File: cooccurrencecommand.cpp

package info (click to toggle)
mothur 1.33.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,248 kB
  • ctags: 12,231
  • sloc: cpp: 152,046; fortran: 665; makefile: 74; sh: 34
file content (581 lines) | stat: -rw-r--r-- 24,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
 *  cooccurrencecommand.cpp
 *  Mothur
 *
 *  Created by kiverson on 1/2/12.
 *  Copyright 2012 Schloss Lab. All rights reserved.
 *
 */

#include "cooccurrencecommand.h"

//**********************************************************************************************************************
vector<string> CooccurrenceCommand::setParameters() {	
	try { 
		CommandParameter pshared("shared", "InputTypes", "", "", "none", "none", "none","summary",false,true,true); parameters.push_back(pshared);		
		CommandParameter pmetric("metric", "Multiple", "cscore-checker-combo-vratio", "cscore", "", "", "","",false,false); parameters.push_back(pmetric);
		CommandParameter pmatrix("matrixmodel", "Multiple", "sim1-sim2-sim3-sim4-sim5-sim6-sim7-sim8-sim9", "sim2", "", "", "","",false,false); parameters.push_back(pmatrix);
        CommandParameter pruns("iters", "Number", "", "1000", "", "", "","",false,false); parameters.push_back(pruns);
		CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
		CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
		CommandParameter plabel("label", "String", "", "", "", "", "","",false,false); parameters.push_back(plabel);
        CommandParameter pgroups("groups", "String", "", "", "", "", "","",false,false); parameters.push_back(pgroups);

		vector<string> myArray;
		for (int i = 0; i < parameters.size(); i++) {	myArray.push_back(parameters[i].name);		}
		return myArray;
	}
	catch(exception& e) {
		m->errorOut(e, "CooccurrenceCommand", "setParameters");
		exit(1);
	}
}
//**********************************************************************************************************************
string CooccurrenceCommand::getHelpString(){	
	try {
		string helpString = "The cooccurrence command calculates four metrics and tests their significance to assess whether presence-absence patterns are different than what one would expect by chance.";
        helpString += "The cooccurrence command parameters are shared, metric, matrixmodel, iters, label and groups.";
        helpString += "The matrixmodel parameter options are sim1, sim2, sim3, sim4, sim5, sim6, sim7, sim8 and sim9. Default=sim2";
        helpString += "The metric parameter options are cscore, checker, combo and vratio. Default=cscore";
        helpString += "The label parameter is used to analyze specific labels in your input.\n";
		helpString += "The groups parameter allows you to specify which of the groups you would like analyzed.\n";
        helpString += "The cooccurrence command should be in the following format: \n";
		helpString += "cooccurrence(shared=yourSharedFile) \n";
		helpString += "Example cooccurrence(shared=final.an.shared).\n";
		helpString += "Note: No spaces between parameter labels (i.e. shared), '=' and parameters (i.e.yourShared).\n";
		return helpString;
	}
	catch(exception& e) {
		m->errorOut(e, "CooccurrenceCommand", "getHelpString");
		exit(1);
	}
}
//**********************************************************************************************************************
string CooccurrenceCommand::getOutputPattern(string type) {
    try {
        string pattern = "";
        
        if (type == "summary") {  pattern = "[filename],cooccurence.summary"; }
        else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->control_pressed = true;  }
        
        return pattern;
    }
    catch(exception& e) {
        m->errorOut(e, "CooccurrenceCommand", "getOutputPattern");
        exit(1);
    }
}
//**********************************************************************************************************************
CooccurrenceCommand::CooccurrenceCommand(){	
	try {
		abort = true; calledHelp = true; 
		setParameters();
        vector<string> tempOutNames;
		outputTypes["summary"] = tempOutNames;

	}
	catch(exception& e) {
		m->errorOut(e, "CooccurrenceCommand", "CooccurrenceCommand");
		exit(1);
	}
}
//**********************************************************************************************************************
CooccurrenceCommand::CooccurrenceCommand(string option) {
	try {
		abort = false; calledHelp = false;   
		allLines = 1;
				
		//allow user to run help
		if(option == "help") { help(); abort = true; calledHelp = true; }
		else if(option == "citation") { citation(); abort = true; calledHelp = true;}
		
		else {
			vector<string> myArray = setParameters();
			
			OptionParser parser(option);
			map<string,string> parameters = parser.getParameters();
			map<string,string>::iterator it;
			
			ValidParameters validParameter;
			
			//check to make sure all parameters are valid for command
			for (it = parameters.begin(); it != parameters.end(); it++) { 
				if (validParameter.isValidParameter(it->first, myArray, it->second) != true) {  abort = true;  }
			}

			
			//if the user changes the input directory command factory will send this info to us in the output parameter 
			string inputDir = validParameter.validFile(parameters, "inputdir", false);		
			if (inputDir == "not found"){	inputDir = "";		}
			else {
				string path;
				it = parameters.find("shared");
				//user has given a template file
				if(it != parameters.end()){ 
					path = m->hasPath(it->second);
					//if the user has not given a path then, add inputdir. else leave path alone.
					if (path == "") {	parameters["shared"] = inputDir + it->second;		}
				}
			}
		
            vector<string> tempOutNames;
            outputTypes["summary"] = tempOutNames;
		
	        //check for optional parameter and set defaults
			// ...at some point should added some additional type checking...
			label = validParameter.validFile(parameters, "label", false);			
			if (label == "not found") { label = ""; }
			else { 
				if(label != "all") {  m->splitAtDash(label, labels);  allLines = 0;  }
				else { allLines = 1;  }
			}
			
			//get shared file
			sharedfile = validParameter.validFile(parameters, "shared", true);
			if (sharedfile == "not open") { sharedfile = ""; abort = true; }	
			else if (sharedfile == "not found") { 
				//if there is a current shared file, use it
				sharedfile = m->getSharedFile(); 
				if (sharedfile != "") { m->mothurOut("Using " + sharedfile + " as input file for the shared parameter."); m->mothurOutEndLine(); }
				else { 	m->mothurOut("You have no current sharedfile and the shared parameter is required."); m->mothurOutEndLine(); abort = true; }
			}else { m->setSharedFile(sharedfile); }
			
			
			//if the user changes the output directory command factory will send this info to us in the output parameter 
			outputDir = validParameter.validFile(parameters, "outputdir", false);		if (outputDir == "not found"){	outputDir = m->hasPath(sharedfile);		}

			
			metric = validParameter.validFile(parameters, "metric", false);				if (metric == "not found") { metric = "cscore"; }
			
			if ((metric != "cscore") && (metric != "checker") && (metric != "combo") && (metric != "vratio")) {
				m->mothurOut("[ERROR]: " + metric + " is not a valid metric option for the cooccurrence command. Choices are cscore, checker, combo, vratio."); m->mothurOutEndLine(); abort = true; 
			}
			
			matrix = validParameter.validFile(parameters, "matrixmodel", false);				if (matrix == "not found") { matrix = "sim2"; }
			
			if ((matrix != "sim1") && (matrix != "sim2") && (matrix != "sim3") && (matrix != "sim4") && (matrix != "sim5" ) && (matrix != "sim6" ) && (matrix != "sim7" ) && (matrix != "sim8" ) && (matrix != "sim9" )) {
				m->mothurOut("[ERROR]: " + matrix + " is not a valid matrix option for the cooccurrence command. Choices are sim1, sim2, sim3, sim4, sim5, sim6, sim7, sim8, sim9."); m->mothurOutEndLine(); abort = true; 
			}
            
            groups = validParameter.validFile(parameters, "groups", false);			
			if (groups == "not found") { groups = "";   }
			else { 
				m->splitAtDash(groups, Groups);	
			}			
			m->setGroups(Groups);
            
            string temp = validParameter.validFile(parameters, "iters", false);			if (temp == "not found") { temp = "1000"; }
			m->mothurConvert(temp, runs); 

		}

	}
	catch(exception& e) {
		m->errorOut(e, "CooccurrenceCommand", "CooccurrenceCommand");
		exit(1);
	}
}
//**********************************************************************************************************************

int CooccurrenceCommand::execute(){
	try {
	
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
		InputData* input = new InputData(sharedfile, "sharedfile");
		vector<SharedRAbundVector*> lookup = input->getSharedRAbundVectors();
		string lastLabel = lookup[0]->getLabel();
		
		//if the users enters label "0.06" and there is no "0.06" in their file use the next lowest label.
		set<string> processedLabels;
		set<string> userLabels = labels;

        ofstream out;
        map<string, string> variables; 
        variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(sharedfile));
		string outputFileName = getOutputFileName("summary", variables);
        m->openOutputFile(outputFileName, out);
        outputNames.push_back(outputFileName);  outputTypes["summary"].push_back(outputFileName);
        out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
        out << "metric\tlabel\tScore\tzScore\tstandardDeviation\tnp_Pvalue\n";

		//as long as you are not at the end of the file or done wih the lines you want
		while((lookup[0] != NULL) && ((allLines == 1) || (userLabels.size() != 0))) {
			
			if (m->control_pressed) { for (int i = 0; i < lookup.size(); i++) {  delete lookup[i];  } delete input; out.close(); m->mothurRemove(outputFileName); return 0; }
	
			if(allLines == 1 || labels.count(lookup[0]->getLabel()) == 1){			

				m->mothurOut(lookup[0]->getLabel()); m->mothurOutEndLine();
				
				getCooccurrence(lookup, out);
				
				processedLabels.insert(lookup[0]->getLabel());
				userLabels.erase(lookup[0]->getLabel());
			}
			
			if ((m->anyLabelsToProcess(lookup[0]->getLabel(), userLabels, "") == true) && (processedLabels.count(lastLabel) != 1)) {
				string saveLabel = lookup[0]->getLabel();
			
				for (int i = 0; i < lookup.size(); i++) {  delete lookup[i];  }  
				lookup = input->getSharedRAbundVectors(lastLabel);
				m->mothurOut(lookup[0]->getLabel()); m->mothurOutEndLine();
				getCooccurrence(lookup, out);
				
				processedLabels.insert(lookup[0]->getLabel());
				userLabels.erase(lookup[0]->getLabel());
				
				//restore real lastlabel to save below
				lookup[0]->setLabel(saveLabel);
			}
			
			lastLabel = lookup[0]->getLabel();
			//prevent memory leak
			for (int i = 0; i < lookup.size(); i++) {  delete lookup[i]; lookup[i] = NULL; }
			
			if (m->control_pressed) {  outputTypes.clear(); delete input; out.close(); m->mothurRemove(outputFileName); return 0; }

			//get next line to process
			lookup = input->getSharedRAbundVectors();				
		}
		
		if (m->control_pressed) { delete input; out.close(); m->mothurRemove(outputFileName); return 0; }

		//output error messages about any remaining user labels
		set<string>::iterator it;
		bool needToRun = false;
		for (it = userLabels.begin(); it != userLabels.end(); it++) {  
			m->mothurOut("Your file does not include the label " + *it); 
			if (processedLabels.count(lastLabel) != 1) {
				m->mothurOut(". I will use " + lastLabel + "."); m->mothurOutEndLine();
				needToRun = true;
			}else {
				m->mothurOut(". Please refer to " + lastLabel + "."); m->mothurOutEndLine();
			}
		}
	
		//run last label if you need to
		if (needToRun == true)  {
			for (int i = 0; i < lookup.size(); i++) { if (lookup[i] != NULL) { delete lookup[i]; } }  
			lookup = input->getSharedRAbundVectors(lastLabel);
			
			m->mothurOut(lookup[0]->getLabel()); m->mothurOutEndLine();
			
			getCooccurrence(lookup, out);
			
			for (int i = 0; i < lookup.size(); i++) {  delete lookup[i];  }
		}
	
        out.close(); 
        
		//reset groups parameter 
		delete input; 
        m->clearGroups(); 

        m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		m->mothurOut(outputFileName); m->mothurOutEndLine();	
		m->mothurOutEndLine();
        
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "CooccurrenceCommand", "execute");
		exit(1);
	}
}
//**********************************************************************************************************************

int CooccurrenceCommand::getCooccurrence(vector<SharedRAbundVector*>& thisLookUp, ofstream& out){
    try {
        int numOTUS = thisLookUp[0]->getNumBins();
        
        if(numOTUS < 2) {
            m->mothurOut("Not enough OTUs for co-occurrence analysis, skipping"); m->mothurOutEndLine();
            return 0;
        }
        
        vector< vector<int> > co_matrix; co_matrix.resize(thisLookUp[0]->getNumBins());
        for (int i = 0; i < thisLookUp[0]->getNumBins(); i++) { co_matrix[i].resize((thisLookUp.size()), 0); }
        vector<int> columntotal; columntotal.resize(thisLookUp.size(), 0);
        vector<int> rowtotal; rowtotal.resize(numOTUS, 0);
        
        for (int i = 0; i < thisLookUp.size(); i++) { //nrows in the shared file
            for (int j = 0; j < thisLookUp[i]->getNumBins(); j++) { //cols of original shared file
                if (m->control_pressed) { return 0; }
                int abund = thisLookUp[i]->getAbundance(j);
                
                if(abund > 0) {
                    co_matrix[j][i] = 1;
                    rowtotal[j]++;
                    columntotal[i]++;
                }
            }
        }
        
        //nrows is ncols of inital matrix. All the functions need this value. They assume the transposition has already taken place and nrows and ncols refer to that matrix.
        //comatrix and initmatrix are still vectors of vectors of ints as in the original script. The abundancevector is only what was read in ie not a co-occurrence matrix!
        int nrows = numOTUS;//rows of inital matrix
        int ncols = thisLookUp.size();//groups
        double initscore = 0.0;
       
        vector<double> stats;
        vector<double> probabilityMatrix; probabilityMatrix.resize(ncols * nrows, 0);
        vector<vector<int> > nullmatrix(nrows, vector<int>(ncols, 0));
       
        TrialSwap2 trial;
        
        int n = accumulate( columntotal.begin(), columntotal.end(), 0 );
        
        //============================================================
        
        //generate a probability matrix. Only do this once.
        float start = 0.0;
        
        if (matrix == "sim1") {
            for(int i=0;i<nrows;i++) {
                for(int j=0;j<ncols;j++) {
                    probabilityMatrix[ncols * i + j] = start + 1/double(nrows*ncols);
                    start = start + 1/double(nrows*ncols);
                }
            }
        }
        //don't need a prob matrix because we just shuffle the rows, may use this in the future
        else if (matrix == "sim2") { }
//            for(int i=0;i<nrows;i++) {
//                start = 0.0;
//                for(int j=0;j<ncols;j++) {
//                    probabilityMatrix[ncols * i + j] = start + 1/double(ncols);
//                    start = start + 1/double(ncols);
//                }
//            }
//        }
        
        else if (matrix == "sim3") {
            for(int j=0;j<ncols;j++) {
                start = 0.0;
                for(int i=0;i<nrows;i++) {
                    probabilityMatrix[ncols * i + j] = start + 1/double(nrows);
                    start = start + 1/double(nrows);
                }
            }
        }
        
        else if (matrix == "sim4") {
            for(int i=0;i<nrows;i++) {
                start = 0.0;
                for(int j=0;j<ncols;j++) {
                    probabilityMatrix[ncols * i + j] = start + columntotal[j]/double(n);
                    start = start + columntotal[j]/double(n);
                }
            }
        }
        
        else if (matrix == "sim5") {
            for(int j=0;j<ncols;j++) {
                start = 0.0;
                for(int i=0;i<nrows;i++) {
                    probabilityMatrix[ncols * i + j] = start + rowtotal[i]/double(n);
                    start = start + rowtotal[i]/double(n);
                }
            }
        }
        
        else if (matrix == "sim6") {
            for(int i=0;i<nrows;i++) {
                for(int j=0;j<ncols;j++) {
                    probabilityMatrix[ncols * i + j] = start + columntotal[j]/double(n*nrows);
                    start = start + columntotal[j]/double(n*nrows);
                }
            }
        }
        
        
        else if (matrix == "sim7") {
            for(int i=0;i<nrows;i++) {
                for(int j=0;j<ncols;j++) {
                    probabilityMatrix[ncols * i + j] = start + rowtotal[i]/double(n*ncols);
                    start = start + rowtotal[i]/double(n*ncols);
                }
            }
        }
        
        else if (matrix == "sim8") {
            for(int i=0;i<nrows;i++) {
                for(int j=0;j<ncols;j++) {
                    probabilityMatrix[ncols * i + j] = start + (rowtotal[i]*columntotal[j])/double(n*n);
                    start = start + (rowtotal[i]*columntotal[j])/double(n*n);
                }
            }
        }
        else if (matrix == "sim9" || matrix == "sim2") { }
        else {
            m->mothurOut("[ERROR]: No model selected! \n");
            m->control_pressed = true;
        }
        
        
        //co_matrix is the transposed shared file, initmatrix is the original shared file
        if (metric == "cscore") { initscore = trial.calc_c_score(co_matrix, rowtotal, ncols, nrows); }
        else if (metric == "checker") { initscore = trial.calc_checker(co_matrix, rowtotal, ncols, nrows); }
        else if (metric == "vratio") { initscore = trial.calc_vratio(nrows, ncols, rowtotal, columntotal); }
        else if (metric == "combo") { initscore = trial.calc_combo(nrows, ncols, co_matrix); }
        else { m->mothurOut("[ERROR]: No metric selected!\n"); m->control_pressed = true; return 1; }
        
        m->mothurOut("Initial c score: " + toString(initscore)); m->mothurOutEndLine();
        
        double previous;
        double current;
        double randnum;
        int count;

        //burn-in for sim9    
        if(matrix == "sim9") {
            for(int i=0;i<10000;i++) trial.swap_checkerboards (co_matrix, ncols, nrows);
        }

        //populate null matrix from probability matrix, do this a lot.
        for(int k=0;k<runs;k++){
            nullmatrix.clear();
            //zero-fill the null matrix
            nullmatrix.assign(nrows, vector<int>(ncols, 0));
            
            if(matrix == "sim1" || matrix == "sim6" || matrix == "sim8" || matrix == "sim7") {
                count = 0;
                while(count < n) {
                    if (m->control_pressed) { return 0; }
                nextnum2:
                    previous = 0.0;
                    randnum = rand() / double(RAND_MAX);
                    for(int i=0;i<nrows;i++) {
                        for(int j=0;j<ncols;j++) {
                            current = probabilityMatrix[ncols * i + j];
                            if(randnum <= current && randnum > previous) {
                                nullmatrix[i][j] = 1;
                                count++;
                                if (count > n) break;
                                else
                                    goto nextnum2;
                            }
                            previous = current;
                        }
                    }
                }
            }
            
            else if (matrix == "sim2") {
                for(int i=0;i<nrows;i++) {
                    random_shuffle( co_matrix[i].begin(), co_matrix[i].end() ); 
                }
                //do this for the scoring since those all have nullmatrix as a parameter
                //nullmatrix gets cleared at the begining of each run
                nullmatrix = co_matrix;
            }
            
            else if(matrix == "sim4") {
                for(int i=0;i<nrows;i++) {
                    count = 0;
                    while(count < rowtotal[i]) {
                        previous = 0.0;
                        if (m->control_pressed) { return 0; }
                        randnum = rand() / double(RAND_MAX);
                        for(int j=0;j<ncols;j++) {
                            current = probabilityMatrix[ncols * i + j];
                            if(randnum <= current && randnum > previous && nullmatrix[i][j] != 1) {
                                nullmatrix[i][j] = 1;
                                count++;
                                previous = 0.0;
                                break;
                            }
                            previous = current;
                        }
                    }
                }
            }
            
            else if(matrix == "sim3" || matrix == "sim5") {
                //columns
                for(int j=0;j<ncols;j++) {
                    count = 0;
                    while(count < columntotal[j]) {
                        if (m->control_pressed) { return 0; }
                        randnum = rand() / double(RAND_MAX);
                        for(int i=0;i<nrows;i++) {
                            current = probabilityMatrix[ncols * i + j];
                            if(randnum <= current && randnum > previous && nullmatrix[i][j] != 1) {
                                nullmatrix[i][j] = 1;
                                count++;
                                previous = 0.0;
                                break;
                            }
                            previous = current;
                        }
                    }
                }
            }
            
            //swap_checkerboards takes the original matrix and swaps checkerboards
            else if(matrix == "sim9") {
                trial.swap_checkerboards (co_matrix, ncols, nrows);
                nullmatrix = co_matrix;
            }
            else {
                m->mothurOut("[ERROR]: No null model selected!\n\n"); m->control_pressed = true;
                return 1;
            }
            
            //run metric on null matrix and add score to the stats vector
            if (metric == "cscore"){
                stats.push_back(trial.calc_c_score(nullmatrix, rowtotal, ncols, nrows));
            }
            else if (metric == "checker") {
                stats.push_back(trial.calc_checker(nullmatrix, rowtotal, ncols, nrows));
            }
            else if (metric == "vratio") {
                stats.push_back(trial.calc_vratio(nrows, ncols, rowtotal, columntotal));
            }
            else if (metric == "combo") {
                stats.push_back(trial.calc_combo(nrows, ncols, nullmatrix));
            }
            else {
                m->mothurOut("[ERROR]: No metric selected!\n\n"); m->control_pressed = true;
                return 1;
            }
            
        }
        
        
        
        double total = 0.0;
        for (int i=0; i<stats.size();i++) { total+=stats[i]; }
        
        double nullMean = double (total/(double)stats.size());
        
        m->mothurOutEndLine(); m->mothurOut("average metric score: " + toString(nullMean)); m->mothurOutEndLine();
        
        //calc_p_value is not a statistical p-value, it's just the average that are either > or < the initscore.
        //All it does is show what is expected in a competitively structured community
        //zscore is output so p-value can be looked up in a ztable
        double pvalue = 0.0;
        if (metric == "cscore" || metric == "checker") { pvalue = trial.calc_pvalue_greaterthan (stats, initscore); }
        else{ pvalue = trial.calc_pvalue_lessthan (stats, initscore); }

        double sd = trial.getSD(runs, stats, nullMean);

        double zscore = trial.get_zscore(sd, nullMean, initscore);
        
        m->mothurOut("zscore: " + toString(zscore)); m->mothurOutEndLine();
        m->mothurOut("standard deviation: " + toString(sd)); m->mothurOutEndLine();
        m->mothurOut("non-parametric p-value: " + toString(pvalue)); m->mothurOutEndLine();
        out << metric << '\t' << thisLookUp[0]->getLabel() << '\t' << nullMean << '\t' << zscore << '\t' << sd << '\t' << pvalue << endl;
        
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "CooccurrenceCommand", "Cooccurrence");
        exit(1);
    }
}
//**********************************************************************************************************************