1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
#ifndef CLASSIFYSEQSCOMMAND_H
#define CLASSIFYSEQSCOMMAND_H
/*
* classifyseqscommand.h
* Mothur
*
* Created by westcott on 11/2/09.
* Copyright 2009 Schloss Lab. All rights reserved.
*
*/
#include "command.hpp"
#include "classify.h"
#include "referencedb.h"
#include "sequence.hpp"
#include "bayesian.h"
#include "phylotree.h"
#include "phylosummary.h"
#include "knn.h"
#include "kmertree.h"
#include "aligntree.h"
//KNN and Wang methods modeled from algorithms in
//Naı¨ve Bayesian Classifier for Rapid Assignment of rRNA Sequences
//into the New Bacterial Taxonomy†
//Qiong Wang,1 George M. Garrity,1,2 James M. Tiedje,1,2 and James R. Cole1*
//Center for Microbial Ecology1 and Department of Microbiology and Molecular Genetics,2 Michigan State University,
//East Lansing, Michigan 48824
//Received 10 January 2007/Accepted 18 June 2007
class ClassifySeqsCommand : public Command {
public:
ClassifySeqsCommand(string);
ClassifySeqsCommand();
~ClassifySeqsCommand();
vector<string> setParameters();
string getCommandName() { return "classify.seqs"; }
string getCommandCategory() { return "Phylotype Analysis"; }
string getHelpString();
string getOutputPattern(string);
string getCitation() { return "Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-7. [ for Bayesian classifier ] \nAltschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-402. [ for BLAST ] \nDeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069-72. [ for kmer ] \nhttp://www.mothur.org/wiki/Classify.seqs"; }
string getDescription() { return "classify sequences"; }
int execute();
void help() { m->mothurOut(getHelpString()); }
private:
struct linePair {
unsigned long long start;
unsigned long long end;
linePair(unsigned long long i, unsigned long long j) : start(i), end(j) {}
};
vector<int> processIDS; //processid
vector<linePair*> lines;
vector<string> fastaFileNames;
vector<string> namefileNames;
vector<string> countfileNames;
vector<string> groupfileNames;
vector<string> outputNames;
map<string, vector<string> > nameMap;
map<string, vector<string> >::iterator itNames;
Classify* classify;
ReferenceDB* rdb;
string fastaFileName, templateFileName, countfile, distanceFileName, namefile, search, method, taxonomyFileName, outputDir, groupfile;
int processors, kmerSize, numWanted, cutoff, iters;
float match, misMatch, gapOpen, gapExtend;
bool abort, probs, save, flip, hasName, hasCount, writeShortcuts, relabund;
int driver(linePair*, string, string, string, string);
int createProcesses(string, string, string, string);
string addUnclassifieds(string, int);
int MPIReadNamesFile(string);
#ifdef USE_MPI
int driverMPI(int, int, MPI_File&, MPI_File&, MPI_File&, MPI_File&, vector<unsigned long long>&);
#endif
};
/**************************************************************************************************/
//custom data structure for threads to use.
// This is passed by void pointer so it can be any data type
// that can be passed using a single void pointer (LPVOID).
struct classifyData {
string taxFName;
string tempTFName;
string filename;
string search, taxonomyFileName, templateFileName, method, accnos;
unsigned long long start;
unsigned long long end;
MothurOut* m;
float match, misMatch, gapOpen, gapExtend;
int count, kmerSize, threadID, cutoff, iters, numWanted;
bool probs, flip, writeShortcuts;
classifyData(){}
classifyData(string acc, bool p, string me, string te, string tx, string a, string r, string f, string se, int ks, int i, int numW, MothurOut* mout, unsigned long long st, unsigned long long en, float ma, float misMa, float gapO, float gapE, int cut, int tid, bool fli, bool wsh) {
accnos = acc;
taxonomyFileName = tx;
templateFileName = te;
taxFName = a;
tempTFName = r;
filename = f;
search = se;
method = me;
m = mout;
start = st;
end = en;
match = ma;
misMatch = misMa;
gapOpen = gapO;
gapExtend = gapE;
kmerSize = ks;
cutoff = cut;
iters = i;
numWanted = numW;
threadID = tid;
probs = p;
count = 0;
flip = fli;
writeShortcuts = wsh;
}
};
/**************************************************************************************************/
#if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
#else
static DWORD WINAPI MyClassThreadFunction(LPVOID lpParam){
classifyData* pDataArray;
pDataArray = (classifyData*)lpParam;
try {
ofstream outTax;
pDataArray->m->openOutputFile(pDataArray->taxFName, outTax);
ofstream outTaxSimple;
pDataArray->m->openOutputFile(pDataArray->tempTFName, outTaxSimple);
ofstream outAcc;
pDataArray->m->openOutputFile(pDataArray->accnos, outAcc);
ifstream inFASTA;
pDataArray->m->openInputFile(pDataArray->filename, inFASTA);
string taxonomy;
//print header if you are process 0
if ((pDataArray->start == 0) || (pDataArray->start == 1)) {
inFASTA.seekg(0);
}else { //this accounts for the difference in line endings.
inFASTA.seekg(pDataArray->start-1); pDataArray->m->gobble(inFASTA);
}
//make classify
Classify* myclassify;
string outputMethodTag = pDataArray->method + ".";
if(pDataArray->method == "wang"){ myclassify = new Bayesian(pDataArray->taxonomyFileName, pDataArray->templateFileName, pDataArray->search, pDataArray->kmerSize, pDataArray->cutoff, pDataArray->iters, pDataArray->threadID, pDataArray->flip, pDataArray->writeShortcuts); }
else if(pDataArray->method == "knn"){ myclassify = new Knn(pDataArray->taxonomyFileName, pDataArray->templateFileName, pDataArray->search, pDataArray->kmerSize, pDataArray->gapOpen, pDataArray->gapExtend, pDataArray->match, pDataArray->misMatch, pDataArray->numWanted, pDataArray->threadID); }
else if(pDataArray->method == "zap"){
outputMethodTag = pDataArray->search + "_" + outputMethodTag;
if (pDataArray->search == "kmer") { myclassify = new KmerTree(pDataArray->templateFileName, pDataArray->taxonomyFileName, pDataArray->kmerSize, pDataArray->cutoff); }
else { myclassify = new AlignTree(pDataArray->templateFileName, pDataArray->taxonomyFileName, pDataArray->cutoff); }
}
else {
pDataArray->m->mothurOut(pDataArray->method + " is not a valid method option. I will run the command using wang.");
pDataArray->m->mothurOutEndLine();
myclassify = new Bayesian(pDataArray->taxonomyFileName, pDataArray->templateFileName, pDataArray->search, pDataArray->kmerSize, pDataArray->cutoff, pDataArray->iters, pDataArray->threadID, pDataArray->flip, pDataArray->writeShortcuts);
}
if (pDataArray->m->control_pressed) { delete myclassify; return 0; }
pDataArray->count = 0;
for(int i = 0; i < pDataArray->end; i++){ //end is the number of sequences to process
if (pDataArray->m->control_pressed) { delete myclassify; return 0; }
Sequence* candidateSeq = new Sequence(inFASTA); pDataArray->m->gobble(inFASTA);
if (candidateSeq->getName() != "") {
taxonomy = myclassify->getTaxonomy(candidateSeq);
if (pDataArray->m->control_pressed) { delete candidateSeq; return 0; }
if (taxonomy == "unknown;") { pDataArray->m->mothurOut("[WARNING]: " + candidateSeq->getName() + " could not be classified. You can use the remove.lineage command with taxon=unknown; to remove such sequences."); pDataArray->m->mothurOutEndLine(); }
//output confidence scores or not
if (pDataArray->probs) {
outTax << candidateSeq->getName() << '\t' << taxonomy << endl;
}else{
outTax << candidateSeq->getName() << '\t' << myclassify->getSimpleTax() << endl;
}
outTaxSimple << candidateSeq->getName() << '\t' << myclassify->getSimpleTax() << endl;
if (myclassify->getFlipped()) { outAcc << candidateSeq->getName() << endl; }
pDataArray->count++;
}
delete candidateSeq;
//report progress
if((pDataArray->count) % 100 == 0){ pDataArray->m->mothurOutJustToScreen("Processing sequence: " + toString(pDataArray->count)+"\n"); }
}
//report progress
if((pDataArray->count) % 100 != 0){ pDataArray->m->mothurOutJustToScreen("Processing sequence: " + toString(pDataArray->count)+"\n"); }
delete myclassify;
inFASTA.close();
outTax.close();
outTaxSimple.close();
}
catch(exception& e) {
pDataArray->m->errorOut(e, "ClassifySeqsCommand", "MyClassThreadFunction");
exit(1);
}
}
#endif
#endif
|