1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
SUBROUTINE FMAT(FMATRX, NREAL, TSCF, TDER, DELDIP, HEAT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
DIMENSION FMATRX(*), DELDIP(3,*)
***********************************************************************
*
* VALUE CALCULATES THE SECOND-ORDER OF THE ENERGY WITH
* RESPECT TO THE CARTESIAN COORDINATES I AND J AND PLACES IT
* IN FMATRX
*
* ON INPUT NATOMS = NUMBER OF ATOMS IN THE SYSTEM.
* XPARAM = INTERNAL COORDINATES OF MOLECULE STORED LINEARLY
*
* VARIABLES USED
* COORDL = ARRAY OF CARTESIAN COORDINATES, STORED LINEARLY.
* I = INDEX OF CARTESIAN COORDINATE.
* J = INDEX OF CARTESIAN COORDINATE.
*
* ON OUTPUT FMATRX = SECOND DERIVATIVE OF THE ENERGY WITH RESPECT TO
* CARTESIAN COORDINATES I AND J.
***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
1 NA(NUMATM),NB(NUMATM),NC(NUMATM)
COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR),IDUMY, DUMY(MAXPAR)
COMMON /DENSTY/ P(MPACK),PDUMY(2,MPACK)
COMMON /TIMDMP/ TLEFT, TDUMP
COMMON /ATMASS/ ATMASS(NUMATM)
C ***** Modified by Jiro Toyoda at 1994-05-25 *****
C COMMON /TIME / TIME0
COMMON /TIMEC / TIME0
C ***************************** at 1994-05-25 *****
COMMON /CORE / CORE(107)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
COMMON /NLLCOM/ EVECS(MAXPAR*MAXPAR),BMAT(MAXPAR,MAXPAR*2)
DIMENSION GRAD(MAXPAR),
1GROLD(MAXPAR), COORDL(MAXPAR), Q(NUMATM), DEL2(3), G2OLD(MAXPAR)
2, EIGS(MAXPAR), G2RAD(MAXPAR),
3 FCONST(MAXPAR)
CHARACTER*241 KEYWRD
SAVE FACT
LOGICAL DEBUG, RESTRT, PRNT, RESFIL, PRECIS, BIG, LOG, GROUP
EQUIVALENCE (COORD(1,1),COORDL(1))
DATA FACT/6.95125D-3/
C
C FACT IS THE CONVERSION FACTOR FROM KCAL/MOLE TO ERGS
C
C SET UP CONSTANTS AND FLAGS
NA(1)=99
C
C SET UP THE VARIABLES IN XPARAM ANDLOC,THESE ARE IN CARTESIAN COORDINA
C
NUMAT=0
C$DOIT ASIS
DO 10 I=1,NATOMS
IF(LABELS(I).NE.99.AND.LABELS(I).NE.107) THEN
NUMAT=NUMAT+1
LABELS(NUMAT)=LABELS(I)
ENDIF
10 CONTINUE
NATOMS=NUMAT
C
C THIS IS A QUICK, IF CLUMSY, WAY TO CALCULATE NUMAT, AND TO REMOVE
C THE DUMMY ATOMS FROM THE ARRAY LABELS.
C
NVAR=NUMAT*3
DO 20 I=1,NUMAT
LOC(1,(I-1)*3+1)=I
LOC(2,(I-1)*3+1)=1
C
LOC(1,(I-1)*3+2)=I
LOC(2,(I-1)*3+2)=2
C
LOC(1,(I-1)*3+3)=I
LOC(2,(I-1)*3+3)=3
20 CONTINUE
LIN=(NVAR*(NVAR+1))/2
DO 30 I=1,LIN
30 FMATRX(I)=0.D0
PRNT =(INDEX(KEYWRD,'IRC=') .EQ. 0)
LOG =(INDEX(KEYWRD,'NOLOG') .EQ. 0)
PRECIS =(INDEX(KEYWRD,'PREC') .NE. 0)
RESTRT =(INDEX(KEYWRD,'RESTART') .NE. 0)
GROUP =(INDEX(KEYWRD,' GROUP').NE.0)
IF(INDEX(KEYWRD,'NLLSQ') .NE. 0) RESTRT=.FALSE.
DEBUG =(INDEX(KEYWRD,'FMAT') .NE. 0)
BIG =(INDEX(KEYWRD,'LARGE') .NE. 0 .AND. DEBUG)
IF(PRNT)WRITE(6,'(//4X,''FIRST DERIVATIVES WILL BE USED IN THE''
1,'' CALCULATION OF SECOND DERIVATIVES'')')
TLAST=TLEFT
RESFIL=.FALSE.
IF(RESTRT) THEN
ISTART = 0
I=0
CALL FORSAV(TOTIME,DELDIP,ISTART,FMATRX, COORD, NVAR,HEAT,
1 EVECS,JSTART,FCONST)
KOUNTF=(ISTART*(ISTART+1))/2
ISTART=ISTART+1
JSTART=JSTART+1
TIME2 = SECOND()
ELSE
KOUNTF=0
TOTIME=0.D0
IF (TSCF.GT.0.D0)TLEFT=TLEFT-TSCF-TDER
ISTART=1
ENDIF
C CALCULATE FMATRX
IF(ISTART.GT.1) THEN
ESTIME=(NVAR-ISTART+1)*TOTIME/(ISTART-1.D0)
ELSE
ESTIME=NVAR*(TSCF+TDER)*2.D0
IF (PRECIS) ESTIME=ESTIME*2.D0
ENDIF
IF(TSCF.GT.0)
1WRITE(6,'(/10X,''ESTIMATED TIME TO COMPLETE CALCULATION =''
2,F9.2,'' SECONDS'')')ESTIME
IF(RESTRT) THEN
IF(ISTART.LE.NVAR)
1 WRITE(6,'(/10X,''STARTING AGAIN AT LINE'',18X,I4)')ISTART
WRITE(6,'(/10X,''TIME USED UP TO RESTART ='',F22.2)')TOTIME
ENDIF
LU=KOUNTF
NUMAT=NVAR/3
DO 40 I=1,NVAR
40 EIGS(I)=0.D0
C
C READ IN THE SYMMETRY OPERATIONS, IF PRESENT
C
IF(GROUP) CALL SYMR
ISKIP=0
DO 110 I=ISTART,NVAR
IF(GROUP .AND. ((I-1)/3)*3.EQ.I-1)THEN
C
C START OF A NEW ATOM. DOES A SYMMETRY OPERATION RELATE AN ALREADY
C CALCULATED ATOM TO THIS ONE
C
J=(I+2)/3
CALL SYMPOP(FMATRX, J, ISKIP, DELDIP)
ENDIF
IF(ISKIP.GT.0) THEN
WRITE(6,'('' STEP:'',I4,'' '',9X, '' INTEGRAL =
1'',F10.2,'' TIME LEFT:'',F10.2)')I,TOTIME,TLEFT
ISKIP=ISKIP-1
LU=LU+I
GOTO 110
ENDIF
TIME2 = SECOND()
DELTA=1.D0/120.D0
IF(PRECIS)THEN
C
C DETERMINE A GOOD STEP SIZE
C
G2OLD(1)=100.D0
COORDL(I)=COORDL(I)+DELTA
CALL COMPFG(COORDL, .TRUE., ESCF, .TRUE., G2OLD, .TRUE.)
COORDL(I)=COORDL(I)-DELTA
DELTA=DELTA*10.D0/SQRT(DOT(G2OLD,G2OLD,NVAR))
C
C CONSTRAIN DELTA TO A 'REASONABLE' VALUE
C
DELTA=MIN(0.05D0,MAX(0.005D0,DELTA))
IF(DEBUG)WRITE(6,'(A,I3,A,F12.5)')' STEP:',I,' DELTA :',DELT
1A
G2OLD(1)=100.D0
COORDL(I)=COORDL(I)+DELTA
CALL COMPFG(COORDL, .TRUE., ESCF, .TRUE., G2OLD, .TRUE.)
IF(DEBUG)WRITE(6,'(A,F12.5)')' GNORM +1.0*DELTA',
1SQRT(DOT(G2OLD,G2OLD,NVAR))
COORDL(I)=COORDL(I)-DELTA*2.D0
G2RAD(1)=100.D0
CALL COMPFG(COORDL, .TRUE., HEATAA, .TRUE., G2RAD, .TRUE.)
COORDL(I)=COORDL(I)+DELTA
IF(DEBUG)WRITE(6,'(A,F12.5)')' GNORM -1.0*DELTA',
1SQRT(DOT(G2RAD,G2RAD,NVAR))
ELSE
IF(DEBUG)WRITE(6,'(A,I3,A,F12.5)')' STEP:',I,' DELTA :',DELT
1A
ENDIF
COORDL(I)=COORDL(I)+0.5D0*DELTA
GROLD(1)=100.D0
CALL COMPFG(COORDL, .TRUE., ESCF, .TRUE., GROLD, .TRUE.)
IF(DEBUG)WRITE(6,'(A,F12.5)')' GNORM +0.5*DELTA',
1SQRT(DOT(GROLD,GROLD,NVAR))
CALL CHRGE(P,Q)
DO 50 II=1,NUMAT
50 Q(II)=CORE(LABELS(II))-Q(II)
SUM = DIPOLE(P,Q,COORDL,DELDIP(1,I),0)
COORDL(I)=COORDL(I)-DELTA
GRAD(1)=100.D0
CALL COMPFG(COORDL, .TRUE., HEATAA, .TRUE., GRAD, .TRUE.)
IF(DEBUG)WRITE(6,'(A,F12.5)')' GNORM -0.5*DELTA',
1SQRT(DOT(GRAD,GRAD,NVAR))
CALL CHRGE(P,Q)
DO 60 II=1,NUMAT
60 Q(II)=CORE(LABELS(II))-Q(II)
SUM = DIPOLE(P,Q,COORDL,DEL2,0)
COORDL(I)=COORDL(I)+DELTA*0.5D0
DELDIP(1,I)=(DELDIP(1,I)-DEL2(1))*0.5D0/DELTA
DELDIP(2,I)=(DELDIP(2,I)-DEL2(2))*0.5D0/DELTA
DELDIP(3,I)=(DELDIP(3,I)-DEL2(3))*0.5D0/DELTA
LL=LU+1
LU=LL+I-1
L=0
IF(PRECIS)THEN
DO 70 KOUNTF=LL,LU
L=L+1
C
C G2OLD = X + 1.0*DELTA
C GROLD = X + 0.5*DELTA
C GRAD = X - 0.5*DELTA
C G2RAD = X - 1.0*DELTA
C
DUMY(L)= (8.D0*(GROLD(L)-GRAD(L))-(G2OLD(L)-G2RAD(L)))
1 /DELTA*FACT/24.D0
EIGS(L)=(2.D0*(GROLD(L)-GRAD(L))-(G2OLD(L)-G2RAD(L)))
1 /DELTA**3*FACT/56.D0
C
C CORRECT FOR 4'TH ORDER CONTAMINATION
C
C# CORR=MIN(ABS(DUMY(L)),ABS(EIGS(L))*0.0001D0)
C# DUMY(L)=DUMY(L)-SIGN(CORR,DUMY(L))
FMATRX(KOUNTF)=FMATRX(KOUNTF)+DUMY(L)
70 CONTINUE
L=L-1
DO 80 K=I,NVAR
L=L+1
KK=(K*(K-1))/2+I
DUMY(L)=(8.D0*(GROLD(L)-GRAD(L))-(G2OLD(L)-G2RAD(L)))
1 /DELTA*FACT/24.D0
EIGS(L)=(2.D0*(GROLD(L)-GRAD(L))-(G2OLD(L)-G2RAD(L)))
1 /DELTA**3*FACT/56.D0
C
C CORRECT FOR 4'TH ORDER CONTAMINATION
C
C# CORR=MIN(ABS(DUMY(L)),ABS(EIGS(L))*0.0001D0)
C# DUMY(L)=DUMY(L)-SIGN(CORR,DUMY(L))
FMATRX(KK)=FMATRX(KK)+DUMY(L)
80 CONTINUE
ELSE
DO 90 KOUNTF=LL,LU
L=L+1
DUMY(L)=((GROLD(L)-GRAD(L)))*0.25D0/DELTA*FACT
FMATRX(KOUNTF)=FMATRX(KOUNTF)+DUMY(L)
90 CONTINUE
L=L-1
DO 100 K=I,NVAR
L=L+1
KK=(K*(K-1))/2+I
DUMY(L)=((GROLD(L)-GRAD(L)))*0.25D0/DELTA*FACT
FMATRX(KK)=FMATRX(KK)+DUMY(L)
100 CONTINUE
ENDIF
IF(BIG)THEN
WRITE(6,'(A)')' CONTRIBUTIONS TO F-MATRIX'
WRITE(6,'(A)')' ELEMENT +1.0*DELTA +0.5*DELTA -0.5*DEL'
1//'TA -1.0*DELTA 2''ND ORDER 4TH ORDER'
WRITE(6,'(I7,6F12.6)')(L,G2OLD(L),GROLD(L),GRAD(L),G2RAD(L),
1DUMY(L),EIGS(L),L=1,NVAR)
ENDIF
TIME3 = SECOND()
TSTEP=TIME3-TIME2
TLEFT= MAX(0.1D0,TLEFT-TSTEP)
IF(TSTEP.GT.1.D6)TSTEP=TSTEP-1.D6
TOTIME= TOTIME+TSTEP
IF(RESFIL)THEN
WRITE(6,'('' STEP:'',I4,'' RESTART FILE WRITTEN, INTEGRAL ='
1',F10.2,'' TIME LEFT:'',F10.2)')I,TOTIME,TLEFT
IF(LOG)WRITE(11,'('' STEP:'',I4,'' RESTART FILE WRITTEN, '',
1''INTEGRAL ='',F10.2,'' TIME LEFT:'',F10.2)')I,TOTIME,TLEFT
RESFIL=.FALSE.
ELSE
WRITE(6,'('' STEP:'',I4,'' TIME ='',F9.2,'' SECS, INTEGRAL =
1'',F10.2,'' TIME LEFT:'',F10.2)')I,TSTEP,TOTIME,TLEFT
IF(LOG) WRITE(11,'('' STEP:'',I4,'' TIME ='',F9.2,'' SECS, '
1',''INTEGRAL ='',F10.2,'' TIME LEFT:'',F10.2)')I,TSTEP,TOTIME,TLEF
2T
ENDIF
ESTIM = TOTIME/I
IF(TLAST-TLEFT.GT.TDUMP)THEN
TLAST=TLEFT
RESFIL=.TRUE.
JSTART=1
II=I
CALL FORSAV(TOTIME,DELDIP,II,FMATRX, COORD,NVAR,HEAT,
1 EVECS,JSTART,FCONST)
ENDIF
IF(I.NE.NVAR.AND.TLEFT-10.D0 .LT. ESTIM) THEN
WRITE(6,'(//10X,''- - - - - - - TIME UP - - - - - - -'',//)'
1)
WRITE(6,'(/10X,'' POINT REACHED ='',I4)')I
WRITE(6,'(/10X,'' RESTART USING KEY-WORD "RESTART"'')')
WRITE(6,'(10X,''ESTIMATED TIME FOR THE NEXT STEP ='',F8.2,
1'' SECONDS'')')ESTIM
JSTART=1
II=I
CALL FORSAV(TOTIME,DELDIP,II,FMATRX, COORD,NVAR,HEAT,
1 EVECS,JSTART,FCONST)
WRITE(6,'(//10X,''FORCE MATRIX WRITTEN TO DISK'')')
NREAL=-1
RETURN
ENDIF
110 CONTINUE
DO 120 I=1,NATOMS
IF(ATMASS(I).LT.1.D-20.AND.LABELS(I).LT.99)THEN
CALL FORSAV(TOTIME,DELDIP,NVAR,FMATRX, COORD,NVAR,HEAT,
1 EVECS,ILOOP,FCONST)
WRITE(6,'(A)')' AT LEAST ONE ATOM HAS A ZERO MASS. A RESTART
1'
WRITE(6,'(A)')' FILE HAS BEEN WRITTEN AND THE JOB STOPPED'
STOP
ENDIF
120 CONTINUE
IF(ISTART.LE.NVAR .AND. INDEX(KEYWRD,'ISOT') .NE. 0)
1CALL FORSAV(TOTIME,DELDIP,NVAR,FMATRX, COORD,NVAR,HEAT,
2 EVECS,ILOOP,FCONST)
RETURN
END
|