File: kmernode.cpp

package info (click to toggle)
mothur 1.33.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,248 kB
  • ctags: 12,231
  • sloc: cpp: 152,046; fortran: 665; makefile: 74; sh: 34
file content (209 lines) | stat: -rwxr-xr-x 6,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 *  kmerNode.cpp
 *  bayesian
 *
 *  Created by Pat Schloss on 10/11/11.
 *  Copyright 2011 Patrick D. Schloss. All rights reserved.
 *
 */

#include "kmernode.h"


/**********************************************************************************************************************/

KmerNode::KmerNode(string s, int l, int n) : TaxonomyNode(s, l), kmerSize(n) {
	try {
        int power4s[14] = { 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864 };
        
        numPossibleKmers = power4s[kmerSize];
        numUniqueKmers = 0;
        
        kmerVector.assign(numPossibleKmers, 0);
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "KmerNode");
		exit(1);
	}
}

/**********************************************************************************************************************/

void KmerNode::loadSequence(vector<int>& kmerProfile){
	try {
        for(int i=0;i<numPossibleKmers;i++){
            if (m->control_pressed) { break; }
            if(kmerVector[i] == 0 && kmerProfile[i] != 0)	{	numUniqueKmers++;	}
            
            kmerVector[i] += kmerProfile[i];
        }
        
        numSeqs++;
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "loadSequence");
		exit(1);
	}
}	

/**********************************************************************************************************************/

string KmerNode::getKmerBases(int kmerNumber){
	try {
        //	Here we convert the kmer number into the kmer in terms of bases.
        //
        //	Example:	Score = 915 (for a 6-mer)
        //				Base6 = (915 / 4^0) % 4 = 915 % 4 = 3 => T	[T]
        //				Base5 = (915 / 4^1) % 4 = 228 % 4 = 0 => A	[AT]
        //				Base4 = (915 / 4^2) % 4 = 57 % 4 = 1 => C	[CAT]
        //				Base3 = (915 / 4^3) % 4 = 14 % 4 = 2 => G	[GCAT]
        //				Base2 = (915 / 4^4) % 4 = 3 % 4 = 3 => T	[TGCAT]
        //				Base1 = (915 / 4^5) % 4 = 0 % 4 = 0 => A	[ATGCAT] -> this checks out with the previous method
        
        int power4s[14] = { 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864 };
        
        string kmer = "";
        
        if(kmerNumber == power4s[kmerSize]){//pow(4.,7)){	//	if the kmer number is the same as the maxKmer then it must
            for(int i=0;i<kmerSize;i++){					//	have had an N in it and so we'll just call it N x kmerSize
                kmer += 'N';
            }
        }
        else{
            for(int i=0;i<kmerSize;i++){
                if (m->control_pressed) { return kmer; }
                int nt = (int)(kmerNumber / (float)power4s[i]) % 4;		//	the '%' operator returns the remainder 
                if(nt == 0)		{	kmer = 'A' + kmer;	}				//	from int-based division ]
                else if(nt == 1){	kmer = 'C' + kmer;	}
                else if(nt == 2){	kmer = 'G' + kmer;	}
                else if(nt == 3){	kmer = 'T' + kmer;	}
            }
        }
        return kmer;
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "getKmerBases");
		exit(1);
	}
}

/**************************************************************************************************/

void KmerNode::addThetas(vector<int> newTheta, int newNumSeqs){
	try {
        for(int i=0;i<numPossibleKmers;i++){
            if (m->control_pressed) { break; }
            kmerVector[i] += newTheta[i];		
        }
        
        //	if(alignLength == 0){
        //		alignLength = (int)newTheta.size();
        //		theta.resize(alignLength);
        //		columnCounts.resize(alignLength);
        //	}
        //	
        //	for(int i=0;i<alignLength;i++){	
        //		theta[i].A += newTheta[i].A;		columnCounts[i] += newTheta[i].A;
        //		theta[i].T += newTheta[i].T;		columnCounts[i] += newTheta[i].T;
        //		theta[i].G += newTheta[i].G;		columnCounts[i] += newTheta[i].G;
        //		theta[i].C += newTheta[i].C;		columnCounts[i] += newTheta[i].C;
        //		theta[i].gap += newTheta[i].gap;	columnCounts[i] += newTheta[i].gap;
        //	}
        
        numSeqs += newNumSeqs;
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "addThetas");
		exit(1);
	}
}

/**********************************************************************************************************************/

int KmerNode::getNumUniqueKmers(){
    try {
        if(numUniqueKmers == 0){
            
            for(int i=0;i<numPossibleKmers;i++){
                if (m->control_pressed) { return numUniqueKmers; }
                if(kmerVector[i] != 0){
                    numUniqueKmers++;
                }
                
            }
            
        }
        
        return numUniqueKmers;	
        
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "getNumUniqueKmers");
		exit(1);
	}
}

/**********************************************************************************************************************/

void KmerNode::printTheta(){
	try {
        m->mothurOut(name + "\n");
        for(int i=0;i<numPossibleKmers;i++){
            if(kmerVector[i] != 0){
                m->mothurOut(getKmerBases(i) + '\t' + toString(kmerVector[i]) + "\n");
            }
        }
        m->mothurOutEndLine();	
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "printTheta");
		exit(1);
	}
	
}
/**************************************************************************************************/

double KmerNode::getSimToConsensus(vector<int>& queryKmerProfile){
	try {
        double present = 0;
        
        for(int i=0;i<numPossibleKmers;i++){
            if (m->control_pressed) { return present; }
            if(queryKmerProfile[i] != 0 && kmerVector[i] != 0){
                present++;
            }
        }	
        
        return present / double(queryKmerProfile.size() - kmerSize + 1);
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "getSimToConsensus");
		exit(1);
	}
}

/**********************************************************************************************************************/

double KmerNode::getPxGivenkj_D_j(vector<int>& queryKmerProfile)	{	
	try {
        double sumLogProb = 0.0000;
        double alpha = 1.0 / (double)totalSeqs;	//flat prior
        //	double alpha = pow((1.0 / (double)numUniqueKmers), numSeqs)+0.0001;	//non-flat prior
        
        for(int i=0;i<numPossibleKmers;i++){
            if (m->control_pressed) { return sumLogProb; }
            if(queryKmerProfile[i] != 0){		//numUniqueKmers needs to be the value from Root;
                sumLogProb += log((kmerVector[i] + alpha) / (numSeqs + numUniqueKmers * alpha));
            }
            
        }
        return sumLogProb;
    }
	catch(exception& e) {
		m->errorOut(e, "KmerNode", "getPxGivenkj_D_j");
		exit(1);
	}

}

/**********************************************************************************************************************/