File: randomnumber.cpp

package info (click to toggle)
mothur 1.33.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,248 kB
  • ctags: 12,231
  • sloc: cpp: 152,046; fortran: 665; makefile: 74; sh: 34
file content (315 lines) | stat: -rw-r--r-- 9,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#ifndef RANDOMNUMBER_H
#define RANDOMNUMBER_H

/*
 *  randomnumber.cpp
 *  
 *
 *  Created by Pat Schloss on 7/6/11.
 *  Copyright 2011 Patrick D. Schloss. All rights reserved.
 *
 */

#include "randomnumber.h"
#include <cmath>

/**************************************************************************************************/

RandomNumberGenerator::RandomNumberGenerator(){
    srand( (unsigned)time( NULL ) );
}

/**************************************************************************************************/

float RandomNumberGenerator::randomUniform(){
	
	float randUnif = 0.0000;
	
	while(randUnif == 0.0000){
		
		randUnif = rand() / (float)RAND_MAX;
		
	}
	
	return randUnif;
}

/**************************************************************************************************/
//
//Code shamelessly swiped and modified from Numerical Recipes in C++
//
/**************************************************************************************************/

float RandomNumberGenerator::randomExp(){
	
	float randExp = 0.0000;
	
	while(randExp == 0.0000){
		
		randExp = -log(randomUniform());
		
	}
	
	return randExp;
}

/**************************************************************************************************/
//
//Code shamelessly swiped and modified from Numerical Recipes in C++
//
/**************************************************************************************************/

float RandomNumberGenerator::randomNorm(){
	
	float x, y, rsquare;
	
	do{
		x = 2.0 * randomUniform() - 1.0;
		y = 2.0 * randomUniform() - 1.0;
	
		rsquare = x * x + y * y;
	} while(rsquare >= 1.0 || rsquare == 0.0);
	
	float fac = sqrt(-2.0 * log(rsquare)/rsquare);

	return x * fac;
}


/**************************************************************************************************/
/*
 *	Slightly modified version of:
 *
 *  Mathlib : A C Library of Special Functions
 *  Copyright (C) 1998 Ross Ihaka
 *  Copyright (C) 2000-2005 The R Development Core Team
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, a copy is available at
 *  http://www.r-project.org/Licenses/
 *
 *  SYNOPSIS
 *
 *    #include <Rmath.h>
 *    float rgamma(float a, float scale);
 *
 *  DESCRIPTION
 *
 *    Random variates from the gamma distribution.
 *
 *  REFERENCES
 *
 *    [1] Shape parameter a >= 1.  Algorithm GD in:
 *
 *        Ahrens, J.H. and Dieter, U. (1982).
 *        Generating gamma variates by a modified
 *        rejection technique.
 *        Comm. ACM, 25, 47-54.
 *
 *
 *    [2] Shape parameter 0 < a < 1. Algorithm GS in:
 *
 *        Ahrens, J.H. and Dieter, U. (1974).
 *        Computer methods for sampling from gamma, beta,
 *        poisson and binomial distributions.
 *        Computing, 12, 223-246.
 *
 *    Input: a = parameter (mean) of the standard gamma distribution.
 *    Output: a variate from the gamma(a)-distribution
 */

float RandomNumberGenerator::randomGamma(float a)
{
	/* Constants : */
    const static float sqrt32 = 5.656854;
    const static float exp_m1 = 0.36787944117144232159;/* exp(-1) = 1/e */
	float scale = 1.0;
	
    /* Coefficients q[k] - for q0 = sum(q[k]*a^(-k))
     * Coefficients a[k] - for q = q0+(t*t/2)*sum(a[k]*v^k)
     * Coefficients e[k] - for exp(q)-1 = sum(e[k]*q^k)
     */
    const static float q1 = 0.04166669;
    const static float q2 = 0.02083148;
    const static float q3 = 0.00801191;
    const static float q4 = 0.00144121;
    const static float q5 = -7.388e-5;
    const static float q6 = 2.4511e-4;
    const static float q7 = 2.424e-4;
	
    const static float a1 = 0.3333333;
    const static float a2 = -0.250003;
    const static float a3 = 0.2000062;
    const static float a4 = -0.1662921;
    const static float a5 = 0.1423657;
    const static float a6 = -0.1367177;
    const static float a7 = 0.1233795;
	
    /* State variables [FIXME for threading!] :*/
    static float aa = 0.;
    static float aaa = 0.;
    static float s, s2, d;    /* no. 1 (step 1) */
    static float q0, b, si, c;/* no. 2 (step 4) */
	
    float e, p, q, r, t, u, v, w, x, ret_val;
	
    if (a <= 0.0 || scale <= 0.0){	cout << "error alpha or scale parameter are less than zero." << endl; exit(1);	}
		
    if (a < 1.) { /* GS algorithm for parameters a < 1 */
        e = 1.0 + exp_m1 * a;
        for(;;) {
            p = e * randomUniform();
            if (p >= 1.0) {
                x = -log((e - p) / a);
                if (randomExp() >= (1.0 - a) * log(x))
                    break;
            } else {
                x = exp(log(p) / a);
                if (randomExp() >= x)
                    break;
            }
        }
        return scale * x;
    }
	
    /* --- a >= 1 : GD algorithm --- */
	
    /* Step 1: Recalculations of s2, s, d if a has changed */
    if (a != aa) {
        aa = a;
        s2 = a - 0.5;
        s = sqrt(s2);
        d = sqrt32 - s * 12.0;
    }
    /* Step 2: t = standard normal deviate,
	 x = (s,1/2) -normal deviate. */
	
    /* immediate acceptance (i) */
    t = randomNorm();
    x = s + 0.5 * t;
    ret_val = x * x;
    if (t >= 0.0)
        return scale * ret_val;
	
    /* Step 3: u = 0,1 - uniform sample. squeeze acceptance (s) */
    u = randomUniform();
    if (d * u <= t * t * t)
        return scale * ret_val;
	
    /* Step 4: recalculations of q0, b, si, c if necessary */
	
    if (a != aaa) {
        aaa = a;
        r = 1.0 / a;
        q0 = ((((((q7 * r + q6) * r + q5) * r + q4) * r + q3) * r
               + q2) * r + q1) * r;
		
        /* Approximation depending on size of parameter a */
        /* The constants in the expressions for b, si and c */
        /* were established by numerical experiments */
		
        if (a <= 3.686) {
            b = 0.463 + s + 0.178 * s2;
            si = 1.235;
            c = 0.195 / s - 0.079 + 0.16 * s;
        } else if (a <= 13.022) {
            b = 1.654 + 0.0076 * s2;
            si = 1.68 / s + 0.275;
            c = 0.062 / s + 0.024;
        } else {
            b = 1.77;
            si = 0.75;
            c = 0.1515 / s;
        }
    }
    /* Step 5: no quotient test if x not positive */
	
    if (x > 0.0) {
        /* Step 6: calculation of v and quotient q */
        v = t / (s + s);
        if (fabs(v) <= 0.25)
            q = q0 + 0.5 * t * t * ((((((a7 * v + a6) * v + a5) * v + a4) * v
                                      + a3) * v + a2) * v + a1) * v;
        else
            q = q0 - s * t + 0.25 * t * t + (s2 + s2) * log(1.0 + v);
		
		
        /* Step 7: quotient acceptance (q) */
        if (log(1.0 - u) <= q)
            return scale * ret_val;
    }
	
    for(;;) {
        /* Step 8: e = standard exponential deviate
         *      u =  0,1 -uniform deviate
         *      t = (b,si)-float exponential (laplace) sample */
        e = randomExp();
        u = randomUniform();
        u = u + u - 1.0;
        if (u < 0.0)
            t = b - si * e;
        else
            t = b + si * e;
        /* Step  9:  rejection if t < tau(1) = -0.71874483771719 */
        if (t >= -0.71874483771719) {
            /* Step 10:  calculation of v and quotient q */
            v = t / (s + s);
            if (fabs(v) <= 0.25)
                q = q0 + 0.5 * t * t *
				((((((a7 * v + a6) * v + a5) * v + a4) * v + a3) * v
				  + a2) * v + a1) * v;
            else
                q = q0 - s * t + 0.25 * t * t + (s2 + s2) * log(1.0 + v);
            /* Step 11:  hat acceptance (h) */
            /* (if q not positive go to step 8) */
            if (q > 0.0) {
                w = expm1(q);
                /*  ^^^^^ original code had approximation with rel.err < 2e-7 */
                /* if t is rejected sample again at step 8 */
                if (c * fabs(u) <= w * exp(e - 0.5 * t * t))
                    break;
            }
        }
    } /* for(;;) .. until  `t' is accepted */
    x = s + 0.5 * t;
    return scale * x * x;
}

/**************************************************************************************************/
//
//	essentially swiped from http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation
//
/**************************************************************************************************/

vector<float> RandomNumberGenerator::randomDirichlet(vector<float> alphas){

	int nAlphas = (int)alphas.size();
	vector<float> dirs(nAlphas, 0.0000);
	
	float sum = 0.0000;
	for(int i=0;i<nAlphas;i++){
		dirs[i] = randomGamma(alphas[i]);
		sum += dirs[i];
	}
	
	for(int i=0;i<nAlphas;i++){
		dirs[i] /= sum;
	}
	
	return dirs;
	
}

/**************************************************************************************************/

#endif