ON ATOM CENTERS
C
DO 10 I=-1,10
DEX(I)=DEX2(I)
10 CONTINUE
DO 20 I=0,7
FAC(I)=1.D0/FAC(I)
20 CONTINUE
DO 30 M=0,8
K=1
FV(M,1)=1.D0/(2.D0*M+1.D0)
DO 30 T=0.05D0,41.D0,0.05D0
K=K+1
CALL FSUB(M,T,FVAL)
FV(M,K)=FVAL
30 CONTINUE
C
C LOAD BASIS FUNCTIONS INTO ARRAYS
C
STO3G=(INDEX(KEYWRD,'STO3G') .NE. 0)
IF(STO3G) THEN
ICD=3
CALL SETUP3
ELSE
ICD=6
CALL SETUPG
ENDIF
NC=0
NPR=0
DO 80 I=1,NATOM
IF (IAN(I) .LE. 2) THEN
DO 40 J=1,ICD
CC(NPR+J)=ALLC(J,1,1)
EX(NPR+J)=ALLZ(J,1,1)*ZS(1)**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=0
IAM(NPR+J,2)=0
FC(NPR+J)=I
40 CONTINUE
NC=NC+1
NPR=NPR+ICD
ELSE
C DETERMINE PRINCIPAL QUANTUM NUMBER(NQN)
C OF ORBITALS TO BE USED
C
NQN=2
IF(IAN(I) .GT. 10 .AND. IAN(I) .LE. 18) NQN=3
IF(IAN(I) .GT. 18 .AND. IAN(I) .LE. 36) NQN=4
IF(IAN(I) .GT. 36 .AND. IAN(I) .LE. 54) NQN=5
C
DO 50 J=1,ICD
CC(NPR+J)=ALLC(J,NQN,1)
EX(NPR+J)=ALLZ(J,NQN,1)*ZS(IAN(I))**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=0
IAM(NPR+J,2)=0
50 CONTINUE
NC=NC+1
NPR=NPR+ICD
DO 70 K=1,3
DO 60 J=1,ICD
CC(NPR+J)=ALLC(J,NQN,2)
EX(NPR+J)=ALLZ(J,NQN,2)*ZP(IAN(I))**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=1
IAM(NPR+J,2)=K
60 CONTINUE
NC=NC+1
NPR=NPR+ICD
70 CONTINUE
ENDIF
80 CONTINUE
C
C CALCULATE NORMALIZATION CONSTANTS AND INCLUDE
C THEM IN THE CONTRACTION COEFFICIENTS
C
DO 90 I=1,NPR
NORM=(2.D0*EX(I)/PI)**0.75D0*(4.D0*EX(I))**(IAM(I,1)/2.D0)/
1 SQRT(DEX(2*IAM(I,1)-1))
CC(I)=CC(I)*NORM
90 CONTINUE
IPR=0
C
C PERFORM SORT OF PRIMITIVES BY ANGULAR MOMENTUM
C
IS=0
IP=0
IPC=0
ISC=0
J=0
DO 100 I=1,NPR
IF (IAM(I,1) .EQ. 0) THEN
IS=IS+1
IND(IS)=I
ENDIF
100 CONTINUE
IP=IS
DO 110 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 1) THEN
IP=IP+1
IND(IP)=I
ENDIF
110 CONTINUE
DO 120 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 2) THEN
IP=IP+1
IND(IP)=I
ENDIF
120 CONTINUE
DO 130 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 3) THEN
IP=IP+1
IND(IP)=I
ENDIF
130 CONTINUE
DO 140 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 0) THEN
ISC=ISC+1
INDC(ISC)=I
ENDIF
140 CONTINUE
IPC=ISC
DO 150 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 1) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
150 CONTINUE
DO 160 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 2) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
160 CONTINUE
DO 170 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 3) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
170 CONTINUE
DO 180 I=1,NPR
TEMP(I)=CC(IND(I))
180 CONTINUE
DO 190 I=1,NPR
CC(I)=TEMP(I)
190 CONTINUE
DO 200 I=1,NPR
TEMP(I)=EX(IND(I))
200 CONTINUE
DO 210 I=1,NPR
EX(I)=TEMP(I)
210 CONTINUE
DO 220 I=1,NPR
TEMP(I)=CEN(IND(I),1)
220 CONTINUE
DO 230 I=1,NPR
CEN(I,1)=TEMP(I)
230 CONTINUE
DO 240 I=1,NPR
TEMP(I)=CEN(IND(I),2)
240 CONTINUE
DO 250 I=1,NPR
CEN(I,2)=TEMP(I)
250 CONTINUE
DO 260 I=1,NPR
TEMP(I)=CEN(IND(I),3)
260 CONTINUE
DO 270 I=1,NPR
CEN(I,3)=TEMP(I)
270 CONTINUE
DO 280 I=1,NPR
ITEMP(I)=IAM(IND(I),1)
280 CONTINUE
DO 290 I=1,NPR
IAM(I,1)=ITEMP(I)
290 CONTINUE
DO 300 I=1,NPR
ITEMP(I)=IAM(IND(I),2)
300 CONTINUE
DO 310 I=1,NPR
IAM(I,2)=ITEMP(I)
310 CONTINUE
C CALCULATE OVERLAP MATRIX OF STO-6G FUNCTIONS
C
DO 320 J=1,NC
CALL OVLP(J,1,IS,IP,NPR,NC,ICD)
320 CONTINUE
C
DO 330 J=1,NC
DO 330 K=1,NC
CESPM2(INDC(J),INDC(K))=OVL(J,K)
330 CONTINUE
DO 340 J=1,NC
DO 340 K=1,NC
OVL(J,K)=CESPM2(J,K)
340 CONTINUE
L=0
DO 350 I=1,NC
DO 350 J=1,I
L=L+1
CESP(L)=OVL(I,J)
350 CONTINUE
C
C DEORTHOGONALIZE THE COEFFICIENTS AND REFORM THE DENSITY MATRIX
C
CALL RSP(CESP,NC,1,TEMP,CESPML)
DO 360 I=1,NC
DO 360 J=1,I
SUM=0.D0
DO 360 K=1,NC
SUM=SUM+CESPML(I+(K-1)*NC)/SQRT(TEMP(K))*CESPML(J+(K-1)*N
1C)
CESP(I+(J-1)*NC)=SUM
CESP(J+(I-1)*NC)=SUM
360 CONTINUE
CALL MULT(C,CESP,CESPML,NC)
CALL DENSIT(CESPML,NC,NC,NCLOSE,NOPEN,FRACT,CESP,2)
C
C NOW CALCULATE THE ELECTRONIC CONTRIBUTION TO THE ELECTROSTATIC POT
C
L=0
DO 370 I=1,NC
DO 370 J=1,I
L=L+1
CESPM(I,J)=CESP(L)
CESPM(J,I)=CESP(L)
370 CONTINUE
IPX=(NPR-IS)/3
IPE=IS+IPX
DO 380 I=1,NESP
ES(I)=0.D0
380 CONTINUE
CALL NAICAS(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
CALL NAICAP(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
C CALCULATE TOTAL ESP AND FORM ARRAYS FOR ESPFIT
DO 400 I=1,NESP
ESP(I)=0.D0
DO 390 J=1,NATOM
RA=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2+(CO(
13,J)-POTPT(3,I))**2)
ESP(I)=ESP(I)+TORE(IAN(J))/(RA/BOHR)
390 CONTINUE
ESP(I)=ESP(I)-ES(I)
DO 400 J=1,NATOM
RIJ=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2
1+(CO(3,J)-POTPT(3,I))**2)/BOHR
B(J)=B(J)+ESP(I)*1.D0/RIJ
400 CONTINUE
C
C IF REQUESTED WRITE OUT ELECTRIC POTENTIAL DATA TO
C UNIT 21
C
POTWRT=(INDEX(KEYWRD,'POTWRT') .NE. 0)
IF(POTWRT) THEN
OPEN(UNIT=21)
WRITE(21,'(I5)') NESP
DO 410 I=1,NESP
410 WRITE(21,420) ESP(I),POTPT(1,I)/BOHR,POTPT(2,I)/BOHR,
1POTPT(3,I)
ENDIF
420 FORMAT(1X,4E16.7)
RETURN
END
DOUBLE PRECISION FUNCTION DEX2(M)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IF(M .LT. 2) THEN
DEX2=1
ELSE
DEX2=1
DO 10 I=1,M,2
10 DEX2=DEX2*I
ENDIF
RETURN
END
BLOCK DATA ESPBLO
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INCLUDE 'SIZES'
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
DATA TF/33.D0,37.D0,41.D0/
DATA FAC/1.D0,1.D0,2.D0,6.D0,24.D0,120.D0,720.D0,5040.D0/
END
C***********************************************************************
SUBROUTINE ESPFIT(IDIP,NATOM,NESP,IZ,ESP,POTPT,CO,
1DX,DY,DZ,RMS,RRMS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
C***********************************************************************
C
C THIS ROUTINE FITS THE ELECTROSTATIC POTENTIAL TO A MONOPOLE
C EXPANSION. FITTING TO THE DIPOLE MONENT CAN ALSO BE DONE.
C THIS ROUTINE WAS WRITTEN BY B.H.BESLER AND K.M.MERZ
C IN FEB. 1989 AT UCSF.
C
C ON INPUT: IDIP = FLAG TO INDICATE IF THE DIPOLE IS FIT
C NATOM = NUMBER OF ATOMS
C NESP = NUMBER OF ESP POINTS
C IZ = MOLECULAR CHARGE
C ESP = TOTAL ESP AT THE POINTS
C POTPT = ESP POINTS
C CO = COORDINATES
C DX = X COMPONENT OF THE DIPOLE
C DY = Y COMPONENT OF THE DIPOLE
C DZ = Z COMPONENT OF THE DIPOLE
C
C ON OUTPUT: Q = ESP CHARGES
C RMS = ROOT MEAN SQUARE FIT
C RRMS = RELATIVE ROOT MEAN SQUARE FIT
C
C FOR MORE DETAILS SEE: BESLER,MERZ,KOLLMAN J. COMPUT. CHEM.
C (IN PRESS)
C***********************************************************************
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),QSC(NUMATM+4),CF, ESPFD(MAXORB**2-NUMATM-5)
DIMENSION CO(3,*),ESP(*),POTPT(3,*)
BOHR = 0.529167D00
C CONVERSION FACTOR FOR DEBYE TO ATOMIC UNITS
CF=5.2917715D-11*1.601917D-19/3.33564D-30
C
C THE FOLLOWING SETS UP THE LINEAR EQUATION A*Q=B
C SET UP THE A(J,K) ARRAY
C
DO 20 K=1,NATOM
DO 10 J=1,NATOM
DO 10 I=1,NESP
RIK=SQRT((CO(1,K)-POTPT(1,I))**2+(CO(2,K)-POTPT(2,I))**2
1 +(CO(3,K)-POTPT(3,I))**2)/BOHR
RIJ=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2
1 +(CO(3,J)-POTPT(3,I))**2)/BOHR
A(J,K)=A(J,K)+1.D0/RIK*1.D0/RIJ
10 CONTINUE
A(NATOM+1,K)=1.D0
A(K,NATOM+1)=1.D0
A(NATOM+1,NATOM+1)=0.D0
IF(IDIP .EQ. 1) THEN
A(NATOM+2,K)=CO(1,K)/BOHR
A(K,NATOM+2)=CO(1,K)/BOHR
A(NATOM+2,NATOM+2)=0.D0
A(NATOM+3,K)=CO(2,K)/BOHR
A(K,NATOM+3)=CO(2,K)/BOHR
A(NATOM+3,NATOM+3)=0.D0
A(NATOM+4,K)=CO(3,K)/BOHR
A(K,NATOM+4)=CO(3,K)/BOHR
A(NATOM+4,NATOM+4)=0.D0
ENDIF
20 CONTINUE
B(NATOM+1)=FLOAT(IZ)
B(NATOM+2)=DX/CF
B(NATOM+3)=DY/CF
B(NATOM+4)=DZ/CF
C
C INSERT CHARGE AND DIPOLAR (IF DESIRED) CONSTRAINTS
C
IF(IDIP .EQ. 1) THEN
L=0
DO 30 I=1,NATOM+4
DO 30 J=1,NATOM+4
L=L+1
30 AL(L)=A(I,J)
ELSE
L=0
DO 40 I=1,NATOM+1
DO 40 J=1,NATOM+1
L=L+1
40 AL(L)=A(I,J)
ENDIF
IF (IDIP .EQ. 1) THEN
CALL OSINV(AL,NATOM+4,DET)
ELSE
CALL OSINV(AL,NATOM+1,DET)
ENDIF
IF(IDIP .EQ. 1) THEN
L=0
DO 50 I=1,NATOM+4
DO 50 J=1,NATOM+4
L=L+1
50 A(I,J)=AL(L)
ELSE
L=0
DO 60 I=1,NATOM+1
DO 60 J=1,NATOM+1
L=L+1
60 A(I,J)=AL(L)
ENDIF
C
C SOLVE FOR THE CHARGES
C
IF(IDIP .EQ. 1) THEN
DO 70 I=1,NATOM+4
DO 70 J=1,NATOM+4
Q(I)=Q(I)+A(I,J)*B(J)
70 CONTINUE
ELSE
DO 80 I=1,NATOM+1
DO 80 J=1,NATOM+1
Q(I)=Q(I)+A(I,J)*B(J)
80 CONTINUE
ENDIF
C
C CALCULATE ROOT MEAN SQUARE FITS AND RELATIVE ROOT MEAN SQUARE FITS
C
CTOT=0.0
DO 100 I=1,NESP
ESPC=0.D0
DO 90 J=1,NATOM
RIJ=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2
1 +(CO(3,J)-POTPT(3,I))**2)/BOHR
90 ESPC=ESPC+Q(J)/RIJ
RMS=RMS+(ESPC-ESP(I))**2
100 RRMS=RRMS+ESP(I)**2
RMS=SQRT(RMS/NESP)
RRMS=RMS/SQRT(RRMS/NESP)
RMS=RMS*627.51D0
RETURN
END
C***********************************************************************
SUBROUTINE FSUB(N,X,FVAL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C***********************************************************************
C
C CALCULATE THE FM(T). KINDLY SUPPLIED BY RUS PITZER AND CLEANED UP
C BY K.M.MERZ IN FEB. 1989 AT UCSF.
C
C ON INPUT: N = INDEX
C X = EXPONENT
C ON OUTPUT: FVAL = VALUE OF THE FUNCTION
C
C FOR MORE DETAILS SEE: OBARA AND SAIKA J. CHEM. PHYS. 1986,84,3963
C***********************************************************************
DIMENSION FF(21),TERM(200),A(10),RT(10)
DATA A0, A1S2, PIE4, A1
1 /0.0D0,0.5D0,0.7853981633974483096156608D0,1.0D0/
DATA XSW /24.0D0/
E=A1S2*EXP(-X)
FAC0=N
FAC0=FAC0+A1S2
IF(X.GT.XSW) GO TO 50
C
C USE POWER SERIES
C
10 FAC=FAC0
TERM0=E/FAC
SUM=TERM0
KU=(X-FAC0)
IF(KU.LT.1) GO TO 30
C
C SUM INCREASING TERMS FORWARDS
C
DO 20 K=1,KU
FAC=FAC+A1
TERM0=TERM0*X/FAC
SUM=SUM+TERM0
20 CONTINUE
30 I=1
FAC=FAC+A1
TERM(1)=TERM0*X/FAC
SUMA=SUM+TERM(1)
IF(SUM.EQ.SUMA) GO TO 90
40 I=I+1
FAC=FAC+A1
TERM(I)=TERM(I-1)*X/FAC
SUM1=SUMA
SUMA=SUMA+TERM(I)
IF(SUM1-SUMA) 40,90,40
C
C USE ASYMPTOTIC SERIES
C
50 SUM=SQRT(PIE4/X)
IF(N.EQ.0) GO TO 70
FAC=-A1S2
DO 60 K=1,N
FAC=FAC+A1
SUM=SUM*FAC/X
60 CONTINUE
70 I=1
TERM(1)=-E/X
SUMA=SUM+TERM(1)
IF(SUM.EQ.SUMA) GO TO 90
FAC=FAC0
KU=(X+FAC0-A1)
DO 80 I=2,KU
FAC=FAC-A1
TERM(I)=TERM(I-1)*FAC/X
SUM1=SUMA
SUMA=SUMA+TERM(I)
IF(SUM1.EQ.SUMA) GO TO 90
80 CONTINUE
C
C XSW SET TOO LOW. USE POWER SERIES.
C
GO TO 10
C
C SUM DECREASING TERMS BACKWARDS
C
90 SUM1=A0
DO 100 K=1,I
SUM1=SUM1+TERM(I+1-K)
100 CONTINUE
FF(N+1)=SUM+SUM1
C
C USE RECURRENCE RELATION
C
IF(N.EQ.0) GOTO 120
DO 110 K=1,N
FAC0=FAC0-A1
FF(N+1-K)=(E+X*FF(N+2-K))/FAC0
110 CONTINUE
120 FVAL=FF(N+1)
RETURN
END
SUBROUTINE SETUP3
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /NATYPE/ NZTYPE(107),MTYPE(30),LTYPE
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
C SET-UP THE STEWART'S STO-3G EXPANSIONS
C FROM J. CHEM. PHYS. 52 431.
C 1S
ALLZ(1,1,1) =2.227660584D00
ALLZ(2,1,1) =4.057711562D-01
ALLZ(3,1,1) =1.098175104D-01
C
ALLC(1,1,1) =1.543289673D-01
ALLC(2,1,1) =5.353281423D-01
ALLC(3,1,1) =4.446345422D-01
C 2S
ALLZ(1,2,1) =2.581578398D00
ALLZ(2,2,1) =1.567622104D-01
ALLZ(3,2,1) =6.018332272D-02
C
ALLC(1,2,1) =-5.994474934D-02
ALLC(2,2,1) =5.960385398D-01
ALLC(3,2,1) =4.581786291D-01
C 2P
ALLZ(1,2,2) =9.192379002D-01
ALLZ(2,2,2) =2.359194503D-01
ALLZ(3,2,2) =8.009805746D-02
C
ALLC(1,2,2) =1.623948553D-01
ALLC(2,2,2) =5.661708862D-01
ALLC(3,2,2) =4.223071752D-01
C 3S
ALLZ(1,3,1) =5.641487709D-01
ALLZ(2,3,1) =6.924421391D-02
ALLZ(3,3,1) =3.269529097D-02
C
ALLC(1,3,1) =-1.782577972D-01
ALLC(2,3,1) =8.612761663D-01
ALLC(3,3,1) =2.261841969D-01
C 3P
ALLZ(1,3,2) =2.692880368D00
ALLZ(2,3,2) =1.489359592D-01
ALLZ(3,3,2) =5.739585040D-02
C
ALLC(1,3,2) =-1.061945788D-02
ALLC(2,3,2) =5.218564264D-01
ALLC(3,3,2) =5.450015143D-01
C 4S
ALLZ(1,4,1) =2.267938753D-01
ALLZ(2,4,1) =4.448178019D-02
ALLZ(3,4,1) =2.195294664D-02
C
ALLC(1,4,1) =-3.349048323D-01
ALLC(2,4,1) =1.056744667D00
ALLC(3,4,1) =1.256661680D-01
C 4P
ALLZ(1,4,2) =4.859692220D-01
ALLZ(2,4,2) =7.430216918D-02
ALLZ(3,4,2) =3.653340923D-02
C
ALLC(1,4,2) =-6.147823411D-02
ALLC(2,4,2) =6.604172234D-01
ALLC(3,4,2) =3.932639495D-01
C 5S
ALLZ(1,5,1) =1.080198458D-01
ALLZ(2,5,1) =4.408119382D-02
ALLZ(3,5,1) =2.610811810D-02
C
ALLC(1,5,1) =-6.617401158D-01
ALLC(2,5,1) =7.467595004D-01
ALLC(3,5,1) =7.146490945D-01
C 5P
ALLZ(1,5,2) =2.127482317D-01
ALLZ(2,5,2) =4.729648620D-02
ALLZ(3,5,2) =2.604865324D-02
C
ALLC(1,5,2) =-1.389529695D-01
ALLC(2,5,2) =8.076691064D-01
ALLC(3,5,2) =2.726029342D-01
C
RETURN
END
SUBROUTINE OVLP(IC,IESP,IS,IP,NPR,NC,ICD)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C***********************************************************************
C
C OVLP CALCULATES THE OVERLAP INTEGRALS FOR A STO-6G BASIS SET.
C THE RESULTING INTEGRALS ARE USED IN THE DEORTHOGONALIZATION
C PROCESS.
C THE CODE WAS WRITTEN BY B.H.BESLER AND K.M.MERZ IN FEB. 1989
C AT UCSF.
C
C ON INPUT: IC = LOOP INDEX
C IESP = LOOP INDEX
C IS = NUMBER OF S ORBITALS
C IP = NUMBER OF P ORBITALS
C NPR = NUMBER OF PRIMITIVES
C NC = NUMBER OF CONTRACTED FUNCTIONS
C
C ON OUTPUT: OVL IS FILLED WITH THE OVERLAP INTEGRAL VALUE
C
C FOR FURTHER INFO SEE: OBARA & SAIKA J.CHEM.PHYS. 1986,84,3963
C***********************************************************************
LOGICAL CALLED
DOUBLE PRECISION NAI,NAI1,NAI2
INCLUDE 'SIZES'
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /EXPONT/ ZS(107),ZP(107),ZD(107)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1EX(MAXPR),ESPI(MAXORB,MAXORB),FV(0:8,821),
2FAC(0:7),DEX(-1:96),TF(0:2),
3TEMP(MAXPR),ITEMP(MAXPR),OVL(MAXORB,MAXORB),XDMY(MAXPR*6)
COMMON/X/ DX(MAXPR),DY(MAXPR),DZ(MAXPR),F1(MAXPR,6),F2(MAXPR,6),
1TD(MAXPR),CE(MAXPR,6),U(MAXPR,6),EXS(MAXPR,6),EXPN(MAXPR,6),
2NAI(MAXPR,6),EWCX(MAXPR,6),EWCY(MAXPR,6),EWCZ(MAXPR,6),F0(MAXPR,6)
3,NAI1(MAXPR,6),NAI2(MAXPR,6)
DATA BOHR/0.529167D0/
C
C CALCULATE DISTANCE ARRAYS
C
PI=4.D0*ATAN(1.D0)
IPR=IC*ICD-ICD+1
ISTART=IPR
DO 10 I=ISTART,NPR
DX(I)=CEN(IPR,1)-CEN(I,1)
DY(I)=CEN(IPR,2)-CEN(I,2)
DZ(I)=CEN(IPR,3)-CEN(I,3)
TD(I)=DX(I)**2+DY(I)**2+DZ(I)**2
10 CONTINUE
C
C CALCULATE EXPONENT SUM
C
DO 20 I=ISTART,NPR
DO 20 J=1,ICD
EXS(I,J)=1.D0/(EX(IPR+J-1)+EX(I))
CE(I,J)=EX(IPR+J-1)*EX(I)*EXS(I,J)
20 CONTINUE
C
C CALCULATE EXPONENT WEIGHTED CENTERS
C
DO 30 I=ISTART,NPR
DO 30 J=1,ICD
EWCX(I,J)=(EX(I)*CEN(I,1)+EX(IPR+J-1)
1*CEN(IPR+J-1,1))*EXS(I,J)
EWCY(I,J)=(EX(I)*CEN(I,2)+EX(IPR+J-1)
1*CEN(IPR+J-1,2))*EXS(I,J)
EWCZ(I,J)=(EX(I)*CEN(I,3)+EX(IPR+J-1)
1*CEN(IPR+J-1,3))*EXS(I,J)
30 CONTINUE
DO 40 I=1,NPR
DO 40 J=1,ICD
EXPN(I,J)=EXP(-CE(I,J)*TD(I))
NAI(I,J)=(PI*EXS(I,J))**1.5D0*EXPN(I,J)
EXPN(I,J)=NAI(I,J)
40 CONTINUE
C
C CALCULATE (S||P) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 0) .AND. (IS .NE. IP)) THEN
NP=IS+1
DO 80 I=NP,NPR
DO 80 J=1,ICD
GO TO (50,60,70),IAM(I,2)
50 NAI(I,J)=(EWCX(I,J)-CEN(I,1))*EXPN(I,J)
go TO 80
60 NAI(I,J)=(EWCY(I,J)-CEN(I,2))*EXPN(I,J)
GO TO 80
70 NAI(I,J)=(EWCZ(I,J)-CEN(I,3))*EXPN(I,J)
80 CONTINUE
ENDIF
C
C CALCULATE (P||S) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 1) .AND. (IS .NE. IP)) THEN
NP=IS+1
DO 120 I= ISTART,NPR
DO 120 J=1,ICD
GO TO (90,100,110),IAM(IPR+J-1,2)
90 NAI(I,J)=(EWCX(I,J)-CEN(IPR+J-1,1))*EXPN(I,J)
GO TO 120
100 NAI(I,J)=(EWCY(I,J)-CEN(IPR+J-1,2))*EXPN(I,J)
GO TO 120
110 NAI(I,J)=(EWCZ(I,J)-CEN(IPR+J-1,3))*EXPN(I,J)
120 CONTINUE
ENDIF
C
C CALCULATE (P||P) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 1) .AND. (IS .NE. IP)) THEN
DO 160 I=ISTART,NPR
DO 160 J=1,ICD
GO TO (130,140,150),IAM(I,2)
130 NAI(I,J)=(EWCX(I,J)-CEN(I,1))*NAI(I,J)
IF(IAM(IPR+J-1,2) .EQ. IAM(I,2))
1NAI(I,J)=NAI(I,J)+EXS(I,J)*0.5D0
2 *EXPN(I,J)
GO TO 160
140 NAI(I,J)=(EWCY(I,J)-CEN(I,2))*NAI(I,J)
IF(IAM(IPR+J-1,2) .EQ. IAM(I,2))
1NAI(I,J)=NAI(I,J)+EXS(I,J)*0.5D0
2 *EXPN(I,J)
GO TO 160
150 NAI(I,J)=(EWCZ(I,J)-CEN(I,3))*NAI(I,J)
IF(IAM(IPR+J-1,2) .EQ. IAM(I,2))
1NAI(I,J)=NAI(I,J)+EXS(I,J)*0.5D0
2 *EXPN(I,J)
160 CONTINUE
ENDIF
IPS=IC*ICD-ICD+1
DO 180 I=IC,NC
JPS=I*ICD-ICD+1
OVL(IC,I)=0.D0
DO 170 J=JPS,JPS+ICD-1
DO 170 K=IPS,IPS+ICD-1
OVL(IC,I)=OVL(IC,I)+CC(J)*CC(K)*NAI(J,K-IPS+1)
170 CONTINUE
OVL(I,IC)=OVL(IC,I)
180 CONTINUE
RETURN
END
SUBROUTINE NAICAS(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C***********************************************************************
C
C THIS SUBROUTINE EVALUATES (S|S) , (S|P) TYPE NUCLEAR ATTRACTION
C INTEGRALS FOR A STO-NG BASIS SET
C WRITTEN BY B.H. BESLER AT FORD SCIENTIFIC RESEARCH LABS IN
C DECEMBER 1989.
C
C ON INPUT: IC = LOOP INDEX OF THE GAUSSIAN
C IESP = LOOP INDEX OF THE ESP POINT
C IPE = INDEX OF LAST Px PRIMITIVE
C IPX = NUMBER OF Px PRIMITIVES
C IS = NUMBER OS S ORBITALS
C ISC = NUMBER OF CONTRACTED S ORBITALS
C IP = NUMBER OF P ORBITALS
C NPR = NUMBER OF PRIMITIVES
C NC = NUMBER OF CONTRACTED FUNCTIONS
C
C
C FOR MORE INFO SEE: OBARA&SAIKA J.CHEM.PHYS. 1986,84,3963.
C***********************************************************************
INCLUDE 'SIZES'
DOUBLE PRECISION NAI,NAI1,NAI2
CHARACTER*241 KEYWRD
COMMON/KEYWRD/ KEYWRD
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /INDX/ INDC(MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /EXPONT/ ZS(107),ZP(107),ZD(107)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1EX(MAXPR),ESPI(MAXORB,MAXORB),FV(0:8,821),
2FAC(0:7),DEX(-1:96),TF(0:2),
3TEMP(MAXPR),ITEMP(MAXPR),OVL(MAXORB,MAXORB),EXSR(MAXPR,6)
COMMON/X/ DX(MAXPR),DY(MAXPR),DZ(MAXPR),F1(MAXPR,6),F2(MAXPR,6),
1TD(MAXPR),CE(MAXPR,6),U(MAXPR,6),EXS(MAXPR,6),EXPN(MAXPR,6),
2NAI(MAXPR,6),EWCX(MAXPR,6),EWCY(MAXPR,6),EWCZ(MAXPR,6),F0(MAXPR,6)
3,NAI1(MAXPR,6),NAI2(MAXPR,6)
DATA BOHR/0.529167D0/
C
C CALCULATE DISTANCE ARRAYS
C
C *** it seems that this is not necessary...
C WRITE(6,*)
PI=4.D0*ATAN(1.D0)
IPX2=2*IPX
C IF THIS IS A RESTART RUN, READ IN RESTART INFO
C *** skip all restart stuff, we don't need that...
C IF(INDEX(KEYWRD,'ESPRST') .NE. 0) THEN
C OPEN(UNIT=15,FILE='ESP.DUMP',STATUS='OLD',FORM='UNFORMATTED')
C READ(15) JSTART,IESPS
C IF(JSTART .EQ. ISC*2) THEN
C CLOSE(15)
C RETURN
C ENDIF
C DO 10 I=1,NESP
C READ(15) ES(I)
C 10 CONTINUE
C CLOSE(15)
CC
C JSTART=JSTART+1
C ELSE
JSTART=1
C ENDIF
NP=IS+1
DO 200 IC=JSTART,ISC
IPR=IC*ICD-ICD+1
ISTART=IPR
DO 20 I=ISTART,IPE
DX(I)=CEN(IPR,1)-CEN(I,1)
DY(I)=CEN(IPR,2)-CEN(I,2)
DZ(I)=CEN(IPR,3)-CEN(I,3)
TD(I)=DX(I)**2+DY(I)**2+DZ(I)**2
20 CONTINUE
C
C CALCULATE EXPONENT SUM
C
DO 30 I=ISTART,IPE
DO 30 J=1,ICD
EXSR(I,J)=EX(IPR+J-1)+EX(I)
EXS(I,J)=1.D0/EXSR(I,J)
CE(I,J)=EX(IPR+J-1)*EX(I)*EXS(I,J)
EXPN(I,J)=EXP(-CE(I,J)*TD(I))
30 CONTINUE
C
C CALCULATE EXPONENT WEIGHTED CENTERS
C
DO 40 I=ISTART,IPE
DO 40 J=1,ICD
EWCX(I,J)=(EX(I)*CEN(I,1)+EX(IPR+J-1)
1*CEN(IPR+J-1,1))*EXS(I,J)
EWCY(I,J)=(EX(I)*CEN(I,2)+EX(IPR+J-1)
1*CEN(IPR+J-1,2))*EXS(I,J)
EWCZ(I,J)=(EX(I)*CEN(I,3)+EX(IPR+J-1)
1*CEN(IPR+J-1,3))*EXS(I,J)
40 CONTINUE
C
C BEGIN LOOP OVER ESP POINTS
C
DO 180 IESP=1,NESP
POTP1=POTPT(1,IESP)/BOHR
POTP2=POTPT(2,IESP)/BOHR
POTP3=POTPT(3,IESP)/BOHR
C
C BEGIN LOOP OVER COMPONENTS OF CONTRACTED FUNCTION IC
C
DO 150 J=1,ICD
C
C CALCULATE DISTANCE BETWEEN EXPONENT WEIGHTED AND PROBE POINT
C
DO 50 I=ISTART,IPE
U(I,J)=((EWCX(I,J)-POTP1)**2+(EWCY(I,J)-POTP2)**2+
1 (EWCZ(I,J)-POTP3)**2)*EXSR(I,J)
NAI(I,J)=SQRT(PI/U(I,J))
50 CONTINUE
C
C CALCULATE ESP INTEGRALS
C
DO 70 I=ISTART,IPE
IF(U(I,J) .LE. TF(0)) THEN
IREF=DNINT(U(I,J)*20.D0)
REF=0.05D0*IREF
RES=U(I,J)-REF
TERM=1.D0
F0(I,J)=0.D0
DO 60 K=0,6
F=FV(K,IREF+1)
TS=F*TERM*FAC(K)
TERM=-TERM*RES
F0(I,J)=F0(I,J)+TS
60 CONTINUE
ELSE
F0(I,J)=NAI(I,J)*0.5D0
ENDIF
70 CONTINUE
DO 90 I=NP,IPE
IF(U(I,J) .LE. TF(1)) THEN
IREF=DNINT(U(I,J)*20.D0)
REF=0.05D0*IREF
RES=U(I,J)-REF
TERM1=1.D0
F1(I,J)=0.D0
DO 80 K=0,6
FI=FV(K+1,IREF+1)
TS1=FI*TERM1*FAC(K)
TERM1=-TERM1*RES
F1(I,J)=F1(I,J)+TS1
80 CONTINUE
ELSE
F1(I,J)=NAI(I,J)*0.25D0/U(I,J)
ENDIF
90 CONTINUE
DO 100 I=ISTART,IS
100 U(I,J)=2.D0*PI*EXS(I,J)*EXPN(I,J)*F0(I,J)
NP=IS+1
DO 110 I=NP,IPE
NAI(I,J)=2.D0*PI*EXS(I,J)*EXPN(I,J)*F0(I,J)
NAI1(I,J)=2.D0*PI*EXS(I,J)*EXPN(I,J)*F1(I,J)
110 CONTINUE
C
C CALCULATE (S||P) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 0) .AND. (IS .NE. IP)) THEN
DO 120 I=NP,IPE
120 U(I,J)=(EWCX(I,J)-CEN(I,1))*NAI(I,J)
1-(EWCX(I,J)-POTP1)*NAI1(I,J)
DO 130 I=IPE+1,IPE+1+IPX
130 U(I,J)=(EWCY(I-IPX,J)-CEN(I-IPX,2))*NAI(I-IPX,J)
1-(EWCY(I-IPX,J)-POTP2)*NAI1(I-IPX,J)
DO 140 I=IPE+1+IPX,NPR
140 U(I,J)=(EWCZ(I-IPX2,J)-CEN(I-IPX2,3))*NAI(I-IPX2,J)
1-(EWCZ(I-IPX2,J)-POTP3)*NAI1(I-IPX2,J)
ENDIF
150 CONTINUE
IPS=IC*ICD-ICD+1
DO 170 I=IC,NC
JPS=I*ICD-ICD+1
ESPI(I,IC)=0.D0
DO 160 J=JPS,JPS+ICD-1
DO 160 K=IPS,IPS+ICD-1
ESPI(I,IC)=ESPI(I,IC)+CC(J)*CC(K)*U(J,K-IPS+1)
160 CONTINUE
ES(IESP)=ES(IESP)+2.D0*CESPM(INDC(I),INDC(IC))*ESPI(I,IC)
170 CONTINUE
ES(IESP)=ES(IESP)-CESPM(INDC(IC),INDC(IC))*ESPI(IC,IC)
180 CONTINUE
C WRITE OUT RESTART INFORMATION
C *** no dumps please...
C *** no dumps please...
C *** no dumps please...
C OPEN(UNIT=15,FILE='ESP.DUMP',STATUS='UNKNOWN',FORM='UNFORMATTED
C 1')
C IESPS=0
C WRITE(15) IC,IESPS
C DO 190 I=1,NESP
C WRITE(15) ES(I)
C 190 CONTINUE
C CLOSE(15)
C
C WRITE(6,'(A,F6.2,A)')
C 1'NAICAS DUMPED: ',100.D0/ISC*IC,' PERCENT COMPLETE'
200 CONTINUE
RETURN
END
SUBROUTINE NAICAP(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C***********************************************************************
C THIS ROUTINE EVALUATES (P|P) NUCLEAR ATTRACTION INTEGRALS OVER
C
C A STO-NG BASIS SET.
C WRITTEN BY B.H. BESLER AT FORD SCIENTIFIC RESEARCH LABS IN
C SEPT. 1989
C
C ON INPUT: IC = LOOP INDEX OF THE GAUSSIAN
C ICD = CONTRACTION DEPTH OF BASIS SET
C IESP = LOOP INDEX OF THE ESP POINT
C IS = NUMBER OS S PRIMITIVES
C IPE = INDEX OF LAST PX PRIMITIVE
C IPX = NUMBER OF PX PRIMITIVES
C IS = NUMBER OS S PRIMITIVES
C ISC = NUMBER OF CONTRACTED
C NPR = NUMBER OF PRIMITIVES
C NC = NUMBER OF CONTRACTED FUNCTIONS
C
C
C FOR MORE INFO SEE: OBARA&SAIKA J.CHEM.PHYS. 1986,84,3963.
C***********************************************************************
INCLUDE 'SIZES'
DOUBLE PRECISION NAI,NAI1,NAI2
CHARACTER*241 KEYWRD
COMMON /KEYWRD/ KEYWRD
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /INDX/ INDC(MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /EXPONT/ ZS(107),ZP(107),ZD(107)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1EX(MAXPR),ESPI(MAXORB,MAXORB),FV(0:8,821),
2FAC(0:7),DEX(-1:96),TF(0:2),
3TEMP(MAXPR),ITEMP(MAXPR),OVL(MAXORB,MAXORB),EXSR(MAXPR,6)
COMMON/X/ DX(MAXPR),DY(MAXPR),DZ(MAXPR),F1(MAXPR,6),F2(MAXPR,6),
1TD(MAXPR),CE(MAXPR,6),U(MAXPR,6),EXS(MAXPR,6),EXPN(MAXPR,6),
2NAI(MAXPR,6),EWCX(MAXPR,6),EWCY(MAXPR,6),EWCZ(MAXPR,6),F0(MAXPR,6)
3,NAI1(MAXPR,6),NAI2(MAXPR,6)
COMMON/FP/ PF0(MAXHES),PF1(MAXHES),PF2(MAXHES),ID(MAXPAR),
1PEXS(MAXHES),PCE(MAXHES),PEXPN(MAXHES),PTD(MAXHES),
2PEWCX(MAXHES),PEWCY(MAXHES),PEWCZ(MAXHES),IRD(MAXHES)
DATA BOHR/0.529167D0/
C SET NUMBER OF EQUALLY SPACED DUMPS
IDN=10
C
IDC=0
C *** it seems that this is not necessary...
C WRITE(6,*)
IPX2=2*IPX
PI=4.D0*ATAN(1.D0)
NP=IS+1
C SETUP INDEX ARRAY
DO 10 I=NP,IPE
IRD(I)=I-IS
IRD(I+IPX)=I-IS
IRD(I+IPX2)=I-IS
10 CONTINUE
C
C CALCULATE QUANTITIES INVARIANT WITH ESP POINT FOR
C (P|P) ESP INTEGRALS
C
IL=L
L=0
DO 30 I=NP,IPE
DO 20 J=I,IPE
L=L+1
PTD(L)=(CEN(I,1)-CEN(J,1))**2+(CEN(I,2)-CEN(J,2))**2+
1(CEN(I,3)-CEN(J,3))**2
PEXS(L)=1.d0/(EX(I)+EX(J))
PCE(L)=EX(I)*EX(J)*PEXS(L)
PEXPN(L)=EXP(-PCE(L)*PTD(L))
PEWCX(L)=(EX(I)*CEN(I,1)+EX(J)*CEN(J,1))*PEXS(L)
PEWCY(L)=(EX(I)*CEN(I,2)+EX(J)*CEN(J,2))*PEXS(L)
PEWCZ(L)=(EX(I)*CEN(I,3)+EX(J)*CEN(J,3))*PEXS(L)
20 CONTINUE
C
C SET UP OTHER INDEX ARRAY FOR PACKED SYMMETRIC ARRAY
C STORAGE
C
ID(I-IS)=L-IPX
30 CONTINUE
C
C READ IN RESTART INFORMATION IF THIS IS A RESTART
C
C *** skip all restart stuff, we don't need that...
C IF(INDEX(KEYWRD,'ESPRST') .NE. 0) THEN
C OPEN(UNIT=15,FILE='ESP.DUMP',STATUS='UNKNOWN',FORM='UNFORMATTED
C 1')
C READ(15) JSTART,IESPS
C IF(JSTART .NE. ISC*2) THEN
C IESPS=0
C CLOSE(15)
C GOTO 50
C ENDIF
C DO 40 I=1,NESP
C READ(15) ES(I)
C 40 CONTINUE
C CLOSE(15)
C IDC=FLOAT(IESPS)/FLOAT(NESP)*10
C ELSE
IESPS=0
C ENDIF
50 CONTINUE
C
C LOOP OVER ESP PROBE POINTS
C
DO 250 IESP=IESPS+1,NESP
POTP1=POTPT(1,IESP)/BOHR
POTP2=POTPT(2,IESP)/BOHR
POTP3=POTPT(3,IESP)/BOHR
C CALCULATE QUANTITY U
C
L=0
DO 60 I=NP,IPE
DO 60 J=I,IPE
L=L+1
PTD(L)=((PEWCX(L)-POTP1)**2+(PEWCY(L)-POTP2)**2+
1 (PEWCZ(L)-POTP3)**2)/PEXS(L)
PCE(L)=SQRT(PI/PTD(L))
60 CONTINUE
C
C CALCULATE F0, F1, AND F2(U) USING TAYLOR SERIES
C OR ASYMPTOTIC EXPANSION
C
IL=L
L=0
DO 100 I=1,IL
IF(PTD(I) .LE. TF(0)) THEN
IREF=DNINT(PTD(I)*20.D0)
REF=0.05D0*IREF
RES=PTD(I)-REF
TERM=1.D0
PF0(I)=0.D0
DO 70 K=0,6
F=FV(K,IREF+1)
TS=F*TERM*FAC(K)
TERM=-TERM*RES
PF0(I)=PF0(I)+TS
70 CONTINUE
ELSE
PF0(I)=PCE(I)*0.5D0
ENDIF
IF(PTD(I) .LE. TF(1)) THEN
IREF=DNINT(PTD(I)*20.D0)
REF=0.05D0*IREF
RES=PTD(I)-REF
TERM1=1.D0
PF1(I)=0.D0
DO 80 K=0,6
FI=FV(K+1,IREF+1)
TS1=FI*TERM1*FAC(K)
TERM1=-TERM1*RES
PF1(I)=PF1(I)+TS1
80 CONTINUE
ELSE
PF1(I)=PCE(I)*0.25D0/PTD(I)
ENDIF
IF(PTD(I) .LE. TF(2)) THEN
IREF=DNINT(PTD(I)*20.D0)
REF=0.05D0*IREF
RES=PTD(I)-REF
TERM2=1.D0
PF2(I)=0.D0
DO 90 K=0,6
FII=FV(K+2,IREF+1)
TS2=FII*TERM2*FAC(K)
TERM2=-TERM2*RES
PF2(I)=PF2(I)+TS2
90 CONTINUE
ELSE
PF2(I)=PCE(I)*0.375D0/(PTD(I)*PTD(I))
ENDIF
100 CONTINUE
C
C CALCULATE (S||S) TYPE INTEGRALS
C
DO 110 I=1,IL
PF0(I)=2.D0*PI*PEXS(I)*PEXPN(I)*PF0(I)
PTD(I)=PF0(I)
PF1(I)=2.D0*PI*PEXS(I)*PEXPN(I)*PF1(I)
PF2(I)=2.D0*PI*PEXS(I)*PEXPN(I)*PF2(I)
110 CONTINUE
C
DO 230 IC=ISC+1,NC
IPR=IC*ICD-ICD+1
ISTART=IPR
DO 200 J=1,ICD
C
C CALCULATE (P||S) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 1) .AND. (IS .NE. IP)) THEN
DO 150 I=ISTART,NPR
IN=IPR+J-1
IR=IRD(I)+ID(IRD(IN))
IR2=ID(IRD(I))+IRD(IN)
IF(IR2 .LE. IR ) IR=IR2
GO TO (120,130,140),IAM(IN,2)
120 NAI2(I,J)=(PEWCX(IR)-CEN(IN,1))*PF1(IR)-PF2(IR)*
1 (PEWCX(IR)-POTP1)
NAI(I,J)=(PEWCX(IR)-CEN(IN,1))*PF0(IR)-PF1(IR)*
1 (PEWCX(IR)-POTP1)
GO TO 150
130 NAI2(I,J)=(PEWCY(IR)-CEN(IN,2))*PF1(IR)-PF2(IR)*
1 (PEWCY(IR)-POTP2)
NAI(I,J)=(PEWCY(IR)-CEN(IN,2))*PF0(IR)-PF1(IR)*
1 (PEWCY(IR)-POTP2)
GO TO 150
140 NAI2(I,J)=(PEWCZ(IR)-CEN(IN,3))*PF1(IR)-PF2(IR)*
1 (PEWCZ(IR)-POTP3)
NAI(I,J)=(PEWCZ(IR)-CEN(IN,3))*PF0(IR)-PF1(IR)*
1 (PEWCZ(IR)-POTP3)
150 CONTINUE
ENDIF
C
C CALCULATE (P||P) ESP INTEGRALS
C
IF((IAM(IPR,1) .EQ. 1) .AND. (IS .NE. IP)) THEN
DO 190 I=ISTART,NPR
IN=IPR+J-1
IR=IRD(I)+ID(IRD(IN))
IR2=ID(IRD(I))+IRD(IN)
IF(IR2 .LE. IR ) IR=IR2
GO TO (160,170,180),IAM(I,2)
160 NAI(I,J)=(PEWCX(IR)-CEN(I,1))*NAI(I,J)-(PEWCX(IR)-P
1OTP1)* NAI2(I,J)
IF(IAM(IN,2) .EQ. IAM(I,2)) NAI(I,J)=NAI(I,J)+PEXS(
1IR)* 0.5D0*(PTD(IR)-PF1(IR))
GO TO 190
170 NAI(I,J)=(PEWCY(IR)-CEN(I,2))*NAI(I,J)-(PEWCY(IR)-P
1OTP2)* NAI2(I,J)
IF(IAM(IN,2) .EQ. IAM(I,2)) NAI(I,J)=NAI(I,J)+PEXS(
1IR)* 0.5D0*(PTD(IR)-PF1(IR))
GO TO 190
180 NAI(I,J)=(PEWCZ(IR)-CEN(I,3))*NAI(I,J)-(PEWCZ(IR)-P
1OTP3)* NAI2(I,J)
IF(IAM(IN,2) .EQ. IAM(I,2)) NAI(I,J)=NAI(I,J)+PEXS(
1IR)* 0.5D0*(PTD(IR)-PF1(IR))
190 CONTINUE
ENDIF
200 CONTINUE
C
C FORM INTEGRALS OVER CONTRACTED FUNCTIONS
C
IPS=IC*ICD-ICD+1
DO 220 I=IC,NC
JPS=I*ICD-ICD+1
ESPI(I,IC)=0.D0
DO 210 J=JPS,JPS+ICD-1
DO 210 K=IPS,IPS+ICD-1
ESPI(I,IC)=ESPI(I,IC)+CC(J)*CC(K)*NAI(J,K-IPS+1)
210 CONTINUE
ES(IESP)=ES(IESP)+2.D0*CESPM(INDC(I),INDC(IC))*ESPI(I,IC)
220 CONTINUE
ES(IESP)=ES(IESP)-CESPM(INDC(IC),INDC(IC))*ESPI(IC,IC)
230 CONTINUE
C
C WRITE OUT RESTART INFORMATION EVERY NESP/10 POINTS
C
C *** no dumps please...
C *** no dumps please...
C *** no dumps please...
C IF(MOD(IESP,NESP/IDN) .EQ. 0) THEN
C OPEN(UNIT=15,FILE='ESP.DUMP',STATUS='UNKNOWN',FORM='UNFORMAT
C 1TED')
C JSTART=ISC*2
C WRITE(15) JSTART,IESP
C DO 240 I=1,NESP
C WRITE(15) ES(I)
C 240 CONTINUE
C CLOSE(15)
C IDC=IDC+1
C WRITE(6,'(A,F6.2,A)')
C 1'NAICAP DUMPED: ',100.D0/IDN*IDC,' PERCENT COMPLETE'
C ENDIF
250 CONTINUE
RETURN
END
C *** extensions for "miniMOPAC" plotting start here...
C *** extensions for "miniMOPAC" plotting start here...
C *** extensions for "miniMOPAC" plotting start here...
SUBROUTINE GETGEOM
C *** this is a start of PDGRID subroutine with small modifications.
C *** this will just copy the geometry data for orginal ELESP.
C
C ROUTINE TO CALCULATE WILLIAMS SURFACE
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION IZ(100),XYZ(3,100),VDERW(53),DIST(100)
DIMENSION XMIN(3),XMAX(3),COORD(3,NUMATM)
COMMON /GEOM/ GEO(3,NUMATM)
COMMON /GEOKST/ NATOMS,LABELS(NUMATM), NABC(3*NUMATM)
C
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), WORK1D(4*MESP)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
C
DATA VDERW/53*0.0D0/
VDERW(1)=2.4D0
VDERW(5)=3.0D0
VDERW(6)=2.9D0
VDERW(7)=2.7D0
VDERW(8)=2.6D0
VDERW(9)=2.55D0
VDERW(15)=3.1D0
VDERW(16)=3.05D0
VDERW(17)=3.0D0
VDERW(35)=3.15D0
VDERW(53)=3.35D0
SHELL=1.2D0
C NESP=0
GRID=0.8D0
CLOSER=0.D0
C CHECK IF VDERW IS DEFINED FOR ALL ATOMS
C
C CONVERT INTERNAL TO CARTESIAN COORDINATES
C
CALL GMETRY(GEO,COORD)
C
C STRIP COORDINATES AND ATOM LABEL FOR DUMMIES (I.E. 99)
C
ICNTR = 0
DO 20 I=1,NATOMS
DO 10 J=1,3
10 CO(J,I) = COORD(J,I)
IF(LABELS(I) .EQ. 99) GOTO 20
ICNTR = ICNTR + 1
IAN(ICNTR) = LABELS(I)
20 CONTINUE
NATOM=ICNTR
RETURN
END
SUBROUTINE LM7INIPLT
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C *** this is a modification to ELESP. it initializes the ELESP
C *** calculation and also stores some extra data for other plots.
C***********************************************************************
C ELESP LOADS THE STO-6G BASIS SET ONTO THE ATOMS, PERFOMS THE
C DEORTHOGONALIZATION OF THE COEFFICIENTS AND EVALUATES THE
C ELECTRONIC CONTRIBUTION TO THE ESP. IT WAS WRITTEN BY B.H.BESLER
C AND K.M.MERZ IN FEB. 1989 AT UCSF.
C
C***********************************************************************
CHARACTER*241 KEYWRD
DOUBLE PRECISION NORM,OVL
LOGICAL CALLED,POTWRT,RST,STO3G
INCLUDE 'SIZES'
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /VECTOR/ C(MORB2*2+MAXORB*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /KEYWRD/ KEYWRD
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
6 /CORE / TORE(107)
7 /EXPONT/ ZS(107),ZP(107),ZD(107)
*
* END OF MINDO/3 COMMON BLOCKS
*
COMMON /INDX/ INDC(MAXORB)
C *** an additional common block that carries variables for plotting routines.
COMMON /PLOTS/ CESPM2(MAXORB,MAXORB),SLA(10),
1 CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB),
2 INC(MAXPR),NC,NPR,IS,IP,IPC,ISC,ICD,IORB
C *** old arrays that are no longer needed are here, commented out.
C DIMENSION CESPM2(MAXORB,MAXORB),SLA(10)
C DIMENSION CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB)
DATA BOHR/0.529167D0/
C *** now we call our GETGEOM subroutine here...
CALL GETGEOM
PI=4.D0*ATAN(1.D0)
C
C PUT STO-6G BASIS SET ON ATOM CENTERS
C
DO 10 I=-1,10
DEX(I)=DEX2(I)
10 CONTINUE
DO 20 I=0,7
FAC(I)=1.D0/FAC(I)
20 CONTINUE
DO 30 M=0,8
K=1
FV(M,1)=1.D0/(2.D0*M+1.D0)
DO 30 T=0.05D0,41.D0,0.05D0
K=K+1
CALL FSUB(M,T,FVAL)
FV(M,K)=FVAL
30 CONTINUE
C
C LOAD BASIS FUNCTIONS INTO ARRAYS
C
STO3G=(INDEX(KEYWRD,'STO3G') .NE. 0)
IF(STO3G) THEN
ICD=3
CALL SETUP3
ELSE
ICD=6
CALL SETUPG
ENDIF
C *** NC is number of contractions
C *** NPR is number of primitives
NC=0
NPR=0
C *** the new array INC() will store the contraction indices...
C *** the new array INC() will store the contraction indices...
C *** the new array INC() will store the contraction indices...
DO 80 I=1,NATOM
IF (IAN(I) .LE. 2) THEN
NC=NC+1
DO 40 J=1,ICD
CC(NPR+J)=ALLC(J,1,1)
EX(NPR+J)=ALLZ(J,1,1)*ZS(1)**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=0
IAM(NPR+J,2)=0
INC(NPR+J)=NC
FC(NPR+J)=I
40 CONTINUE
NPR=NPR+ICD
ELSE
C DETERMINE PRINCIPAL QUANTUM NUMBER(NQN)
C OF ORBITALS TO BE USED
C
NQN=2
IF(IAN(I) .GT. 10 .AND. IAN(I) .LE. 18) NQN=3
IF(IAN(I) .GT. 18 .AND. IAN(I) .LE. 36) NQN=4
IF(IAN(I) .GT. 36 .AND. IAN(I) .LE. 54) NQN=5
C
NC=NC+1
DO 50 J=1,ICD
CC(NPR+J)=ALLC(J,NQN,1)
EX(NPR+J)=ALLZ(J,NQN,1)*ZS(IAN(I))**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=0
IAM(NPR+J,2)=0
INC(NPR+J)=NC
50 CONTINUE
NPR=NPR+ICD
DO 70 K=1,3
NC=NC+1
DO 60 J=1,ICD
CC(NPR+J)=ALLC(J,NQN,2)
EX(NPR+J)=ALLZ(J,NQN,2)*ZP(IAN(I))**2
CEN(NPR+J,1)=CO(1,I)/BOHR
CEN(NPR+J,2)=CO(2,I)/BOHR
CEN(NPR+J,3)=CO(3,I)/BOHR
IAM(NPR+J,1)=1
IAM(NPR+J,2)=K
INC(NPR+J)=NC
60 CONTINUE
NPR=NPR+ICD
70 CONTINUE
ENDIF
80 CONTINUE
C
C CALCULATE NORMALIZATION CONSTANTS AND INCLUDE
C THEM IN THE CONTRACTION COEFFICIENTS
C
DO 90 I=1,NPR
NORM=(2.D0*EX(I)/PI)**0.75D0*(4.D0*EX(I))**(IAM(I,1)/2.D0)/
1 SQRT(DEX(2*IAM(I,1)-1))
CC(I)=CC(I)*NORM
90 CONTINUE
IPR=0
C
C PERFORM SORT OF PRIMITIVES BY ANGULAR MOMENTUM
C
C *** IS is count of S primitives???
C *** IP is count of P primitives???
IS=0
IP=0
IPC=0
ISC=0
J=0
DO 100 I=1,NPR
IF (IAM(I,1) .EQ. 0) THEN
IS=IS+1
IND(IS)=I
ENDIF
100 CONTINUE
IP=IS
DO 110 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 1) THEN
IP=IP+1
IND(IP)=I
ENDIF
110 CONTINUE
DO 120 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 2) THEN
IP=IP+1
IND(IP)=I
ENDIF
120 CONTINUE
DO 130 I=1,NPR
IF (IAM(I,1) .EQ. 1 .AND. IAM(I,2) .EQ. 3) THEN
IP=IP+1
IND(IP)=I
ENDIF
130 CONTINUE
DO 140 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 0) THEN
ISC=ISC+1
INDC(ISC)=I
ENDIF
140 CONTINUE
IPC=ISC
DO 150 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 1) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
150 CONTINUE
DO 160 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 2) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
160 CONTINUE
DO 170 I=1,NC
IN=I*ICD-ICD+1
IF (IAM(IN,1) .EQ. 1 .AND. IAM(IN,2) .EQ. 3) THEN
IPC=IPC+1
INDC(IPC)=I
ENDIF
170 CONTINUE
DO 180 I=1,NPR
TEMP(I)=CC(IND(I))
180 CONTINUE
DO 190 I=1,NPR
CC(I)=TEMP(I)
190 CONTINUE
DO 200 I=1,NPR
TEMP(I)=EX(IND(I))
200 CONTINUE
DO 210 I=1,NPR
EX(I)=TEMP(I)
210 CONTINUE
DO 220 I=1,NPR
TEMP(I)=CEN(IND(I),1)
220 CONTINUE
DO 230 I=1,NPR
CEN(I,1)=TEMP(I)
230 CONTINUE
DO 240 I=1,NPR
TEMP(I)=CEN(IND(I),2)
240 CONTINUE
DO 250 I=1,NPR
CEN(I,2)=TEMP(I)
250 CONTINUE
DO 260 I=1,NPR
TEMP(I)=CEN(IND(I),3)
260 CONTINUE
DO 270 I=1,NPR
CEN(I,3)=TEMP(I)
270 CONTINUE
DO 280 I=1,NPR
ITEMP(I)=IAM(IND(I),1)
280 CONTINUE
DO 290 I=1,NPR
IAM(I,1)=ITEMP(I)
290 CONTINUE
DO 300 I=1,NPR
ITEMP(I)=IAM(IND(I),2)
300 CONTINUE
DO 310 I=1,NPR
IAM(I,2)=ITEMP(I)
310 CONTINUE
C *** also arrange our new array INC() like the others...
C *** also arrange our new array INC() like the others...
C *** also arrange our new array INC() like the others...
DO 315 I=1,NPR
ITEMP(I)=INC(IND(I))
315 CONTINUE
DO 316 I=1,NPR
INC(I)=ITEMP(I)
316 CONTINUE
C CALCULATE OVERLAP MATRIX OF STO-6G FUNCTIONS
C
DO 320 J=1,NC
CALL OVLP(J,1,IS,IP,NPR,NC,ICD)
320 CONTINUE
C
DO 330 J=1,NC
DO 330 K=1,NC
CESPM2(INDC(J),INDC(K))=OVL(J,K)
330 CONTINUE
DO 340 J=1,NC
DO 340 K=1,NC
OVL(J,K)=CESPM2(J,K)
340 CONTINUE
L=0
DO 350 I=1,NC
DO 350 J=1,I
L=L+1
CESP(L)=OVL(I,J)
350 CONTINUE
C
C DEORTHOGONALIZE THE COEFFICIENTS AND REFORM THE DENSITY MATRIX
C
CALL RSP(CESP,NC,1,TEMP,CESPML)
DO 360 I=1,NC
DO 360 J=1,I
SUM=0.D0
DO 360 K=1,NC
SUM=SUM+CESPML(I+(K-1)*NC)/SQRT(TEMP(K))*CESPML(J+(K-1)*N
1C)
CESP(I+(J-1)*NC)=SUM
CESP(J+(I-1)*NC)=SUM
360 CONTINUE
CALL MULT(C,CESP,CESPML,NC)
CALL DENSIT(CESPML,NC,NC,NCLOSE,NOPEN,FRACT,CESP,2)
C *** does CESPML now contain the eigenvectors??? and TEMP the eigenvalues???
C *** does CESPML now contain the eigenvectors??? and TEMP the eigenvalues???
C *** does CESPML now contain the eigenvectors??? and TEMP the eigenvalues???
RETURN
END
SUBROUTINE GETESP
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C *** this is the end part of ELESP subroutine.
C *** this is the end part of ELESP subroutine.
C *** this is the end part of ELESP subroutine.
CHARACTER*241 KEYWRD
DOUBLE PRECISION NORM,OVL
LOGICAL CALLED,POTWRT,RST,STO3G
INCLUDE 'SIZES'
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /VECTOR/ C(MORB2*2+MAXORB*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /KEYWRD/ KEYWRD
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
6 /CORE / TORE(107)
7 /EXPONT/ ZS(107),ZP(107),ZD(107)
*
* END OF MINDO/3 COMMON BLOCKS
*
COMMON /INDX/ INDC(MAXORB)
C *** an additional common block that carries variables for plotting routines.
COMMON /PLOTS/ CESPM2(MAXORB,MAXORB),SLA(10),
1 CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB),
2 INC(MAXPR),NC,NPR,IS,IP,IPC,ISC,ICD,IORB
C *** old arrays that are no longer needed are here, commented out.
C DIMENSION CESPM2(MAXORB,MAXORB),SLA(10)
C DIMENSION CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB)
DATA BOHR/0.529167D0/
C *** end of ELESP starts here...
C
C NOW CALCULATE THE ELECTRONIC CONTRIBUTION TO THE ELECTROSTATIC POT
C
L=0
DO 370 I=1,NC
DO 370 J=1,I
L=L+1
CESPM(I,J)=CESP(L)
CESPM(J,I)=CESP(L)
370 CONTINUE
IPX=(NPR-IS)/3
IPE=IS+IPX
DO 380 I=1,NESP
ES(I)=0.D0
380 CONTINUE
CALL NAICAS(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
CALL NAICAP(ISC,IS,IP,NPR,NC,IPE,IPX,ICD)
C CALCULATE TOTAL ESP AND FORM ARRAYS FOR ESPFIT
DO 400 I=1,NESP
ESP(I)=0.D0
DO 390 J=1,NATOM
RA=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2+(CO(
13,J)-POTPT(3,I))**2)
ESP(I)=ESP(I)+TORE(IAN(J))/(RA/BOHR)
390 CONTINUE
ESP(I)=ESP(I)-ES(I)
DO 400 J=1,NATOM
RIJ=SQRT((CO(1,J)-POTPT(1,I))**2+(CO(2,J)-POTPT(2,I))**2
1+(CO(3,J)-POTPT(3,I))**2)/BOHR
B(J)=B(J)+ESP(I)*1.D0/RIJ
400 CONTINUE
C
C IF REQUESTED WRITE OUT ELECTRIC POTENTIAL DATA TO
C UNIT 21
C
POTWRT=(INDEX(KEYWRD,'POTWRT') .NE. 0)
IF(POTWRT) THEN
OPEN(UNIT=21)
WRITE(21,'(I5)') NESP
DO 410 I=1,NESP
410 WRITE(21,420) ESP(I),POTPT(1,I)/BOHR,POTPT(2,I)/BOHR,
1POTPT(3,I)
ENDIF
420 FORMAT(1X,4E16.7)
RETURN
END
SUBROUTINE GETORB
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C *** this will calculate values for orbital plots...
C *** this will calculate values for orbital plots...
C *** this will calculate values for orbital plots...
CHARACTER*241 KEYWRD
DOUBLE PRECISION NORM,OVL
LOGICAL CALLED,POTWRT,RST,STO3G
INCLUDE 'SIZES'
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /VECTOR/ C(MORB2*2+MAXORB*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /KEYWRD/ KEYWRD
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
6 /CORE / TORE(107)
7 /EXPONT/ ZS(107),ZP(107),ZD(107)
*
* END OF MINDO/3 COMMON BLOCKS
*
COMMON /INDX/ INDC(MAXORB)
C *** an additional common block that carries variables for plotting routines.
COMMON /PLOTS/ CESPM2(MAXORB,MAXORB),SLA(10),
1 CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB),
2 INC(MAXPR),NC,NPR,IS,IP,IPC,ISC,ICD,IORB
C *** old arrays that are no longer needed are here, commented out.
C DIMENSION CESPM2(MAXORB,MAXORB),SLA(10)
C DIMENSION CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB)
DATA BOHR/0.529167D0/
ESP(1)=0.D0
C *** variable I loops over all gaussian primitives.
C *** we calculate value of the primitive to PRIM and weight it according to the eigenvector.
C *** eigenvector contains weights for contracted functions; the array INC() contains contraction indices.
DO 500 I=1,NPR
DX=POTPT(1,1)-CEN(I,1)
DY=POTPT(2,1)-CEN(I,2)
DZ=POTPT(3,1)-CEN(I,3)
TD=DX**2+DY**2+DZ**2
PRIM=CC(I)*EXP(-EX(I)*TD)
IF(IAM(I,2) .EQ. 1) THEN
PRIM=PRIM*DX
ENDIF
IF(IAM(I,2) .EQ. 2) THEN
PRIM=PRIM*DY
ENDIF
IF(IAM(I,2) .EQ. 3) THEN
PRIM=PRIM*DZ
ENDIF
ESP(1)=ESP(1)+CESPML(INC(I)+(IORB-1)*NC)*PRIM
500 CONTINUE
RETURN
END
SUBROUTINE GETELDENS
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C *** this will calculate values for the electron density plot...
C *** this will calculate values for the electron density plot...
C *** this will calculate values for the electron density plot...
CHARACTER*241 KEYWRD
DOUBLE PRECISION NORM,OVL
LOGICAL CALLED,POTWRT,RST,STO3G
INCLUDE 'SIZES'
COMMON/ESPF/ AL((NUMATM+4)**2),A(NUMATM,NUMATM),B(NUMATM),
1Q(NUMATM+4),CESPM(MAXORB,MAXORB)
COMMON /DENSTY/ P(MPACK),PA(MPACK),PB(MPACK)
COMMON /POTESP/ XC,YC,ZC,ESPNUC,ESPELE,NESP
COMMON /ABC/ CO(3,NUMATM),IAN(NUMATM),NATOM
COMMON /WORK1/ POTPT(3,MESP), ES(MESP), ESP(MESP), WORK1D(2*MESP)
COMMON /STO6G/ ALLC(6,6,2),ALLZ(6,6,2)
COMMON /VECTOR/ C(MORB2*2+MAXORB*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /KEYWRD/ KEYWRD
COMMON /ESPC/ CC(MAXPR),CEN(MAXPR,3),IAM(MAXPR,2),IND(MAXPR),
1 EX(MAXPR),ESPI(MAXORB,MAXORB),
2 FV(0:8,821),FAC(0:7),
3 DEX(-1:96),TF(0:2),TEMP(MAXPR),ITEMP(MAXPR),
4 OVL(MAXORB,MAXORB),FC(MAXPR*6)
6 /CORE / TORE(107)
7 /EXPONT/ ZS(107),ZP(107),ZD(107)
*
* END OF MINDO/3 COMMON BLOCKS
*
COMMON /INDX/ INDC(MAXORB)
C *** an additional common block that carries variables for plotting routines.
COMMON /PLOTS/ CESPM2(MAXORB,MAXORB),SLA(10),
1 CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB),
2 INC(MAXPR),NC,NPR,IS,IP,IPC,ISC,ICD,IORB
C *** old arrays that are no longer needed are here, commented out.
C DIMENSION CESPM2(MAXORB,MAXORB),SLA(10)
C DIMENSION CESPML(MAXORB*MAXORB),CESP(MAXORB*MAXORB)
DATA BOHR/0.529167D0/
ESP(1)=0.D0
C *** this is quite similar to GETORB, we just loop over all occupied orbitals here...
C *** here we assume that we have an open-shell RHF model...
ILOOP=NELECS/2
C *** variable I loops over all gaussian primitives.
C *** we calculate value of the primitive to PRIM and weight it according to the eigenvector.
C *** eigenvector contains weights for contracted functions; the array INC() contains contraction indices.
DO 500 I=1,NPR
DX=POTPT(1,1)-CEN(I,1)
DY=POTPT(2,1)-CEN(I,2)
DZ=POTPT(3,1)-CEN(I,3)
TD=DX**2+DY**2+DZ**2
DO 600 J=1,ILOOP
PRIM=CC(I)*EXP(-EX(I)*TD)
IF(IAM(I,2) .EQ. 1) THEN
PRIM=PRIM*DX
ENDIF
IF(IAM(I,2) .EQ. 2) THEN
PRIM=PRIM*DY
ENDIF
IF(IAM(I,2) .EQ. 3) THEN
PRIM=PRIM*DZ
ENDIF
ORB=CESPML(INC(I)+(J-1)*NC)*PRIM
C *** here we assume that we have an open-shell RHF model...
ESP(1)=ESP(1)+ORB*ORB*2.0D0
600 CONTINUE
500 CONTINUE
RETURN
END
|