1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
|
SUBROUTINE SYMPOP(H,I,ISKIP,DELDIP)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION H(*), DELDIP(3,*)
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
COMMON /ATOMS/ COORD, NATOMS, NVAR
DO 10 J = 1, NSYM
IF (IPO(I,J).LT.I) THEN
CALL SYMH(H, DELDIP, I, J)
ISKIP=3
C atom ipo(i,j) is suitable for transition dipole calc'n
C
K=I*3-2
C
C INSERT DELDIP ROTATION HERE
C
GOTO 20
ENDIF
10 CONTINUE
ISKIP=0
20 CONTINUE
RETURN
END
SUBROUTINE SYMR
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
*****************************************************************
*
* ON INPUT NONE
*
* ON OUTPUT R = SYMMETRY OPERATIONS
* IPO = PERMUTATION OPERATOR FOR SYMMETRY OPERATIONS
* NSYM = NUMBER OF SYMMETRY OPERATIONS
* NENT = NUMBER OF SYMMETRY OPERATIONS ENTERED
*
*****************************************************************
C
C A SUBROUTINE THAT WILL READ IN THE PRIMATIVE SYMMETRY OPERATIONS
C AND DETERMINE IF THEY ARE VALID FOR THIS MOLECULE. THIS
C INFORMATION IS THEN EXPANDED TO THE COMPLETE SET AND USED FOR
C SYMMATRIZING THE HESSIAN.
C
C THE CORRECT FORMAT FOR DESCRIBING A SYMMETRY FUNCTION IS:
C LABEL IFNCN AXIS
C
C WHERE:
C LABEL - MUST BE INCLUDED AND IS THE LABEL THAT WILL
C BE USED TO IDENTIFY THAT FUNCTION
C IFNCN - THE NUMBER OF THE SYMMETRY FUNCTION TO BE USED:
C 0 - INVERSION OPERATOR
C 1 - REFLECTION PLANE PERPENDICULAR TO THE AXIS
C 2-X - A C(N) AXIS
C -3-X - A S(N) AXIS
C AXIS - THE AXIS FOR THE OPERATION. MAY BE SPECIFIED AS:
C X, Y, Z COORDINATES -> MUST USE 3 VALUES. AT LEAST ONE
C MUST BE NON-INTEGER OR TWO MUST BE IDENTICAL
C AN ATOM LIST -> THE COORDINATES OF THE ATOMS LISTED WILL
C BE SUMMED TO GENERATE THE AXIS.
C A -B -> THE VECTOR FROM ATOM B TO ATOM A WILL BE USED AS
C THE AXIS.
C
C A MAXIMUM OF 6 SYMMETRY OPERATIONS CAN BE INPUTTED. THESE SHOULD BE THE
C UNIQUE GENERATING FUNCTIONS FROM WHICH ALL THE OPERATIONS OF THE GROUP
C CAN BE CONSTRUCTED. E.G. ONLY C5 NEEDS TO BE SPECIFIED SINCE C5(2)
C THROUGH C5(4) CAN BE GENERATED FROM THIS SINGLE FUNCTION.
C
C A MAXIMUM OF 8 UNIQUE ATOMS CAN BE USED TO SPECIFY AN AXIS.
C
C THE E FUNCTION IS BY DEFAULT THE FIRST SYMMETRY FUNCTION. THIS FUNCTION
C NEVER NEEDS TO BE EXPLICTLY INCLUDED IN YOUR LIST. IT CANNOT BE
C ENTERED.
C
C IF YOU ENTER A GIVEN SYMMETRY FUNCTION MORE THAN ONCE, ONLY THE FIRST
C OCCURANCE WILL BE USED. ALL DUPLICATES WILL BE DELETED.
C
DIMENSION TEMP(9), TEMP2(9), ISTART(7)
INTEGER ITEMP(9)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
COMMON /KEYWRD/ KEYWRD
CHARACTER KEYWRD*241
CHARACTER*80 LINE
LOGICAL LEADSP, PROB, ALLINT
C THE NEXT PARAMETERS ARE THE MAX NUMBER OF SYMM FUNCTIONS, THE
C MAX NUMBER OF SYMM FUNCTIONS TO READ IN, AND THE
C TOLERENCE USED TO DETERMINE IF TWO FUNCTIONS ARE IDENTICAL
PARAMETER (MAXFUN=120)
PARAMETER (MAXENT=6)
PARAMETER (TOL =1D-3)
C
C
C Variables used: (n represents the number of atomic centers)
C TEMP(9), TEMP2(9): Temporary matricies used to hold small parts
C larger matricies for specific matrix operations.
C
C For the next two items, the last index represents the symmetry
C operation number.
C R(9,*): The 9 elements of each record are a packed 3 by 3
C array of a given symmetry operations.
C IPO(n,*): A vector that contains the symmetry mapping of atomic ce
C
PROB = .FALSE.
C Get the symmetry functions: (NOTE: THE FIRST IS ALWAY E)
R(1,1) = 1.D0
R(2,1) = 0.D0
R(3,1) = 0.D0
R(4,1) = 0.D0
R(5,1) = 1.D0
R(6,1) = 0.D0
R(7,1) = 0.D0
R(8,1) = 0.D0
R(9,1) = 1.D0
C
X = 0.D0
Y = 0.D0
Z = 0.D0
DO 10 I=1,NUMAT
X = X + COORD(1,I)
Y = Y + COORD(2,I)
Z = Z + COORD(3,I)
IPO(I,1) = I
10 CONTINUE
XA = X/FLOAT(NUMAT)
YA = Y/FLOAT(NUMAT)
ZA = Z/FLOAT(NUMAT)
DO 20 I=1,NUMAT
COORD(1,I) = -XA + COORD(1,I)
COORD(2,I) = -YA + COORD(2,I)
COORD(3,I) = -ZA + COORD(3,I)
20 CONTINUE
WRITE(6,'(/'' SYMMETRY OPERATIONS USED FOR SYMMETRIZING'',
1'' THE HESSIAN'')')
WRITE(6,'(/,'' OPERATOR TYPE AXIS DEFINITION '')')
C
NENT = 1
NSYM = 0
ISYMT(1)='E'
30 NSYM = NSYM + 1
READ(5,'(A)',END=120,ERR=120)LINE
LEADSP=.TRUE.
NVALUE=0
ALLINT=.TRUE.
DO 40 I=1,80
IF (LEADSP.AND.LINE(I:I).NE.' ') THEN
NVALUE=NVALUE+1
ISTART(NVALUE)=I
ENDIF
LEADSP=(LINE(I:I).EQ.' ')
40 CONTINUE
IF (NVALUE.EQ.0) GOTO 120
IF (NVALUE.EQ.1) THEN
WRITE(6,200)
200 FORMAT(' NOT A VALID LINE. ONLY HAS ONE ENTRY')
PROB = .TRUE.
GOTO 120
ENDIF
ISYMT(1+NENT)=LINE(ISTART(1):ISTART(2)-1)
DO 50 I=2,NVALUE
TEMP(I-1)=READA(LINE,ISTART(I))
ITEMP(I-1)=NINT(TEMP(I-1))
IF((ABS(ITEMP(I-1)-TEMP(I-1)).GT.TOL).AND.(I.NE.2))
+ ALLINT=.FALSE.
50 CONTINUE
IF (ALLINT) THEN
WRITE(6,210)ISYMT(1+NENT),(ITEMP(I),I=1,NVALUE-1)
210 FORMAT(X,A10,I7,8I7)
ELSE
WRITE(6,220)ISYMT(1+NENT),ITEMP(1),(TEMP(I),I=2,NVALUE-1)
220 FORMAT(X,A10,I7,8F7.3)
ENDIF
SIGMA = 1
IF (ITEMP(1) .LE. -3) SIGMA = -1
TEMP(1) = ABS( TEMP(1))
ITEMP(1)= ABS(ITEMP(1))
IF (ABS(ITEMP(1)-TEMP(1)) .GE. TOL) THEN
WRITE(6,230)
230 FORMAT(' THE SYMMETRY FUNCTION MUST BE INTEGER')
PROB = .TRUE.
GOTO 120
ENDIF
IF (ITEMP(1) .EQ. 0) THEN
C WITH INVERSION, THE AXIS IS UNIMPORTANT
R(1,1+NENT) = -1.D0
R(2,1+NENT) = 0.D0
R(3,1+NENT) = 0.D0
R(4,1+NENT) = 0.D0
R(5,1+NENT) = -1.D0
R(6,1+NENT) = 0.D0
R(7,1+NENT) = 0.D0
R(8,1+NENT) = 0.D0
R(9,1+NENT) = -1.D0
GOTO 70
ENDIF
C WITH ANYTHING ELSE, THE AXIS MUST BE DETERMINED. IF NO AXIS IS DEFINED
C FLAG IT AS A PROBLEM
IF (NVALUE .EQ. 2) THEN
PROB = .TRUE.
WRITE(6,240) NSYM
240 FORMAT(' NO AXIS INFORMATION WAS ENTERED FOR FUNCTION',I2)
GOTO 120
ENDIF
IF ((NVALUE .EQ. 5).AND.((TEMP(2).EQ.TEMP(3))
+ .OR.(TEMP(2).EQ.TEMP(4)).OR.
+ (TEMP(3).EQ.TEMP(4)).OR.(.NOT. ALLINT).OR.
+ (ABS(ITEMP(2)).LT. 1).OR.(ABS(ITEMP(2)).GT.NUMAT) .OR.
+ (ABS(ITEMP(3)).LT. 1).OR.(ABS(ITEMP(3)).GT.NUMAT) .OR.
+ (ABS(ITEMP(4)).LT. 1).OR.(ABS(ITEMP(4)).GT.NUMAT))) THEN
C IT APPEARS TO BE XYZ INPUT
X = TEMP(2)
Y = TEMP(3)
Z = TEMP(4)
ELSE
C APPEARS TO BE ATOM NUMBER INPUT
IF (.NOT. ALLINT) THEN
PROB = .TRUE.
WRITE(6,250)
250 FORMAT(' YOU MUST HAVE ALL INTEGER INPUT WHEN NOT',
+ ' USING XYZ INPUT')
GOTO 120
ENDIF
X = 0.D0
Y = 0.D0
Z = 0.D0
DO 60 I = 2, NVALUE-1
IF ((ABS(ITEMP(I)).LT.1).OR.(ABS(ITEMP(I)).GT.NUMAT)) THEN
WRITE(6,260)ITEMP(I)
260 FORMAT(' ATOM NUMBER',I3,' IS OUT OF RANGE')
PROB=.TRUE.
ENDIF
X = X + ITEMP(I)/ABS(ITEMP(I))*COORD(1,ABS(ITEMP(I)))
Y = Y + ITEMP(I)/ABS(ITEMP(I))*COORD(2,ABS(ITEMP(I)))
Z = Z + ITEMP(I)/ABS(ITEMP(I))*COORD(3,ABS(ITEMP(I)))
60 CONTINUE
ENDIF
C
C TIME TO DECIPHER THE SYMMETRY FUNCTION
C
IF (ITEMP(1) .GT. 10) THEN
WRITE(6,270)
270 FORMAT(' A C-10 AXIS IS THE HIGHEST THAT CAN BE SPECIFIED')
PROB = .TRUE.
GOTO 120
ENDIF
ROT=4.D0*ASIN(1.D0)/ITEMP(1)
IF(ITEMP(1).EQ. 1) SIGMA = -1
C
C First, construct the matrix defining the rotation axis
XY=X**2+Y**2
RA=SQRT(XY+Z**2)
IF (RA.LT. TOL) THEN
PROB = .TRUE.
WRITE(6,280)
280 FORMAT(' YOUR VECTOR AXIS MUST HAVE A NON-ZERO LENGTH ')
GOTO 120
ENDIF
XY=SQRT(XY)
IF (XY.GT.1.D-10) THEN
CA=Y/XY
CB=Z/RA
SA=X/XY
SB=XY/RA
ELSEIF (Z.GT. 0.D0) THEN
CA=1.D0
CB=1.D0
SA=0.D0
SB=0.D0
ELSE
CA=-1.D0
CB=-1.D0
SA=0.D0
SB=0.D0
ENDIF
C GENERATE THE MATRIX ELEMENTS BY DOING THE EULER TRANSFORM
TEMP( 1)=CA
TEMP( 2)=-SA
TEMP( 3)=0.D0
TEMP( 4)=SA*CB
TEMP( 5)=CA*CB
TEMP( 6)=-SB
TEMP( 7)=SA*SB
TEMP( 8)=CA*SB
TEMP( 9)=CB
C
C
CA = DCOS(ROT)
SA = DSIN(ROT)
C
C The construct the actual R matrix to be used
C
C
TEMP2(1) = CA
TEMP2(2) = SA
TEMP2(3) = 0.D0
TEMP2(4) = -SA
TEMP2(5) = CA
TEMP2(6) = 0.D0
TEMP2(7) = 0.D0
TEMP2(8) = 0.D0
TEMP2(9) = SIGMA
CALL MAT33(TEMP, TEMP2, R(1,1+NENT))
C
C Now, verify that this is a unique and valid function
70 CONTINUE
C
RES = 10.D0
DO 90 I = 2, NENT
RESO = 0.D0
DO 80 J = 1, 9
80 RESO= ABS( R(J,I) - R(J,1+NENT)) + RESO
RES = MIN(RES, RESO)
90 CONTINUE
IF (RES .LT. TOL) THEN
C THIS IS NOT VALID FUNCTION
WRITE(6,290)
290 FORMAT(' THIS FUNCTION IS IDENTICAL TO AN EARLIER ONE')
GOTO 120
ENDIF
C NOW, TO CALCULATE THE IPO OF THIS FUNCTION
NENT = 1+NENT
N = NENT
C Now, to initialize IPO(n) and
C Perform R on each atomic center and determine where it maps to.
DO 110 I = 1, NUMAT
X=COORD(1,I)*R(1,N) + COORD(2,I)*R(2,N) + COORD(3,I)*R(3,N)
Y=COORD(1,I)*R(4,N) + COORD(2,I)*R(5,N) + COORD(3,I)*R(6,N)
Z=COORD(1,I)*R(7,N) + COORD(2,I)*R(8,N) + COORD(3,I)*R(9,N)
IPO(I,N) = 0
DO 100 J = 1, NUMAT
DIST=ABS(X-COORD(1,J))+ABS(Y-COORD(2,J))+ABS(Z-COORD(3,J))
IF (DIST .LT. 5.D-2) THEN
IF (IPO(I,N) .EQ. 0) THEN
IPO(I,N) = J
ELSE
WRITE(6,300)
PROB = .TRUE.
GOTO 120
300 FORMAT(' ONE ATOM MAPS ONTO TWO DIFFERENT ATOMIC C',
1'ENTERS')
ENDIF
ENDIF
100 CONTINUE
IF (IPO(I,N) .EQ. 0) THEN
WRITE(6,310)
310 FORMAT(' ONE ATOM MAPS ONTO NO OTHER ATOM ')
PROB = .TRUE.
GOTO 120
ENDIF
110 CONTINUE
C
C IF THIS POINT IS REACHED, THE FUNCTION IS VALID
C CHECK IF THE R MATRIX SHOULD BE PRINTED
C
IF (INDEX(KEYWRD,' RMAT') .NE. 0) THEN
WRITE(6,320)(R(I,N),I=1,3)
WRITE(6,330)N,(R(I,N),I=4,6)
WRITE(6,340)(R(I,N),I=7,9)
320 FORMAT(/,10X,'| ',3F10.6,' |')
330 FORMAT(I5,' = | ',3F10.6,' |')
340 FORMAT(10X,'| ',3F10.6,' |',/)
ENDIF
C
120 IF((NVALUE.NE.0).AND.(NSYM.LT.MAXENT)) GOTO 30
C
C If a problem exists. Stop the program.
C
IF (PROB) THEN
CLOSE (6)
STOP 'PROBLEM IN SYMR'
ENDIF
C
C NOW, ALL USER FUNCTIONS ARE IN WITH NO ERRORS (JUST ELIMINATION OF DUPS)
C
IF(NVALUE.NE.0) READ(5,'(A)',END=130)LINE
130 CONTINUE
NSYM = NENT
C
C NEXT, EXPAND THE EXISTING OPERATORS TO THE FULL SET
C
CALL SYMP
C
RETURN
END
SUBROUTINE SYMH(H, DIP, I, N)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION H(*), DIP(3,*)
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
*****************************************************************
*
C INPUT: H() A packed lower triangular hessian
C DIP(,) A MATRIX OF DIPOLE TENSORS TO BE SYMM
C R(,) A matrix of symmetry operations
C IPO(,) A matrix of atomic mapping according to R
C I The atom (row and column) to add to H()
C N The symmetry operation to use to generate I
C
C OUTPUT: H() A packed lower triangular Hessian with information
C about atom I added
C DIP(,) A MATRIX OF DIPOLE TENSORS THAT HAVE BEEN SYMM
C
*****************************************************************
C
C
C This subroutine will add all necessary information to the Hessian con
C atom I. Since the Hessian is a packed lower half triangle, the exi
C information for atom pair (K,L) where K,L < I is fully known, (K >
C L < I) or (vice versa) is half known, K,L > I is completely unknown
C Therefore, start in unknown region and make it half known. Double
C known values, and move in the diagonal element at full strength.
C
C
DIMENSION TEMP(9), TEMP2(9)
COMMON /FOKMAT/ HA(MPACK*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
C
C
C
C Variables used: (n represents the number of atomic centers)
C H(3n,3n): Input/output matrix. It is a packed lower half triangu
C matrix. Commonly, the Hessian.
C TEMP(9), TEMP2(9): Temporary matricies used to hold small parts
C larger matricies for specific matrix operations.
C
C For the next two items, the last indicy represents the symmetry
C operation number.
C R(14,*): The first 9 elements of each record are a packed 3 by 3
C array of a given symmetry operations. Elements 10 - 14 are t
C users input describing the symmetry operation.
C IPO(n,*): A vector that contains the symmetry mapping of atomic c
C
C
K = IPO(I,N)
C
C Now, to climb up the matrix
DO 10 J = NUMAT, I+1, -1
L = IPO(J,N)
C
C Now, to actually perform R H R
C
C Do this multiplication in a 3 by 3 block at a time. Store H(i,j) in
C H( IPO(I,N), IPO(J,N))
C
IF (K .GT. L) THEN
IEL33 = (3*K*(3*K-1))/2 + 3*L
TEMP(9) = 0.5D0 * H(IEL33)
TEMP(8) = 0.5D0 * H(IEL33-1)
TEMP(7) = 0.5D0 * H(IEL33-2)
TEMP(6) = 0.5D0 * H(IEL33-K*3+1)
TEMP(5) = 0.5D0 * H(IEL33-K*3)
TEMP(4) = 0.5D0 * H(IEL33-K*3-1)
TEMP(3) = 0.5D0 * H(IEL33-6*K+3)
TEMP(2) = 0.5D0 * H(IEL33-6*K+2)
TEMP(1) = 0.5D0 * H(IEL33-6*K+1)
ELSE
IEL33 = (3*L*(3*L-1))/2 + 3*K
FACT = 1.0D0
IF (L .LT. I) FACT = 0.5D0
TEMP(9) = FACT * H(IEL33)
TEMP(6) = FACT * H(IEL33-1)
TEMP(3) = FACT * H(IEL33-2)
TEMP(8) = FACT * H(IEL33-L*3+1)
TEMP(5) = FACT * H(IEL33-L*3)
TEMP(2) = FACT * H(IEL33-L*3-1)
TEMP(7) = FACT * H(IEL33-6*L+3)
TEMP(4) = FACT * H(IEL33-6*L+2)
TEMP(1) = FACT * H(IEL33-6*L+1)
ENDIF
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
IEL33 = J*3*(J*3-1)/2 + I*3
H(IEL33) = TEMP2(9)
H(IEL33-3*J+1) = TEMP2(8)
H(IEL33-6*J+3) = TEMP2(7)
H(IEL33-1) = TEMP2(6)
H(IEL33-3*J) = TEMP2(5)
H(IEL33-6*J+2) = TEMP2(4)
H(IEL33-2) = TEMP2(3)
H(IEL33-3*J-1) = TEMP2(2)
H(IEL33-6*J+1) = TEMP2(1)
10 CONTINUE
C
C Now, to do the diagonal term
C
IEL33 = (3*K*(3*K+1))/2
TEMP(9) = 0.5D0 * H(IEL33)
TEMP(8) = 0.5D0 * H(IEL33-1)
TEMP(7) = 0.5D0 * H(IEL33-2)
TEMP(6) = TEMP(8)
TEMP(5) = 0.5D0 * H(IEL33-K*3)
TEMP(4) = 0.5D0 * H(IEL33-K*3-1)
TEMP(3) = TEMP(7)
TEMP(2) = TEMP(4)
TEMP(1) = 0.5D0 * H(IEL33-6*K+1)
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
IEL33 = I*3*(I*3+1)/2
H(IEL33) = TEMP2(9)
H(IEL33-1) = TEMP2(8)
H(IEL33-2) = TEMP2(7)
H(IEL33-I*3) = TEMP2(5)
H(IEL33-I*3-1) = TEMP2(4)
H(IEL33-6*I+1) = TEMP2(1)
C
C NOW, TO ROTATE THE DIPOLE TENSOR TERM
C
TEMP(9) = DIP(3,K*3 )
TEMP(8) = DIP(2,K*3 )
TEMP(7) = DIP(1,K*3 )
TEMP(6) = DIP(3,K*3-1)
TEMP(5) = DIP(2,K*3-1)
TEMP(4) = DIP(1,K*3-1)
TEMP(3) = DIP(3,K*3-2)
TEMP(2) = DIP(2,K*3-2)
TEMP(1) = DIP(1,K*3-2)
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
DIP(3,I*3 ) = TEMP2(9)
DIP(2,I*3 ) = TEMP2(8)
DIP(1,I*3 ) = TEMP2(7)
DIP(3,I*3-1) = TEMP2(6)
DIP(2,I*3-1) = TEMP2(5)
DIP(1,I*3-1) = TEMP2(4)
DIP(3,I*3-2) = TEMP2(3)
DIP(2,I*3-2) = TEMP2(2)
DIP(1,I*3-2) = TEMP2(1)
C
C
C Now, to double all existing values going across
ISTART = (I-1)*3*((I-1)*3+1)/2+1
DO 20 J = ISTART, IEL33
H(J) = H(J) + H(J)
20 CONTINUE
C Everything is now done for this symmetry element.
C
RETURN
END
SUBROUTINE SYMA(E, V)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION E(NUMAT*3), V(NUMAT*NUMAT*9)
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
*********************************************************************
*
* ON INPUT E = FREQUENCIES IN CM(-1)
* V = EIGENVECTORS OF NORMAL MODES, NORMALIZED
* R = SYMMETRY OPERATIONS
* IPO = MAP OF ATOMS BEING MOVED
* NSYM = NUMBER OF SYMMETRY OPERATION
*
*********************************************************************
C
C THIS SUBROUTINE DETERMINES THE SYMMETRY FUNCTION VALUE OF EACH
C VIBRATIONAL MODE. IT DOES IT BY DOING <EV R EV>
C
COMMON /COORD / COORD(3,NUMATM)
COMMON /KEYWRD/ KEYWRD
DIMENSION T1(MAXPAR), T2(MAXPAR,7)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
CHARACTER KEYWRD*241
C
TOL=1.D-3
C
NVAR=NUMAT*3
C
C T1(NVAR) AND T2(NVAR,NSYM) ARE THE ONLY ADDITIONAL ARRAYS NEEDED. TH
C ARE TEMPORARY ARRAYS.
DO 30 K = 0, NVAR-1
DO 20 N = 1, NENT
DO 10 I = 1, NUMAT
C
J=IPO(I,N)
T1(I*3-2)=V(J*3-2+K*NVAR)*R(1,N)+
1 V(J*3-1+K*NVAR)*R(4,N)+
2 V(J*3 +K*NVAR)*R(7,N)
T1(I*3-1)=V(J*3-2+K*NVAR)*R(2,N)+
1 V(J*3-1+K*NVAR)*R(5,N)+
2 V(J*3 +K*NVAR)*R(8,N)
T1(I*3 )=V(J*3-2+K*NVAR)*R(3,N)+
1 V(J*3-1+K*NVAR)*R(6,N)+
2 V(J*3 +K*NVAR)*R(9,N)
10 CONTINUE
T2(K+1,N) = 0.0D0
DO 20 I = 1, NVAR
T2(K+1,N) = T2(K+1,N) + T1(I)*V(I+K*NVAR)
20 CONTINUE
30 CONTINUE
WRITE(6,100)
WRITE(6,'('' '',7A9)')(ISYMT(I),I=1,NENT)
100 FORMAT(' FREQ.',/,' NO. FREQ. CHARACTER TABLE ')
I=1
J=I+1
IF (INDEX(KEYWRD,' NODEGEN') .NE. 0) TOL = -1.D0
EREF = E(1)
110 IF(ABS((E(J)-EREF)) .LE. TOL) THEN
DO 120 K = 1, NENT
120 T2(I,K) = T2(I,K) + T2(J,K)
E(I) = (E(I) + E(J))
J = J+1
ELSE
E(I)=E(I)/FLOAT(J-I)
WRITE(6,130)I,E(I),(T2(I,K),K=1,NENT)
I=J
J=J+1
EREF=E(I)
ENDIF
IF (J .LE. NVAR) GOTO 110
E(I)=E(I)/FLOAT(J-I)
WRITE(6,130)I,E(I),(T2(I,K),K=1,NENT)
130 FORMAT(I4,F9.3,3X,7F9.4)
END
SUBROUTINE SYMT(H, DELDIP)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION H(*), DELDIP(3,*)
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
*****************************************************************
*
* ON INPUT H = HESSIAN MATRIX, PACKED LOWER HALF TRIANGLE
* R = SYMMETRY OPERATIONS
* IPO = MAP OF ATOMS MOVED
* NSYM = NUMBER OF SYMMETRY OPERATIONS
*
* ON OUTPUT H = SYMMETRIZED HESSIAN MATRIX
*
*****************************************************************
C A subroutine that will symmatrize the Hamiltonian, or other matrix
C by successive application of group operations. The method used
C is R H R added to HA then divided by the total number of symmetry
C operations used. This in effects averages all the values in a
C symmetry correct fashion.
C
DIMENSION TEMP(9), TEMP2(9), DELTMP(3,MAXPAR)
COMMON /FOKMAT/ HA(MPACK*2)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
C
C
C Variables used: (n represents the number of atomic centers)
C H(3n,3n): Input/output matrix. It is a packed lower half triangu
C matrix. Commonly, the Hessian.
C HA(3n,3n): An internal matrix used to sum the symatrized Hessian
C NSYM: Input, the value of this symmetry operation.
C TEMP(9), TEMP2(9): Temporary matricies used to hold small parts
C larger matricies for specific matrix operations.
C
C For the next two items, the last indicy represents the symmetry
C operation number.
C IPO(n,*): A vector that contains the symmetry mapping of atomic c
C
C Skip this subroutine if NSYMM <= 0. This implies that only E is pre
IF (NSYM .LT. 2) RETURN
C
DO 10 I=1,(3*NUMAT*(NUMAT*3+1))/2
10 HA(I)=0.D0
C
DO 15 I = 1, NUMAT*3
DELTMP(1,I) = 0.D0
DELTMP(2,I) = 0.D0
15 DELTMP(3,I) = 0.D0
C
DO 40 N = 1, NSYM
C
C Now, to actually perform R H R
DO 30 I = 1, NUMAT
DO 20 J = 1, I-1
C
C Do this multiplication in a 3 by 3 block at a time. Store H(i,j) in
C HA( IPO(I,N), IPO(J,N)) or HS( IPO(I,N), IPO(J,N))
C
K = IPO(I,N)
L = IPO(J,N)
IF (K .GT. L) THEN
IEL33 = (3*K*(3*K-1))/2 + 3*L
TEMP(9) = H(IEL33)
TEMP(8) = H(IEL33-1)
TEMP(7) = H(IEL33-2)
TEMP(6) = H(IEL33-K*3+1)
TEMP(5) = H(IEL33-K*3)
TEMP(4) = H(IEL33-K*3-1)
TEMP(3) = H(IEL33-6*K+3)
TEMP(2) = H(IEL33-6*K+2)
TEMP(1) = H(IEL33-6*K+1)
ELSE
IEL33 = (3*L*(3*L-1))/2 + 3*K
TEMP(9) = H(IEL33)
TEMP(6) = H(IEL33-1)
TEMP(3) = H(IEL33-2)
TEMP(8) = H(IEL33-L*3+1)
TEMP(5) = H(IEL33-L*3)
TEMP(2) = H(IEL33-L*3-1)
TEMP(7) = H(IEL33-6*L+3)
TEMP(4) = H(IEL33-6*L+2)
TEMP(1) = H(IEL33-6*L+1)
ENDIF
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
IEL33 = I*3*(I*3-1)/2 + J*3
HA(IEL33) = TEMP2(9) + HA(IEL33)
HA(IEL33-1) = TEMP2(8) + HA(IEL33-1)
HA(IEL33-2) = TEMP2(7) + HA(IEL33-2)
HA(IEL33-I*3+1) = TEMP2(6) + HA(IEL33-I*3+1)
HA(IEL33-I*3) = TEMP2(5) + HA(IEL33-I*3)
HA(IEL33-I*3-1) = TEMP2(4) + HA(IEL33-I*3-1)
HA(IEL33-6*I+3) = TEMP2(3) + HA(IEL33-6*I+3)
HA(IEL33-6*I+2) = TEMP2(2) + HA(IEL33-6*I+2)
HA(IEL33-6*I+1) = TEMP2(1) + HA(IEL33-6*I+1)
20 CONTINUE
K = IPO(I,N)
IEL33 = (3*K*(3*K+1))/2
TEMP(9) = H(IEL33)
TEMP(8) = H(IEL33-1)
TEMP(7) = H(IEL33-2)
TEMP(6) = TEMP(8)
TEMP(5) = H(IEL33-K*3)
TEMP(4) = H(IEL33-K*3-1)
TEMP(3) = TEMP(7)
TEMP(2) = TEMP(4)
TEMP(1) = H(IEL33-6*K+1)
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
IEL33 = I*3*(I*3+1)/2
HA(IEL33) = TEMP2(9) + HA(IEL33)
HA(IEL33-1) = TEMP2(8) + HA(IEL33-1)
HA(IEL33-2) = TEMP2(7) + HA(IEL33-2)
HA(IEL33-I*3) = TEMP2(5) + HA(IEL33-I*3)
HA(IEL33-I*3-1) = TEMP2(4) + HA(IEL33-I*3-1)
HA(IEL33-6*I+1) = TEMP2(1) + HA(IEL33-6*I+1)
C
C APPLY SYMMETRY TO DIPOLE TERM AS WELL
C
TEMP(9) = DELDIP(3,K*3 )
TEMP(8) = DELDIP(2,K*3 )
TEMP(7) = DELDIP(1,K*3 )
TEMP(6) = DELDIP(3,K*3-1)
TEMP(5) = DELDIP(2,K*3-1)
TEMP(4) = DELDIP(1,K*3-1)
TEMP(3) = DELDIP(3,K*3-2)
TEMP(2) = DELDIP(2,K*3-2)
TEMP(1) = DELDIP(1,K*3-2)
C
CALL MAT33(R(1,N), TEMP, TEMP2)
C
DELTMP(3,I*3 ) = TEMP2(9) + DELTMP(3,I*3 )
DELTMP(2,I*3 ) = TEMP2(8) + DELTMP(2,I*3 )
DELTMP(1,I*3 ) = TEMP2(7) + DELTMP(1,I*3 )
DELTMP(3,I*3-1) = TEMP2(6) + DELTMP(3,I*3-1)
DELTMP(2,I*3-1) = TEMP2(5) + DELTMP(2,I*3-1)
DELTMP(1,I*3-1) = TEMP2(4) + DELTMP(1,I*3-1)
DELTMP(3,I*3-2) = TEMP2(3) + DELTMP(3,I*3-2)
DELTMP(2,I*3-2) = TEMP2(2) + DELTMP(2,I*3-2)
DELTMP(1,I*3-2) = TEMP2(1) + DELTMP(1,I*3-2)
C
30 CONTINUE
40 CONTINUE
C
DO 50 I = 1, (NUMAT*3*(NUMAT*3+1))/2
50 H(I) = HA(I)/NSYM
C
DO 60 I = 1, 3*NUMAT
DELDIP(1,I) = DELTMP(1,I)/NSYM
DELDIP(2,I) = DELTMP(2,I)/NSYM
60 DELDIP(3,I) = DELTMP(3,I)/NSYM
C
RETURN
END
SUBROUTINE MAT33(A, B, C)
C A subroutine that will multiply two 3 by 3 matricies in the following
C fashion: C = A(transpose) B A
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(9), B(9), C(9), T(9)
C
C
T(1) = B(1)*A(1) + B(2)*A(4) + B(3)*A(7)
T(2) = B(1)*A(2) + B(2)*A(5) + B(3)*A(8)
T(3) = B(1)*A(3) + B(2)*A(6) + B(3)*A(9)
T(4) = B(4)*A(1) + B(5)*A(4) + B(6)*A(7)
T(5) = B(4)*A(2) + B(5)*A(5) + B(6)*A(8)
T(6) = B(4)*A(3) + B(5)*A(6) + B(6)*A(9)
T(7) = B(7)*A(1) + B(8)*A(4) + B(9)*A(7)
T(8) = B(7)*A(2) + B(8)*A(5) + B(9)*A(8)
T(9) = B(7)*A(3) + B(8)*A(6) + B(9)*A(9)
C
C(1) = A(1)*T(1) + A(4)*T(4) + A(7)*T(7)
C(2) = A(1)*T(2) + A(4)*T(5) + A(7)*T(8)
C(3) = A(1)*T(3) + A(4)*T(6) + A(7)*T(9)
C(4) = A(2)*T(1) + A(5)*T(4) + A(8)*T(7)
C(5) = A(2)*T(2) + A(5)*T(5) + A(8)*T(8)
C(6) = A(2)*T(3) + A(5)*T(6) + A(8)*T(9)
C(7) = A(3)*T(1) + A(6)*T(4) + A(9)*T(7)
C(8) = A(3)*T(2) + A(6)*T(5) + A(9)*T(8)
C(9) = A(3)*T(3) + A(6)*T(6) + A(9)*T(9)
C
RETURN
END
SUBROUTINE SYMP
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SYMOPC/ ISYMT(6)
CHARACTER*10 ISYMT
CHARACTER*5 OPER
*****************************************************************
*
* ON INPUT R = SYMMETRY OPERATIONS (7 MAX)
* IPO = PERM OPR FOR ABOVE OPERATIONS
* NSYM = CURRENT NUMBER OF SYMMETRY OPERATIONS
* NENT = NUMBER OF USER SUPPLIED OPERATIONS
*
* ON OUTPUT R = SYMMETRY OPERATIONS (120 MAX)
* IPO = PERMUTATION OPERATOR FOR SYMMETRY OPERATIONS
* NSYM = NUMBER OF SYMMETRY OPERATIONS
*
*****************************************************************
C
C A SUBROUTINE THAT WILL EXPAND THE SYMMETRY OPERATIONS READ IN INTO
C THE COMPLETE SET. NOTE: VERY FEW OPERATIONS ARE REQUIRED TO
C GENERATE EVEN VERY LARGE GROUPS OF OPERATIONS.
C
C
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
COMMON /KEYWRD/ KEYWRD
CHARACTER KEYWRD*241
C THE NEXT PARAMETERS ARE THE MAX NUMBER OF SYMM FUNCTIONS, THE
C MAX NUMBER OF SYMM FUNCTIONS TO READ IN, AND THE
C TOLERENCE USED TO DETERMINE IF TWO FUNCTIONS ARE IDENTICAL
PARAMETER (MAXFUN=120)
PARAMETER (TOL =1D-2)
C
C
C Variables used: (n represents the number of atomic centers)
C
C For the next two items, the last index represents the symmetry
C operation number.
C R(9,*): The 9 elements of each record are a packed 3 by 3
C array of a given symmetry operations.
C IPO(n,*): A vector that contains the symmetry mapping of atomic ce
C
C NSYM IS ALWAYS THE UPPER BOUND OF THE VALID FUNCTIONS. QUIT IF IT
C REACHES 120.
C I IS THE SLOW INDEX OF FUNCTIONS TO MULTIPLY
C J IS THE FAST INDEX OF FUNCTIONS TO MULTIPLY
C ALWAYS DO R(I)*R(J) AND TAKE I,J FROM 2 TO NSYM
C
I = 2
J = 1
C
C IF MORE INFORMATION IS WANTED, PRINT HEADDER.
C
IF (INDEX(KEYWRD,' RMAT') .NE. 0)WRITE(6,100)
100 FORMAT(/,' ENTERING THE SYMMETRY GENERATING ROUTINE ',
+/,' NUMBER SYMM. OPER. * ',
+ ' NUMBER SYMM. OPER. = ',
+ ' NUMBER SYMM. OPER.')
C DETERMINE IF IT IS TIME TO STOP
C
10 J = J+1
IF (J .GT. NSYM) THEN
J = 2
I = I+1
IF (I .GT. NSYM) GOTO 50
ENDIF
IF(NSYM .EQ. MAXFUN) GOTO 50
C
C NOW TO START THE MULTIPLICATION
C
R(1,NSYM+1)=R(1,I)*R(1,J)+R(2,I)*R(4,J)+R(3,I)*R(7,J)
R(2,NSYM+1)=R(1,I)*R(2,J)+R(2,I)*R(5,J)+R(3,I)*R(8,J)
R(3,NSYM+1)=R(1,I)*R(3,J)+R(2,I)*R(6,J)+R(3,I)*R(9,J)
R(4,NSYM+1)=R(4,I)*R(1,J)+R(5,I)*R(4,J)+R(6,I)*R(7,J)
R(5,NSYM+1)=R(4,I)*R(2,J)+R(5,I)*R(5,J)+R(6,I)*R(8,J)
R(6,NSYM+1)=R(4,I)*R(3,J)+R(5,I)*R(6,J)+R(6,I)*R(9,J)
R(7,NSYM+1)=R(7,I)*R(1,J)+R(8,I)*R(4,J)+R(9,I)*R(7,J)
R(8,NSYM+1)=R(7,I)*R(2,J)+R(8,I)*R(5,J)+R(9,I)*R(8,J)
R(9,NSYM+1)=R(7,I)*R(3,J)+R(8,I)*R(6,J)+R(9,I)*R(9,J)
C
C IS IT UNIQUE?
C
DO 30 N = 1, NSYM
RES = 0.D0
DO 20 M = 1, 9
20 RES = RES + ABS(R(M,N) - R(M,NSYM+1))
IF (RES .LT. TOL) GOTO 10
30 CONTINUE
C
C YES, IT IS UNIQUE. NOW, GENERATE THE NEW IPO(,NSYM)
C
NSYM = NSYM + 1
DO 40 N = 1, NUMAT
40 IPO(N,NSYM) = IPO(IPO(N,J),I)
C
C ALL DONE ADDING THE NEW FUNCTION. GO TRY TO FIND A NEW ONE.
C BUT FIRST, SEE IF WE NEED TO PRINT THIS.
C
IF (INDEX(KEYWRD,' RMAT') .NE. 0)
+ WRITE(6,110)I,OPER(R(1,I)),J,OPER(R(1,J)),NSYM,OPER(R(1,NSYM))
110 FORMAT(8X,I3,6X,A5,4X,'*',8X,I3,6X,A5,4X,'=',8X,I3,6X,A5)
IF (INDEX(KEYWRD,' RMAT') .NE. 0) THEN
WRITE(6,120)(R(K,I),K=1,3),(R(K,J),K=1,3),(R(K,NSYM),K=1,3)
WRITE(6,130)(R(K,I),K=4,6),(R(K,J),K=4,6),(R(K,NSYM),K=4,6)
WRITE(6,140)(R(K,I),K=7,9),(R(K,J),K=7,9),(R(K,NSYM),K=7,9)
120 FORMAT(' |',3F7.3,' | |',3F7.3,' | |',3F7.3,' |')
130 FORMAT(' |',3F7.3,' | * |',3F7.3,' | = |',3F7.3,' |')
140 FORMAT(' |',3F7.3,' | |',3F7.3,' | |',3F7.3,' |',/)
ENDIF
C
GOTO 10
C
C
50 CONTINUE
C
C NOW, TO DO FINAL WRAPUP
C
WRITE(6,150)NSYM
150 FORMAT(/,' THERE ARE ',I3,' UNIQUE SYMMETRY FUNCTIONS.',/)
C
C PRINT THE IPO MATRIX IF ASKED FOR.
C
IF(INDEX(KEYWRD,' IPO') .NE. 0) THEN
WRITE(6,160)
160 FORMAT(/,20X,'THE PERMUTATION MATRIX')
I = 1
J = MIN(12,NSYM)
60 WRITE(6,170)(K,K=I,J)
170 FORMAT(/,/,5X,'OPER. NO. ',12I5)
WRITE(6,175)(OPER(R(1,K)),K=I,J)
175 FORMAT(5X,'SYMM. OPER. ',12A5)
WRITE(6,180)
180 FORMAT(5X,'ATOM NO.')
DO 70 K = 1, NUMAT
70 WRITE(6,190)K,(IPO(K,L),L=I,J)
190 FORMAT(I10,5X,12I5)
IF (J .LT. NSYM) THEN
I = J+1
J = MIN(J+12,NSYM)
GOTO 60
ENDIF
ENDIF
RETURN
END
CHARACTER*5 FUNCTION OPER(R)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER OPR*5, NUM*10
DIMENSION R(9)
C
C
OPR = ' '
NUM = '0123456789'
TRACE = R(1) + R(5) + R(9)
DET = R(1)*R(5)*R(9) + R(2)*R(6)*R(7) + R(3)*R(4)*R(8)
+ - R(1)*R(6)*R(8) - R(2)*R(4)*R(9) - R(3)*R(5)*R(7)
TRACE = (TRACE - DET)/2.D0
IF (DET .GT. 0.D0) THEN
OPR(1:1) = 'C'
IF (TRACE .GT. 0.97D0) THEN
OPR(1:1) = 'E'
GOTO 20
ENDIF
ELSE
OPR(1:1) = 'S'
IF (TRACE .GT. 0.97D0) THEN
OPR(1:5) = 'Sigma'
GOTO 20
ENDIF
IF (TRACE .LT. -0.97D0) THEN
OPR(1:5) = ' Inv '
GOTO 20
ENDIF
ENDIF
IF (TRACE .LT. -0.97D0) THEN
OPR(2:2) = NUM(3:3)
GOTO 20
ENDIF
ANG = ACOS(TRACE)
AFULL = ACOS(-1.0D0)*2.D0
DO 10 I = 3, 18
ANS = I*ANG/AFULL
IF (ABS(ANS - NINT(ANS)) .LE. 2.5D-3) THEN
IF(I .GE.10) THEN
OPR(2:2) = NUM(2:2)
OPR(3:3) = NUM(I-9:I-9)
ELSE
OPR(2:2) = NUM(I+1:I+1)
ENDIF
IF (NINT(ANS) .NE. 1) THEN
OPR(4:5) = '* '
OPR(5:5) = NUM(NINT(ANS)+1:NINT(ANS)+1)
ENDIF
GOTO 20
ENDIF
10 CONTINUE
OPR(2:5) = 'Unkn'
C
20 OPER = OPR
RETURN
END
|