File: phylodiversitycommand.cpp

package info (click to toggle)
mothur 1.33.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,248 kB
  • ctags: 12,231
  • sloc: cpp: 152,046; fortran: 665; makefile: 74; sh: 34
file content (797 lines) | stat: -rw-r--r-- 33,916 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*
 *  phylodiversitycommand.cpp
 *  Mothur
 *
 *  Created by westcott on 4/30/10.
 *  Copyright 2010 Schloss Lab. All rights reserved.
 *
 */

#include "phylodiversitycommand.h"
#include "treereader.h"

//**********************************************************************************************************************
vector<string> PhyloDiversityCommand::setParameters(){	
	try {

		CommandParameter ptree("tree", "InputTypes", "", "", "none", "none", "none","phylodiv",false,true,true); parameters.push_back(ptree);
        CommandParameter pname("name", "InputTypes", "", "", "NameCount", "none", "none","",false,false,true); parameters.push_back(pname);
        CommandParameter pcount("count", "InputTypes", "", "", "NameCount-CountGroup", "none", "none","",false,false,true); parameters.push_back(pcount);
		CommandParameter pgroup("group", "InputTypes", "", "", "CountGroup", "none", "none","",false,false,true); parameters.push_back(pgroup);
		CommandParameter pgroups("groups", "String", "", "", "", "", "","",false,false); parameters.push_back(pgroups);
		CommandParameter piters("iters", "Number", "", "1000", "", "", "","",false,false); parameters.push_back(piters);
		CommandParameter pfreq("freq", "Number", "", "100", "", "", "","",false,false); parameters.push_back(pfreq);
		CommandParameter pprocessors("processors", "Number", "", "1", "", "", "","",false,false,true); parameters.push_back(pprocessors);
		CommandParameter prarefy("rarefy", "Boolean", "", "F", "", "", "","rarefy",false,false); parameters.push_back(prarefy);
		CommandParameter psummary("summary", "Boolean", "", "T", "", "", "","summary",false,false); parameters.push_back(psummary);
		CommandParameter pcollect("collect", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(pcollect);
		CommandParameter pscale("scale", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(pscale);
		CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
		CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
		
		vector<string> myArray;
		for (int i = 0; i < parameters.size(); i++) {	myArray.push_back(parameters[i].name);		}
		return myArray;
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "setParameters");
		exit(1);
	}
}
//**********************************************************************************************************************
string PhyloDiversityCommand::getHelpString(){	
	try {
		string helpString = "";
		helpString += "The phylo.diversity command parameters are tree, group, name, count, groups, iters, freq, processors, scale, rarefy, collect and summary.  tree and group are required, unless you have valid current files.\n";
		helpString += "The groups parameter allows you to specify which of the groups in your groupfile you would like analyzed. The group names are separated by dashes. By default all groups are used.\n";
		helpString += "The iters parameter allows you to specify the number of randomizations to preform, by default iters=1000, if you set rarefy to true.\n";
		helpString += "The freq parameter is used indicate when to output your data, by default it is set to 100. But you can set it to a percentage of the number of sequence. For example freq=0.10, means 10%. \n";
		helpString += "The scale parameter is used indicate that you want your output scaled to the number of sequences sampled, default = false. \n";
		helpString += "The rarefy parameter allows you to create a rarefaction curve. The default is false.\n";
		helpString += "The collect parameter allows you to create a collectors curve. The default is false.\n";
		helpString += "The summary parameter allows you to create a .summary file. The default is true.\n";
		helpString += "The processors parameter allows you to specify the number of processors to use. The default is 1.\n";
		helpString += "The phylo.diversity command should be in the following format: phylo.diversity(groups=yourGroups, rarefy=yourRarefy, iters=yourIters).\n";
		helpString += "Example phylo.diversity(groups=A-B-C, rarefy=T, iters=500).\n";
		helpString += "The phylo.diversity command output two files: .phylo.diversity and if rarefy=T, .rarefaction.\n";
		helpString += "Note: No spaces between parameter labels (i.e. groups), '=' and parameters (i.e.yourGroups).\n";
		return helpString;
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "getHelpString");
		exit(1);
	}
}
//**********************************************************************************************************************
string PhyloDiversityCommand::getOutputPattern(string type) {
    try {
        string pattern = "";
        
        if (type == "phylodiv") {  pattern = "[filename],[tag],phylodiv"; } 
        else if (type == "rarefy") {  pattern = "[filename],[tag],phylodiv.rarefaction"; } 
        else if (type == "summary") {  pattern = "[filename],[tag],phylodiv.summary"; }
        else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->control_pressed = true;  }
        
        return pattern;
    }
    catch(exception& e) {
        m->errorOut(e, "PhyloDiversityCommand", "getOutputPattern");
        exit(1);
    }
}

//**********************************************************************************************************************
PhyloDiversityCommand::PhyloDiversityCommand(){	
	try {
		abort = true; calledHelp = true; 
		setParameters();
		vector<string> tempOutNames;
		outputTypes["phylodiv"] = tempOutNames;
		outputTypes["rarefy"] = tempOutNames;
		outputTypes["summary"] = tempOutNames;
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "PhyloDiversityCommand");
		exit(1);
	}
}
//**********************************************************************************************************************
PhyloDiversityCommand::PhyloDiversityCommand(string option)  {
	try {
		abort = false; calledHelp = false;   
		
		//allow user to run help
		if(option == "help") { help(); abort = true; calledHelp = true; }
		else if(option == "citation") { citation(); abort = true; calledHelp = true;}
		
		else {
			vector<string> myArray = setParameters();;
			
			OptionParser parser(option);
			map<string,string> parameters = parser.getParameters();
			map<string,string>::iterator it;
			
			ValidParameters validParameter;
		
			//check to make sure all parameters are valid for command
			for (map<string,string>::iterator it = parameters.begin(); it != parameters.end(); it++) { 
				if (validParameter.isValidParameter(it->first, myArray, it->second) != true) {  abort = true;  }
			}
			
			//initialize outputTypes
			vector<string> tempOutNames;
			outputTypes["phylodiv"] = tempOutNames;
			outputTypes["rarefy"] = tempOutNames;
			outputTypes["summary"] = tempOutNames;
			
			//if the user changes the input directory command factory will send this info to us in the output parameter 
			string inputDir = validParameter.validFile(parameters, "inputdir", false);		
			if (inputDir == "not found"){	inputDir = "";		}
			else {
				string path;
				it = parameters.find("tree");
				//user has given a template file
				if(it != parameters.end()){ 
					path = m->hasPath(it->second);
					//if the user has not given a path then, add inputdir. else leave path alone.
					if (path == "") {	parameters["tree"] = inputDir + it->second;		}
				}
				
				it = parameters.find("group");
				//user has given a template file
				if(it != parameters.end()){ 
					path = m->hasPath(it->second);
					//if the user has not given a path then, add inputdir. else leave path alone.
					if (path == "") {	parameters["group"] = inputDir + it->second;		}
				}
				
				it = parameters.find("name");
				//user has given a template file
				if(it != parameters.end()){ 
					path = m->hasPath(it->second);
					//if the user has not given a path then, add inputdir. else leave path alone.
					if (path == "") {	parameters["name"] = inputDir + it->second;		}
				}
                
                it = parameters.find("count");
				//user has given a template file
				if(it != parameters.end()){ 
					path = m->hasPath(it->second);
					//if the user has not given a path then, add inputdir. else leave path alone.
					if (path == "") {	parameters["count"] = inputDir + it->second;		}
				}
			}
			
			//check for required parameters
			treefile = validParameter.validFile(parameters, "tree", true);
			if (treefile == "not open") { treefile = ""; abort = true; }
			else if (treefile == "not found") { 				
				//if there is a current design file, use it
				treefile = m->getTreeFile(); 
				if (treefile != "") { m->mothurOut("Using " + treefile + " as input file for the tree parameter."); m->mothurOutEndLine(); }
				else { 	m->mothurOut("You have no current tree file and the tree parameter is required."); m->mothurOutEndLine(); abort = true; }								
			}else { m->setTreeFile(treefile); }	
			
			//check for required parameters
			groupfile = validParameter.validFile(parameters, "group", true);
			if (groupfile == "not open") { groupfile = ""; abort = true; }
			else if (groupfile == "not found") { groupfile = ""; }
			else { m->setGroupFile(groupfile); }
			
			namefile = validParameter.validFile(parameters, "name", true);
			if (namefile == "not open") { namefile = ""; abort = true; }
			else if (namefile == "not found") { namefile = ""; }
			else { m->setNameFile(namefile); }
			
            countfile = validParameter.validFile(parameters, "count", true);
			if (countfile == "not open") { countfile = ""; abort = true; }
			else if (countfile == "not found") { countfile = "";  }	
			else { m->setCountTableFile(countfile); }
            
            if ((namefile != "") && (countfile != "")) {
                m->mothurOut("[ERROR]: you may only use one of the following: name or count."); m->mothurOutEndLine(); abort = true;
            }
			
            if ((groupfile != "") && (countfile != "")) {
                m->mothurOut("[ERROR]: you may only use one of the following: group or count."); m->mothurOutEndLine(); abort=true;
            }

			outputDir = validParameter.validFile(parameters, "outputdir", false);		if (outputDir == "not found"){	outputDir = m->hasPath(treefile);	}
			
			string temp;
			temp = validParameter.validFile(parameters, "freq", false);			if (temp == "not found") { temp = "100"; }
			m->mothurConvert(temp, freq); 
			
			temp = validParameter.validFile(parameters, "iters", false);			if (temp == "not found") { temp = "1000"; }
			m->mothurConvert(temp, iters); 
			
			temp = validParameter.validFile(parameters, "rarefy", false);			if (temp == "not found") { temp = "F"; }
			rarefy = m->isTrue(temp);
			if (!rarefy) { iters = 1;  }
			
			temp = validParameter.validFile(parameters, "summary", false);			if (temp == "not found") { temp = "T"; }
			summary = m->isTrue(temp);
			
			temp = validParameter.validFile(parameters, "scale", false);			if (temp == "not found") { temp = "F"; }
			scale = m->isTrue(temp);
			
			temp = validParameter.validFile(parameters, "collect", false);			if (temp == "not found") { temp = "F"; }
			collect = m->isTrue(temp);
			
			temp = validParameter.validFile(parameters, "processors", false);	if (temp == "not found"){	temp = m->getProcessors();	}
			m->setProcessors(temp);
			m->mothurConvert(temp, processors); 
			
			groups = validParameter.validFile(parameters, "groups", false);			
			if (groups == "not found") { groups = "";  }
			else { 
				m->splitAtDash(groups, Groups);
				m->setGroups(Groups);
			}
			
			if ((!collect) && (!rarefy) && (!summary)) { m->mothurOut("No outputs selected. You must set either collect, rarefy or summary to true, summary=T by default."); m->mothurOutEndLine(); abort=true; }
			
			if (countfile=="") {
                if (namefile == "") {
                    vector<string> files; files.push_back(treefile);
                    parser.getNameFile(files);
                } 
            }
		}
		
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "PhyloDiversityCommand");
		exit(1);
	}			
}
//**********************************************************************************************************************

int PhyloDiversityCommand::execute(){
	try {
		
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
        int start = time(NULL);
        
		m->setTreeFile(treefile);
        TreeReader* reader;
        if (countfile == "") { reader = new TreeReader(treefile, groupfile, namefile); }
        else { reader = new TreeReader(treefile, countfile); }
        vector<Tree*> trees = reader->getTrees();
        ct = trees[0]->getCountTable();
        delete reader;

		SharedUtil util;
		vector<string> mGroups = m->getGroups();
		vector<string> tGroups = ct->getNamesOfGroups();
		util.setGroups(mGroups, tGroups, "phylo.diversity");	//sets the groups the user wants to analyze
		
		//incase the user had some mismatches between the tree and group files we don't want group xxx to be analyzed
		for (int i = 0; i < mGroups.size(); i++) { if (mGroups[i] == "xxx") { mGroups.erase(mGroups.begin()+i);  break; }  }
		m->setGroups(mGroups);
		 
		vector<string> outputNames;
		
		//for each of the users trees
		for(int i = 0; i < trees.size(); i++) {
		
			if (m->control_pressed) { delete ct; for (int j = 0; j < trees.size(); j++) { delete trees[j]; } for (int j = 0; j < outputNames.size(); j++) {	m->mothurRemove(outputNames[j]); 	} return 0; }
			
			ofstream outSum, outRare, outCollect;
            map<string, string> variables; 
            variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(treefile));
            variables["[tag]"] = toString(i+1);
			string outSumFile = getOutputFileName("summary",variables);
			string outRareFile = getOutputFileName("rarefy",variables);
			string outCollectFile = getOutputFileName("phylodiv",variables);
			
			if (summary)	{ m->openOutputFile(outSumFile, outSum); outputNames.push_back(outSumFile);		outputTypes["summary"].push_back(outSumFile);			}
			if (rarefy)		{ m->openOutputFile(outRareFile, outRare); outputNames.push_back(outRareFile);	outputTypes["rarefy"].push_back(outRareFile);			}
			if (collect)	{ m->openOutputFile(outCollectFile, outCollect); outputNames.push_back(outCollectFile);	 outputTypes["phylodiv"].push_back(outCollectFile);  }
			
			int numLeafNodes = trees[i]->getNumLeaves();
			
			//create a vector containing indexes of leaf nodes, randomize it, select nodes to send to calculator
			vector<int> randomLeaf;
			for (int j = 0; j < numLeafNodes; j++) {  
				if (m->inUsersGroups(trees[i]->tree[j].getGroup(), mGroups) == true) { //is this a node from the group the user selected.
					randomLeaf.push_back(j); 
				}
			}
            
           /* float sum = 0;
            vector<float> sums; sums.resize(m->getGroups().size(), 0);
            vector<float> sumsAboveRoot; sumsAboveRoot.resize(m->getGroups().size(), 0);
            for (int j = 0; j < trees[i]->getNumNodes(); j++) { 
                if (trees[i]->tree[j].getBranchLength() < 0) { cout << j << '\t' << trees[i]->tree[j].getName() << '\t' << trees[i]->tree[j].getBranchLength() << endl; }
                
				sum += abs(trees[i]->tree[j].getBranchLength());
                for (int k = 0; k < m->getGroups().size(); k++) {
                    map<string, int>::iterator itGroup = trees[i]->tree[j].pcount.find(m->getGroups()[k]);
                    if (itGroup != trees[i]->tree[j].pcount.end()) {  //this branch belongs to a group we care about
                        if (j < rootForGroup[m->getGroups()[k]]) {
                            sums[k] += abs(trees[i]->tree[j].getBranchLength());
                        }else {
                            sumsAboveRoot[k] += abs(trees[i]->tree[j].getBranchLength());
                        }
                    } 
                }
			}
            cout << sum << endl; //exit(1);
            
            for (int k = 0; k < m->getGroups().size(); k++) {
                cout << m->getGroups()[k] << "root node = " << rootForGroup[m->getGroups()[k]] << "sum below root = " << sums[k] << "sum above root = " << sumsAboveRoot[k] << endl;
            }
             exit(1);  */ 
			
			numLeafNodes = randomLeaf.size();  //reset the number of leaf nodes you are using 
			
			//each group, each sampling, if no rarefy iters = 1;
			map<string, vector<float> > diversity;
			
			//each group, each sampling, if no rarefy iters = 1;
			map<string, vector<float> > sumDiversity;
			
			//find largest group total 
			int largestGroup = 0;
			for (int j = 0; j < mGroups.size(); j++) { 
                int numSeqsThisGroup = ct->getGroupCount(mGroups[j]);
				if (numSeqsThisGroup > largestGroup) { largestGroup = numSeqsThisGroup; }
				
				//initialize diversity
				diversity[mGroups[j]].resize(numSeqsThisGroup+1, 0.0);		//numSampled
																											//groupA		0.0			0.0
																											
				//initialize sumDiversity
				sumDiversity[mGroups[j]].resize(numSeqsThisGroup+1, 0.0);
			}	

			//convert freq percentage to number
			int increment = 100;
			if (freq < 1.0) {  increment = largestGroup * freq;  
			}else { increment = freq;  }
			
			//initialize sampling spots
			set<int> numSampledList;
			for(int k = 1; k <= largestGroup; k++){  if((k == 1) || (k % increment == 0)){  numSampledList.insert(k); }   }
			if(largestGroup % increment != 0){	numSampledList.insert(largestGroup);   }
			
			//add other groups ending points
			for (int j = 0; j < mGroups.size(); j++) {  
				if (numSampledList.count(diversity[mGroups[j]].size()-1) == 0) {  numSampledList.insert(diversity[mGroups[j]].size()-1); }
			}
			
            if (rarefy) {
                vector<int> procIters;
                int numItersPerProcessor = iters / processors;
                
                //divide iters between processes
                for (int h = 0; h < processors; h++) {
                    if(h == processors - 1){ numItersPerProcessor = iters - h * numItersPerProcessor; }
                    procIters.push_back(numItersPerProcessor);
                }
                
                createProcesses(procIters, trees[i], diversity, sumDiversity, iters, increment, randomLeaf, numSampledList, outCollect, outSum);
                
            }else{ //no need to paralellize if you dont want to rarefy
                driver(trees[i], diversity, sumDiversity, iters, increment, randomLeaf, numSampledList, outCollect, outSum, true);	
            }
				
			if (rarefy) {	printData(numSampledList, sumDiversity, outRare, iters);	}
		}
		
	
		if (m->control_pressed) { for (int i = 0; i < outputNames.size(); i++) {	m->mothurRemove(outputNames[i]); 	} return 0; }

        m->mothurOut("It took " + toString(time(NULL) - start) + " secs to run phylo.diversity."); m->mothurOutEndLine();

        
		m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i]); m->mothurOutEndLine();	}
		m->mothurOutEndLine();

		
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "execute");
		exit(1);
	}
}
//**********************************************************************************************************************
int PhyloDiversityCommand::createProcesses(vector<int>& procIters, Tree* t, map< string, vector<float> >& div, map<string, vector<float> >& sumDiv, int numIters, int increment, vector<int>& randomLeaf, set<int>& numSampledList, ofstream& outCollect, ofstream& outSum){
	try {
        int process = 1;
		
		vector<int> processIDS;
		map< string, vector<float> >::iterator itSum;

		#if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
				
		//loop through and create all the processes you want
		while (process != processors) {
			int pid = fork();
			
			if (pid > 0) {
				processIDS.push_back(pid);  //create map from line number to pid so you can append files in correct order later
				process++;
			}else if (pid == 0){
				driver(t, div, sumDiv, procIters[process], increment, randomLeaf, numSampledList, outCollect, outSum, false);
				
				string outTemp = outputDir + toString(getpid()) + ".sumDiv.temp";
				ofstream out;
				m->openOutputFile(outTemp, out);
				
				//output the sumDIversity
				for (itSum = sumDiv.begin(); itSum != sumDiv.end(); itSum++) {
					out << itSum->first << '\t' << (itSum->second).size() << '\t';
					for (int k = 0; k < (itSum->second).size(); k++) { 
						out << (itSum->second)[k] << '\t';
					}
					out << endl;
				}
				
				out.close();
				
				exit(0);
			}else { 
				m->mothurOut("[ERROR]: unable to spawn the necessary processes."); m->mothurOutEndLine(); 
				for (int i = 0; i < processIDS.size(); i++) { kill (processIDS[i], SIGINT); }
				exit(0);
			}
		}
		
		driver(t, div, sumDiv, procIters[0], increment, randomLeaf, numSampledList, outCollect, outSum, true);
		
		//force parent to wait until all the processes are done
		for (int i=0;i<(processors-1);i++) { 
			int temp = processIDS[i];
			wait(&temp);
		}
		
		//get data created by processes
		for (int i=0;i<(processors-1);i++) { 
			
			//input the sumDIversity
			string inTemp = outputDir + toString(processIDS[i]) + ".sumDiv.temp";
			ifstream in;
			m->openInputFile(inTemp, in);
				
			//output the sumDIversity
			for (int j = 0; j < sumDiv.size(); j++) { 
				string group = "";
				int size = 0;
				
				in >> group >> size; m->gobble(in);
				
				for (int k = 0; k < size; k++) { 
					float tempVal;
					in >> tempVal;
					
					sumDiv[group][k] += tempVal;
				}
				m->gobble(in);
			}
				
			in.close();
			m->mothurRemove(inTemp);
		}
#else
        
        //fill in functions
        vector<phylodivData*> pDataArray;
		DWORD   dwThreadIdArray[processors-1];
		HANDLE  hThreadArray[processors-1];
        vector<CountTable*> cts;
        vector<Tree*> trees;
        map<string, int> rootForGroup = getRootForGroups(t);
		
		//Create processor worker threads.
		for( int i=1; i<processors; i++ ){
            CountTable* copyCount = new CountTable();
            copyCount->copy(ct);
            Tree* copyTree = new Tree(copyCount);
            copyTree->getCopy(t);
            
            cts.push_back(copyCount);
            trees.push_back(copyTree);
            
            map<string, vector<float> > copydiv = div;
            map<string, vector<float> > copysumDiv = sumDiv;
            vector<int> copyrandomLeaf = randomLeaf;
            set<int> copynumSampledList = numSampledList;
            map<string, int> copyRootForGrouping = rootForGroup;
            
            phylodivData* temp = new phylodivData(m, procIters[i], copydiv, copysumDiv, copyTree, copyCount, increment, copyrandomLeaf, copynumSampledList, copyRootForGrouping);
			pDataArray.push_back(temp);
			processIDS.push_back(i);
            
			hThreadArray[i-1] = CreateThread(NULL, 0, MyPhyloDivThreadFunction, pDataArray[i-1], 0, &dwThreadIdArray[i-1]);
		}
		
		driver(t, div, sumDiv, procIters[0], increment, randomLeaf, numSampledList, outCollect, outSum, true);
		
		//Wait until all threads have terminated.
		WaitForMultipleObjects(processors-1, hThreadArray, TRUE, INFINITE);
		
		//Close all thread handles and free memory allocations.
		for(int i=0; i < pDataArray.size(); i++){
            for (itSum = pDataArray[i]->sumDiv.begin(); itSum != pDataArray[i]->sumDiv.end(); itSum++) {
                for (int k = 0; k < (itSum->second).size(); k++) {
                    sumDiv[itSum->first][k] += (itSum->second)[k];
                }
            }
			delete cts[i];
            delete trees[i];
			CloseHandle(hThreadArray[i]);
			delete pDataArray[i];
		}
		
#endif

	return 0;		
	
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "createProcesses");
		exit(1);
	}
}
//**********************************************************************************************************************
int PhyloDiversityCommand::driver(Tree* t, map< string, vector<float> >& div, map<string, vector<float> >& sumDiv, int numIters, int increment, vector<int>& randomLeaf, set<int>& numSampledList, ofstream& outCollect, ofstream& outSum, bool doSumCollect){
	try {
		int numLeafNodes = randomLeaf.size();
		vector<string> mGroups = m->getGroups();
        
        map<string, int> rootForGroup = getRootForGroups(t); //maps groupName to root node in tree. "root" for group may not be the trees root and we don't want to include the extra branches.
        
		for (int l = 0; l < numIters; l++) {
				random_shuffle(randomLeaf.begin(), randomLeaf.end());
         
				//initialize counts
				map<string, int> counts;
                vector< map<string, bool> > countedBranch;
                for (int i = 0; i < t->getNumNodes(); i++) {
                    map<string, bool> temp;
                    for (int j = 0; j < mGroups.size(); j++) { temp[mGroups[j]] = false; }
                    countedBranch.push_back(temp);
                }
            
				for (int j = 0; j < mGroups.size(); j++) {  counts[mGroups[j]] = 0;   }  
				
				for(int k = 0; k < numLeafNodes; k++){
						
					if (m->control_pressed) { return 0; }
					
					//calc branch length of randomLeaf k
                    vector<float> br = calcBranchLength(t, randomLeaf[k], countedBranch, rootForGroup);
			
					//for each group in the groups update the total branch length accounting for the names file
					vector<string> groups = t->tree[randomLeaf[k]].getGroup();
					
					for (int j = 0; j < groups.size(); j++) {
                        
                        if (m->inUsersGroups(groups[j], mGroups)) {
                            int numSeqsInGroupJ = 0;
                            map<string, int>::iterator it;
                            it = t->tree[randomLeaf[k]].pcount.find(groups[j]);
                            if (it != t->tree[randomLeaf[k]].pcount.end()) { //this leaf node contains seqs from group j
                                numSeqsInGroupJ = it->second;
                            }
                            
                            if (numSeqsInGroupJ != 0) {	div[groups[j]][(counts[groups[j]]+1)] = div[groups[j]][counts[groups[j]]] + br[j];  }
                            
                            for (int s = (counts[groups[j]]+2); s <= (counts[groups[j]]+numSeqsInGroupJ); s++) {
                                div[groups[j]][s] = div[groups[j]][s-1];  //update counts, but don't add in redundant branch lengths
                            }
                            counts[groups[j]] += numSeqsInGroupJ;
                        }
					}
				}
				
				if (rarefy) {
					//add this diversity to the sum
					for (int j = 0; j < mGroups.size(); j++) {  
						for (int g = 0; g < div[mGroups[j]].size(); g++) {
							sumDiv[mGroups[j]][g] += div[mGroups[j]][g];
						}
					}
				}
				
				if ((collect) && (l == 0) && doSumCollect) {  printData(numSampledList, div, outCollect, 1);  }
				if ((summary) && (l == 0) && doSumCollect) {  printSumData(div, outSum, 1);  }
			}
			
			return 0;

	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "driver");
		exit(1);
	}
}

//**********************************************************************************************************************

void PhyloDiversityCommand::printSumData(map< string, vector<float> >& div, ofstream& out, int numIters){
	try {
		
		out << "Groups\tnumSampled\tphyloDiversity" << endl;
		
		out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
		
		vector<string> mGroups = m->getGroups();
		for (int j = 0; j < mGroups.size(); j++) {
			int numSampled = (div[mGroups[j]].size()-1);
			out << mGroups[j] << '\t' << numSampled << '\t';
		
			 
			float score;
			if (scale)	{  score = (div[mGroups[j]][numSampled] / (float)numIters) / (float)numSampled;	}
			else		{	score = div[mGroups[j]][numSampled] / (float)numIters;	}
				
			out << setprecision(4) << score << endl;
            //cout << mGroups[j] << '\t' << numSampled << '\t'<< setprecision(4) << score << endl;
		}
					
		out.close();
		
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "printSumData");
		exit(1);
	}
}
//**********************************************************************************************************************

void PhyloDiversityCommand::printData(set<int>& num, map< string, vector<float> >& div, ofstream& out, int numIters){
	try {
		
		out << "numSampled\t";
		vector<string> mGroups = m->getGroups();
		for (int i = 0; i < mGroups.size(); i++) { out << mGroups[i] << '\t';  }
		out << endl;
		
		out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
		
		for (set<int>::iterator it = num.begin(); it != num.end(); it++) {  
			int numSampled = *it;
			
			out << numSampled << '\t';  
		
			for (int j = 0; j < mGroups.size(); j++) {
				if (numSampled < div[mGroups[j]].size()) { 
					float score;
					if (scale)	{  score = (div[mGroups[j]][numSampled] / (float)numIters) / (float)numSampled;	}
					else		{	score = div[mGroups[j]][numSampled] / (float)numIters;	}

					out << setprecision(4) << score << '\t';
				}else { out << "NA" << '\t'; }
			}
			out << endl;
		}
		
		out.close();
		
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "printData");
		exit(1);
	}
}
//**********************************************************************************************************************
//need a vector of floats one branch length for every group the node represents.
vector<float> PhyloDiversityCommand::calcBranchLength(Tree* t, int leaf, vector< map<string, bool> >& counted, map<string, int> roots){
	try {
        
		//calc the branch length
		//while you aren't at root
		vector<float> sums; 
		int index = leaf;
		
		vector<string> groups = t->tree[leaf].getGroup();
		sums.resize(groups.size(), 0.0);
		
        
        //you are a leaf
		if(t->tree[index].getBranchLength() != -1){	
			for (int k = 0; k < groups.size(); k++) { 
                sums[k] += abs(t->tree[index].getBranchLength());	
			}
		}
        
        
        index = t->tree[index].getParent();	
        
		//while you aren't at root
		while(t->tree[index].getParent() != -1){
            
			if (m->control_pressed) {  return sums; }
			
			for (int k = 0; k < groups.size(); k++) {
                
                if (index >= roots[groups[k]]) { counted[index][groups[k]] = true; } //if you are at this groups "root", then say we are done
                
                if (!counted[index][groups[k]]){ //if counted[index][groups[k] is true this groups has already added all br from here to root, so quit early
                    if (t->tree[index].getBranchLength() != -1) {
                        sums[k] += abs(t->tree[index].getBranchLength());
                    }
                    counted[index][groups[k]] = true;
                }
            }
            index = t->tree[index].getParent();	
        }
        
		return sums;
        
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "calcBranchLength");
		exit(1);
	}
}
//**********************************************************************************************************************
map<string, int> PhyloDiversityCommand::getRootForGroups(Tree* t){
	try {
		map<string, int> roots; //maps group to root for group, may not be root of tree
		map<string, bool> done;
       
		//initialize root for all groups to -1
		for (int k = 0; k < (t->getCountTable())->getNamesOfGroups().size(); k++) { done[(t->getCountTable())->getNamesOfGroups()[k]] = false; }
        
        for (int i = 0; i < t->getNumLeaves(); i++) {
            
            vector<string> groups = t->tree[i].getGroup();
            
            int index = t->tree[i].getParent();
            
            for (int j = 0; j < groups.size(); j++) {
                
                    if (done[groups[j]] == false) { //we haven't found the root for this group yet, initialize it
                        done[groups[j]] = true;
                        roots[groups[j]] = i; //set root to self to start
                    }
                    
                    //while you aren't at root
                    while(t->tree[index].getParent() != -1){
                        
                        if (m->control_pressed) {  return roots; }
                        
                        //do both your chidren have have descendants from the users groups? 
                        int lc = t->tree[index].getLChild();
                        int rc = t->tree[index].getRChild();
                        
                        int LpcountSize = 0;
                        map<string, int>:: iterator itGroup = t->tree[lc].pcount.find(groups[j]);
                        if (itGroup != t->tree[lc].pcount.end()) { LpcountSize++;  } 
                        
                        int RpcountSize = 0;
                        itGroup = t->tree[rc].pcount.find(groups[j]);
                        if (itGroup != t->tree[rc].pcount.end()) { RpcountSize++;  } 
                        
                        if ((LpcountSize != 0) && (RpcountSize != 0)) { //possible root
                            if (index > roots[groups[j]]) {  roots[groups[j]] = index; }
                        }else { ;}
                        
                        index = t->tree[index].getParent();	
                    }
                //}
            }
        }
        
        
        
        return roots;
        
	}
	catch(exception& e) {
		m->errorOut(e, "PhyloDiversityCommand", "getRootForGroups");
		exit(1);
	}
}
//**********************************************************************************************************************