File: RndFunc.pas

package info (click to toggle)
morserunner 0.9%2Blinux-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,384 kB
  • sloc: pascal: 5,344; makefile: 4
file content (144 lines) | stat: -rw-r--r-- 3,129 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//------------------------------------------------------------------------------
//This Source Code Form is subject to the terms of the Mozilla Public
//License, v. 2.0. If a copy of the MPL was not distributed with this
//file, You can obtain one at http://mozilla.org/MPL/2.0/.
//------------------------------------------------------------------------------
unit RndFunc;

{$MODE Delphi}

interface

uses
  SysUtils, Math, SndTypes, Ini;

function RndNormal: Single;
function RndGaussLim(AMean, ALim: Single): Single;
function RndRayleigh(AMean: Single): Single;
function BlocksToSeconds(Blocks: Single): Single;
function SecondsToBlocks(Sec: Single): integer;
function RndUniform: Single;
function RndUShaped: Single;
function RndPoisson(AMean: Single): integer;


implementation

function RndNormal: Single;
begin
  repeat
    try
      Result := Sqrt(-2 * Ln(Random)) * Cos(TWO_PI * Random);
      Exit;
    except
    end;
  until
    False;
end;


function RndGaussLim(AMean, ALim: Single): Single;
begin
  Result := AMean + RndNormal * 0.5 * ALim;
  Result := Max(AMean-ALim, Min(AMean+ALim, Result));
end;


function RndRayleigh(AMean: Single): Single;
begin
  Result := AMean * Sqrt(-Ln(Random) - Ln(Random));
end;


function SecondsToBlocks(Sec: Single): integer;
begin
  Result := Round(DEFAULTRATE / Ini.BufSize * Sec);
end;

function BlocksToSeconds(Blocks: Single): Single;
begin
  Result := Blocks * Ini.BufSize / DEFAULTRATE;
end;

function RndUniform: Single;
begin
  Result := 2*Random - 1;
end;


function RndUShaped: Single;
begin
  Result := Sin(Pi*(Random-0.5));
end;


//http://www.library.cornell.edu/nr/bookcpdf/c7-3.pdf
function RndPoisson(AMean: Single): integer;
var
  g, t: Single;
begin
  g := Exp(-AMean);
  t := 1;
  for Result:=0 to 30 do
    begin
    t := t * Random;
    if t <= g then Break;
    end;
end;

{
//http://www.esbconsult.com.au/
function RndPoisson(AMean: Single): integer;
var
  p,q,p0,u: Extended;
  l,m,j,k: integer;
     pp: array [1..35] of Extended;
begin
  // C A S E  B.    mu < 10
  // START NEW TABLE AND CALCULATE P0 IF NECESSARY

  m := Max(1, Trunc (AMean));
  l := 0;
  p := Exp(-AMean);
  q := p;
  p0 := p;

  //  STEP U. UNIFORM SAMPLE FOR INVERSION METHOD

  repeat
    u := Random;
    Result := 0;
    if (u <= p0) then Exit;

    // STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE
    // PP-TABLE OF CUMULATIVE POISSON PROBABILITIES
    // (0.458=PP(9) FOR MU=10)
    if l <> 0 then
      begin
      j := 1;
      if (u > 0.458) then j := Min(l, m);
      for k := j to l do
       if (u <= pp [k]) then
         begin Result := K; Exit; end;

      if l = 35 then Continue;
      end;

    // STEP C. CREATION OF NEW POISSON PROBABILITIES P
    // AND THEIR CUMULATIVES Q=PP(K)
    l := l + 1; // 150
    for k := l to 35 do
      begin
      p := p * AMean / k;
      q := q + p;
      pp [k] := q;
      if (u <= q) then begin Result := K; Exit; end;
      end;
    l := 35;
  until False;
end;
}


end.