File: pam.cpp

package info (click to toggle)
mothur 1.33.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,248 kB
  • ctags: 12,231
  • sloc: cpp: 152,046; fortran: 665; makefile: 74; sh: 34
file content (319 lines) | stat: -rw-r--r-- 12,829 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//
//  pam.cpp
//  Mothur
//
//  Created by SarahsWork on 12/10/13.
//  Copyright (c) 2013 Schloss Lab. All rights reserved.
//

#include "pam.h"
#define DBL_EPSILON 1e-9

/**************************************************************************************************/
Pam::Pam(vector<vector<int> > c, vector<vector<double> > d, int p) : CommunityTypeFinder() {
    try {
        countMatrix = c;
        numSamples = (int)d.size();
        numOTUs = (int)c[0].size();
        numPartitions = p;
        dists = d;
        
        largestDist = 0;
        for (int i = 0; i < dists.size(); i++) {
            for (int j = i; j < dists.size(); j++) {
                if (m->control_pressed) { break; }
                if (dists[i][j] > largestDist) { largestDist = dists[i][j]; } 
            }
        }
       
        buildPhase(); //choosing the medoids
        swapPhase(); //optimize clusters
    }
	catch(exception& e) {
		m->errorOut(e, "Pam", "Pam");
		exit(1);
	}
}
/**************************************************************************************************/
//build and swap functions based on pam.c by maechler from R cluster package
//sets Dp[0] does not set Dp[1]. chooses intial medoids.
int Pam::buildPhase() {
    try {
        
        if (m->debug) { m->mothurOut("[DEBUG]: building medoids\n"); }
        
        vector<double> gains; gains.resize(numSamples);
        
        largestDist *= 1.1 + 1; //make this distance larger than any distance in the matrix
        Dp.resize(numSamples);
        for (int i = 0; i < numSamples; i++) { Dp[i].push_back(largestDist); Dp[i].push_back(largestDist); } //2 smallest dists for this sample in this partition
        
        zMatrix.resize(numPartitions);
        for(int i=0;i<numPartitions;i++){
            zMatrix[i].assign(numSamples, 0);
        }
    
        for (int k = 0; k < numPartitions; k++) {
            
            int medoid = -1;
            double totalGain = 0.0;
            double clusterGain = 0.0;
            
            for (int i = 0; i < numSamples; i++) {  //does this need to be square?? can we do lt?
                if (m->control_pressed) { break; }
        
                if (medoids.count(i) == 0) { //is this sample is NOT a medoid?
                    gains[i] = 0.0;
                
                    for (int j = 0; j < numSamples; j++) {
                        totalGain = Dp[j][0] - dists[i][j];
                        if (totalGain > 0.0) { gains[i] += totalGain; }
                    }
                    if (m->debug) { m->mothurOut("[DEBUG]: " + toString(i) +  " totalGain = " + toString(totalGain) + "\n"); }
                   
                    if (clusterGain <= gains[i]) {
                        clusterGain = gains[i];
                        medoid = i;
                    }
                }
            }
            
            //save medoid value
            medoids.insert(medoid);
            
            if (m->debug) { m->mothurOut("[DEBUG]: new medoid " + toString(medoid) + "\n"); }
            
            //update dp values
            for (int i = 0; i < numSamples; i++) {
                if (Dp[i][0] > dists[i][medoid]) { Dp[i][0] = dists[i][medoid]; }
            }
        }
        if (m->debug) { m->mothurOut("[DEBUG]: done building medoids\n"); }
        return 0;
    }
	catch(exception& e) {
		m->errorOut(e, "Pam", "buildPhase");
		exit(1);
	}
}
/**************************************************************************************************/
//goal to swap medoids with non-medoids to see if we can reduce the overall cost
int Pam::swapPhase() {
    try {
        if (m->debug) { m->mothurOut("[DEBUG]: swapping  medoids\n"); }
        //calculate cost of initial choice - average distance of samples to their closest medoid
        double sky = 0.0;
        double dzsky = 1.0;
        for (int i = 0; i < numSamples; i++) { sky += Dp[i][0]; }  //sky /= (double) numSamples;
        
        bool done = false;
        int hbest, nbest; hbest = -1; nbest = -1;
        while (!done) {
            if (m->control_pressed) { break; }
            
            updateDp();
            
            dzsky = 1;
            
            for (int h = 0; h < numSamples; h++) {
                if (m->control_pressed) { break; }
                if (medoids.count(h) == 0) { //this is NOT a medoid
                    for (int i = 0; i < numSamples; i++) {
                        if (medoids.count(i) != 0) { //this is a medoid
                        
                            double dz = 0.0; //Tih sum of distances between objects and closest medoid caused by swapping i and h. Basically the change in cost. If this < 0 its a "good" swap. When all Tih are > 0, then we stop the algo, because we have the optimal medoids.
                            for (int j = 0; j < numSamples; j++) {
                                if (m->control_pressed) { break; }
                                if (dists[i][j] == Dp[j][0]) {
                                    double smallValue; smallValue = 0.0;
                                    if (Dp[j][1] > dists[h][j]) {   smallValue = dists[h][j];    }
                                    else                        {   smallValue = Dp[j][1];       }
                                    dz += (- Dp[j][0]+ smallValue);
                                }else if (dists[h][j] < Dp[j][0]) {
                                    dz += (- Dp[j][0] + dists[h][j]);
                                }
                            }
                            if (dzsky > dz) {
                                dzsky = dz;
                                hbest = h; 
                                nbest = i;
                            }
                        }//end if medoid
                    }//end for i
                }//end if NOT medoid
            }//end if h
            
            if (dzsky < -16 *DBL_EPSILON * fabs(sky)) {
                medoids.insert(hbest);
                medoids.erase(nbest);
                if (m->debug) { m->mothurOut("[DEBUG]: swapping " + toString(hbest) + " " + toString(nbest) + "\n"); }
                sky += dzsky;
            }else { done = true; } //stop algo.
        }
        
        
        //fill zmatrix
        int count = 0;
        vector<int> tempMedoids;
        for (set<int>::iterator it = medoids.begin(); it != medoids.end(); it++) {
            medoid2Partition[*it] = count;
            zMatrix[count][*it] = 1; count++; //set medoid in this partition.
            tempMedoids.push_back(*it);
        }
        
        //which partition do you belong to?
        laplace = 0;
        for (int i = 0; i < numSamples; i++) {
            int partition = 0;
            double dist = dists[i][tempMedoids[0]]; //assign to first medoid
            for (int j = 1; j < tempMedoids.size(); j++) {
                if (dists[i][tempMedoids[j]] < dist) { //is this medoid closer?
                    dist = dists[i][tempMedoids[j]];
                    partition = j;
                }
            }
            zMatrix[partition][i] = 1;
            laplace += dist;
        }
        laplace /= (double) numSamples;
        
        if (m->debug) {
            for(int i=0;i<numPartitions;i++){
                m->mothurOut("[DEBUG]: partition 1: "); 
                for (int j = 0; j < numSamples; j++) {
                     m->mothurOut(toString(zMatrix[i][j]) + " ");
                }
                m->mothurOut("\n"); 
            }
            m->mothurOut("[DEBUG]: medoids : ");
            for (set<int>::iterator it = medoids.begin(); it != medoids.end(); it++) { m->mothurOut(toString(*it) + " ");
            }
            m->mothurOut("\n");
            
            m->mothurOut("[DEBUG]: laplace : " + toString(laplace));  m->mothurOut("\n");
        }
        
        if (m->debug) { m->mothurOut("[DEBUG]: done swapping  medoids\n"); }
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "Pam", "swapPhase");
        exit(1);
    }
}

/**************************************************************************************************/
int Pam::updateDp() {
    try {
        for (int j = 0; j < numSamples; j++) {
            if (m->control_pressed) { break; }
            
            //initialize dp and ep
            Dp[j][0] = largestDist; Dp[j][1] = largestDist;
        
            for (int i = 0; i < numSamples; i++) {
                if (medoids.count(i) != 0) { //is this a medoid? 
                    if (Dp[j][0] > dists[j][i]) {
                        Dp[j][0] = Dp[j][1];
                        Dp[j][0] = dists[j][i];
                    }else if (Dp[j][1] > dists[j][i]) {
                        Dp[j][1] = dists[j][i];
                    }
                }
            }
        }
    
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "Pam", "updateDp");
        exit(1);
    }
}

/**************************************************************************************************/
/*To assess the optimal number of clusters our dataset was most robustly partitioned into, we used the Calinski-Harabasz (CH) Index that has shown good performance in recovering the number of clusters. It is defined as:
 
 CHk=Bk/(k−1)/Wk/(n−k)
 
 where Bk is the between-cluster sum of squares (i.e. the squared distances between all points i and j, for which i and j are not in the same cluster) and Wk is the within-clusters sum of squares (i.e. the squared distances between all points i and j, for which i and j are in the same cluster). This measure implements the idea that the clustering is more robust when between-cluster distances are substantially larger than within-cluster distances. Consequently, we chose the number of clusters k such that CHk was maximal.*/
//based on R index.G1.r function
double Pam::calcCHIndex(vector< vector<double> > dists){ //countMatrix = [numSamples][numOtus]
    try {
        double CH = 0.0;
        
        if (numPartitions < 2) { return CH; }
        
        map<int, int> clusterMap; //map sample to partition
        for (int i = 0; i < numPartitions; i++) {
            for (int j = 0; j < numSamples; j++) {
                if (m->control_pressed) { return 0.0; }
                if (zMatrix[i][j] != 0) { clusterMap[j] = i; }
            }
        }
        
        //make countMatrix a relabund
        vector<vector<double> > relativeAbundance(numSamples); //[numSamples][numOTUs]
        //get relative abundance
        for(int i=0;i<numSamples;i++){
            if (m->control_pressed) {  return 0; }
            int groupTotal = 0;
            
            relativeAbundance[i].assign(numOTUs, 0.0);
            
            for(int j=0;j<numOTUs;j++){
                groupTotal += countMatrix[i][j];
            }
            for(int j=0;j<numOTUs;j++){
                relativeAbundance[i][j] = countMatrix[i][j] / (double)groupTotal;
            }
        }
        
        //find centers
        vector<vector<double> > centers; centers.resize(numPartitions);
        int countPartitions = 0;
        for (set<int>::iterator it = medoids.begin(); it != medoids.end(); it++) {
            for (int j = 0; j < numOTUs; j++) {
                centers[countPartitions].push_back(relativeAbundance[*it][j]); //save the relative abundance of the medoid for this partition for this OTU
            }
            countPartitions++;
        }
        
        //centers.clear();
        //centers = calcCenters(dists, clusterMap, relativeAbundance);
        
        double allMeanDist = rMedoid(relativeAbundance, dists);
        
        if (m->debug) { m->mothurOut("[DEBUG]: allMeandDist = " + toString(allMeanDist) + "\n"); }
        
        for (int i = 0; i < relativeAbundance.size(); i++) {//numSamples
            for (int j = 0; j < relativeAbundance[i].size(); j++) { //numOtus
                if (m->control_pressed) {  return 0; }
                //x <- (x - centers[cl, ])^2
                relativeAbundance[i][j] = ((relativeAbundance[i][j] - centers[clusterMap[i]][j])*(relativeAbundance[i][j] - centers[clusterMap[i]][j]));
            }
        }
        
        double wgss = 0.0;
        for (int j = 0; j < numOTUs; j++) {
            for(int i=0;i<numSamples;i++){
                if (m->control_pressed) { return 0.0; }
                wgss += relativeAbundance[i][j];
            }
        }
        
        double bgss = allMeanDist - wgss;
        
        CH = (bgss / (double)(numPartitions - 1)) / (wgss / (double) (numSamples - numPartitions));
        
        return CH;
    }
    catch(exception& e){
        m->errorOut(e, "Pam", "calcCHIndex");
        exit(1);
    }
}

/**************************************************************************************************/