1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
//
// kmerTree.cpp
// pdsBayesian
//
// Created by Patrick Schloss on 4/3/12.
// Copyright (c) 2012 University of Michigan. All rights reserved.
//
#include "kmernode.h"
#include "kmertree.h"
/**************************************************************************************************/
KmerTree::KmerTree(string referenceFileName, string taxonomyFileName, int k, int cutoff) : Classify(), confidenceThreshold(cutoff), kmerSize(k){
try {
KmerNode* newNode = new KmerNode("Root", 0, kmerSize);
tree.push_back(newNode); // the tree is stored as a vector of elements of type TaxonomyNode
int power4s[14] = { 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864 };
numPossibleKmers = power4s[kmerSize];
string refTaxonomy;
readTaxonomy(taxonomyFileName);
ifstream referenceFile;
m->openInputFile(referenceFileName, referenceFile);
bool error = false;
while(!referenceFile.eof()){
if (m->control_pressed) { break; }
Sequence seq(referenceFile); m->gobble(referenceFile);
if (seq.getName() != "") {
map<string, string>::iterator it = taxonomy.find(seq.getName());
if (it != taxonomy.end()) {
refTaxonomy = it->second; // lookup the taxonomy string for the current reference sequence
vector<int> kmerProfile = ripKmerProfile(seq.getUnaligned()); //convert to kmer vector
addTaxonomyToTree(seq.getName(), refTaxonomy, kmerProfile);
}else {
m->mothurOut(seq.getName() + " is in your reference file, but not in your taxonomy file, please correct.\n"); error = true;
}
}
}
referenceFile.close();
if (error) { m->control_pressed = true; }
numTaxa = (int)tree.size();
numLevels = 0;
for(int i=0;i<numTaxa;i++){
int level = tree[i]->getLevel();
if(level > numLevels){ numLevels = level; }
}
numLevels++;
aggregateThetas();
int dbSize = tree[0]->getNumSeqs();
for(int i=0;i<numTaxa;i++){
tree[i]->checkTheta();
tree[i]->setNumUniqueKmers(tree[0]->getNumUniqueKmers());
tree[i]->setTotalSeqs(dbSize);
}
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "KmerTree");
exit(1);
}
}
/**************************************************************************************************/
KmerTree::~KmerTree(){
for(int i=0;i<tree.size();i++){
delete tree[i];
}
}
/**********************************************************************************************************************/
vector<int> KmerTree::ripKmerProfile(string sequence){
try {
// assume all input sequences are unaligned
int power4s[14] = { 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864 };
int nKmers = (int)sequence.length() - kmerSize + 1;
vector<int> kmerProfile(numPossibleKmers + 1, 0);
for(int i=0;i<nKmers;i++){
if (m->control_pressed) { break; }
int kmer = 0;
for(int j=0;j<kmerSize;j++){
if(toupper(sequence[j+i]) == 'A') { kmer += (0 * power4s[kmerSize-j-1]); }
else if(toupper(sequence[j+i]) == 'C') { kmer += (1 * power4s[kmerSize-j-1]); }
else if(toupper(sequence[j+i]) == 'G') { kmer += (2 * power4s[kmerSize-j-1]); }
else if(toupper(sequence[j+i]) == 'U') { kmer += (3 * power4s[kmerSize-j-1]); }
else if(toupper(sequence[j+i]) == 'T') { kmer += (3 * power4s[kmerSize-j-1]); }
else { kmer = power4s[kmerSize]; j = kmerSize; }
}
kmerProfile[kmer] = 1;
}
return kmerProfile;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "ripKmerProfile");
exit(1);
}
}
/**************************************************************************************************/
int KmerTree::addTaxonomyToTree(string seqName, string taxonomy, vector<int>& sequence){
try {
KmerNode* newNode;
string taxonName = "";
int treePosition = 0; // the root is element 0
int level = 1;
for(int i=0;i<taxonomy.length();i++){ // step through taxonomy string...
if (m->control_pressed) { break; }
if(taxonomy[i] == ';'){ // looking for semicolons...
if (taxonName == "") { m->mothurOut(seqName + " has an error in the taxonomy. This may be due to a ;;"); m->mothurOutEndLine(); m->control_pressed = true; }
int newIndex = tree[treePosition]->getChildIndex(taxonName);// look to see if your current node already
// has a child with the new taxonName
if(newIndex != -1) { treePosition = newIndex; } // if you've seen it before, jump to that
else { // position in the tree
int newChildIndex = (int)tree.size(); // otherwise, we'll have to create one...
tree[treePosition]->makeChild(taxonName, newChildIndex);
newNode = new KmerNode(taxonName, level, kmerSize);
newNode->setParent(treePosition);
tree.push_back(newNode);
treePosition = newChildIndex;
}
// sequence data to that node to update that node's theta - seems slow...
taxonName = ""; // clear out the taxon name that we will build as we look
level++;
} // for a semicolon
else{
taxonName += taxonomy[i]; // keep adding letters until we reach a semicolon
}
}
tree[treePosition]->loadSequence(sequence); // now that we've gotten to the correct node, add the
return 0;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "addTaxonomyToTree");
exit(1);
}
}
/**************************************************************************************************/
int KmerTree::aggregateThetas(){
try {
vector<vector<int> > levelMatrix(numLevels+1);
for(int i=0;i<tree.size();i++){
if (m->control_pressed) { return 0; }
levelMatrix[tree[i]->getLevel()].push_back(i);
}
for(int i=numLevels-1;i>0;i--) {
if (m->control_pressed) { return 0; }
for(int j=0;j<levelMatrix[i].size();j++){
KmerNode* holder = tree[levelMatrix[i][j]];
tree[holder->getParent()]->addThetas(holder->getTheta(), holder->getNumSeqs());
}
}
return 0;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "aggregateThetas");
exit(1);
}
}
/**************************************************************************************************/
int KmerTree::getMinRiskIndexKmer(vector<int>& sequence, vector<int>& taxaIndices, vector<double>& probabilities){
try {
int numProbs = (int)probabilities.size();
vector<double> G(numProbs, 0.2); //a random sequence will, on average, be 20% similar to any other sequence; not sure that this holds up for kmers; whatever.
vector<double> risk(numProbs, 0);
for(int i=1;i<numProbs;i++){ //use if you want the outlier group
if (m->control_pressed) { return 0; }
G[i] = tree[taxaIndices[i]]->getSimToConsensus(sequence);
}
double minRisk = 1e6;
int minRiskIndex = 0;
for(int i=0;i<numProbs;i++){
if (m->control_pressed) { return 0; }
for(int j=0;j<numProbs;j++){
if(i != j){
risk[i] += probabilities[j] * G[j];
}
}
if(risk[i] < minRisk){
minRisk = risk[i];
minRiskIndex = i;
}
}
return minRiskIndex;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "getMinRiskIndexKmer");
exit(1);
}
}
/**************************************************************************************************/
int KmerTree::sanityCheck(vector<vector<int> >& indices, vector<int>& maxIndices){
try {
int finalLevel = (int)indices.size()-1;
for(int position=1;position<indices.size();position++){
if (m->control_pressed) { return 0; }
int predictedParent = tree[indices[position][maxIndices[position]]]->getParent();
int actualParent = indices[position-1][maxIndices[position-1]];
if(predictedParent != actualParent){
finalLevel = position - 1;
return finalLevel;
}
}
return finalLevel;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "sanityCheck");
exit(1);
}
}
/**************************************************************************************************/
string KmerTree::getTaxonomy(Sequence* thisSeq){
try {
string seqName = thisSeq->getName(); string querySequence = thisSeq->getAligned(); string taxonProbabilityString = "";
string unalignedSeq = thisSeq->getUnaligned();
double logPOutlier = (querySequence.length() - kmerSize + 1) * log(1.0/(double)tree[0]->getNumUniqueKmers());
vector<int> queryProfile = ripKmerProfile(unalignedSeq); //convert to kmer vector
vector<vector<double> > pXgivenKj_D_j(numLevels);
vector<vector<int> > indices(numLevels);
for(int i=0;i<numLevels;i++){
if (m->control_pressed) { return taxonProbabilityString; }
pXgivenKj_D_j[i].push_back(logPOutlier);
indices[i].push_back(-1);
}
for(int i=0;i<numTaxa;i++){
if (m->control_pressed) { return taxonProbabilityString; }
pXgivenKj_D_j[tree[i]->getLevel()].push_back(tree[i]->getPxGivenkj_D_j(queryProfile));
indices[tree[i]->getLevel()].push_back(i);
}
vector<double> sumLikelihood(numLevels, 0);
vector<double> bestPosterior(numLevels, 0);
vector<int> maxIndex(numLevels, 0);
int maxPosteriorIndex;
//let's find the best level and taxa within that level
for(int i=0;i<numLevels;i++){ //go across all j's - from the root to genus
if (m->control_pressed) { return taxonProbabilityString; }
int numTaxaInLevel = (int)indices[i].size();
vector<double> posteriors(numTaxaInLevel, 0);
sumLikelihood[i] = getLogExpSum(pXgivenKj_D_j[i], maxPosteriorIndex);
maxPosteriorIndex = 0;
for(int j=0;j<numTaxaInLevel;j++){
posteriors[j] = exp(pXgivenKj_D_j[i][j] - sumLikelihood[i]);
if(posteriors[j] > posteriors[maxPosteriorIndex]){
maxPosteriorIndex = j;
}
}
maxIndex[i] = getMinRiskIndexKmer(queryProfile, indices[i], posteriors);
maxIndex[i] = maxPosteriorIndex;
bestPosterior[i] = posteriors[maxIndex[i]];
}
// vector<double> pX_level(numLevels, 0);
//
// for(int i=0;i<numLevels;i++){
// pX_level[i] = pXgivenKj_D_j[i][maxIndex[i]] - tree[indices[i][maxIndex[i]]]->getNumSeqs();
// }
//
// int max_pLevel_X_index = -1;
// double pX_level_sum = getLogExpSum(pX_level, max_pLevel_X_index);
// double max_pLevel_X = exp(pX_level[max_pLevel_X_index] - pX_level_sum);
//
// vector<double> pLevel_X(numLevels, 0);
// for(int i=0;i<numLevels;i++){
// pLevel_X[i] = exp(pX_level[i] - pX_level_sum);
// }
int saneDepth = sanityCheck(indices, maxIndex);
// stringstream levelProbabilityOutput;
// levelProbabilityOutput.setf(ios::fixed, ios::floatfield);
// levelProbabilityOutput.setf(ios::showpoint);
//taxonProbabilityOutput << seqName << '\t';
// taxonProbabilityOutput << seqName << '(' << max_pLevel_X_index << ';' << max_pLevel_X << ')' << '\t';
// levelProbabilityOutput << seqName << '(' << max_pLevel_X_index << ';' << max_pLevel_X << ')' << '\t';
simpleTax = "";
int savedspot = 1;
taxonProbabilityString = "";
for(int i=1;i<=saneDepth;i++){
if (m->control_pressed) { return taxonProbabilityString; }
int confidenceScore = (int) (bestPosterior[i] * 100);
if (confidenceScore >= confidenceThreshold) {
if(indices[i][maxIndex[i]] != -1){
taxonProbabilityString += tree[indices[i][maxIndex[i]]]->getName() + "(" + toString(confidenceScore) + ");";
simpleTax += tree[indices[i][maxIndex[i]]]->getName() + ";";
// levelProbabilityOutput << tree[indices[i][maxIndex[i]]]->getName() << '(' << setprecision(6) << pLevel_X[i] << ");";
}
else{
taxonProbabilityString += "unclassified(" + toString(confidenceScore) + ");";
// levelProbabilityOutput << "unclassified" << '(' << setprecision(6) << pLevel_X[i] << ");";
simpleTax += "unclassified;";
}
}else { break; }
savedspot = i;
}
for(int i=savedspot+1;i<numLevels;i++){
if (m->control_pressed) { return taxonProbabilityString; }
taxonProbabilityString += "unclassified(0);";
simpleTax += "unclassified;";
}
return taxonProbabilityString;
}
catch(exception& e) {
m->errorOut(e, "KmerTree", "getTaxonomy");
exit(1);
}
}
/**************************************************************************************************/
|