1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* sharedchao1.cpp
* Dotur
*
* Created by Sarah Westcott on 1/8/09.
* Copyright 2009 Schloss Lab UMASS Amherst. All rights reserved.
*
*/
#include "sharedchao1.h"
/***********************************************************************/
EstOutput SharedChao1::getValues(vector<SharedRAbundVector*> shared){
try {
data.resize(1,0);
vector<int> temp;
int numGroups = shared.size();
float Chao = 0.0; float leftvalue, rightvalue;
// IntNode is defined in mothur.h
// The tree used here is a binary tree used to represent the f1+++, f+1++, f++1+, f+++1, f11++, f1+1+...
// combinations required to solve the chao estimator equation for any number of groups. Conceptually, think
// of each node as having a 1 and a + value, or for f2 values a 2 and a + value, and 2 pointers to intnodes, and 2 coeffient values.
// The coeffient value is how many times you chose branch 1 to get to that fvalue.
// If you choose left you are selecting the 1 or 2 value and right means the + value. For instance, to find
// the number of bins that have f1+1+ you would start at the root, go left, right, left, and select the rightvalue.
// the coeffient is 2. Note: we only set the coeffient in f2 values.
//create and initialize trees to 0.
initialTree(numGroups);
for (int i = 0; i < shared[0]->getNumBins(); i++) {
//get bin values and calc shared
bool sharedByAll = true;
temp.clear();
for (int j = 0; j < numGroups; j++) {
temp.push_back(shared[j]->getAbundance(i));
if (temp[j] == 0) { sharedByAll = false; }
}
//they are shared
if (sharedByAll == true) {
//find f1 and f2values
updateTree(temp);
}
}
//calculate chao1, (numleaves-1) because numleaves contains the ++ values.
bool bias = false;
for(int i=0;i<numLeaves;i++){
if (f2leaves[i]->lvalue == 0 || f2leaves[i]->rvalue == 0) { bias = true;}// break;}
}
if(bias){
for (int i = 0; i < numLeaves; i++) {
leftvalue = (float)(f1leaves[i]->lvalue * (f1leaves[i]->lvalue - 1)) / (float)((pow(2, (float)f2leaves[i]->lcoef)) * (f2leaves[i]->lvalue + 1));
if (i != (numLeaves-1)) {
rightvalue = (float)(f1leaves[i]->rvalue * (f1leaves[i]->rvalue - 1)) / (float)((pow(2, (float)f2leaves[i]->rcoef)) * (f2leaves[i]->rvalue + 1));
}else{
//add in sobs
rightvalue = (float)(f1leaves[i]->rvalue);
}
Chao += leftvalue + rightvalue;
}
}
else{
for (int i = 0; i < numLeaves; i++) {
leftvalue = (float)(f1leaves[i]->lvalue * f1leaves[i]->lvalue) / (float)((pow(2, (float)f2leaves[i]->lcoef)) * f2leaves[i]->lvalue);
if (i != (numLeaves-1)) {
rightvalue = (float)(f1leaves[i]->rvalue * f1leaves[i]->rvalue) / (float)((pow(2, (float)f2leaves[i]->rcoef)) * f2leaves[i]->rvalue);
}else{
//add in sobs
rightvalue = (float)(f1leaves[i]->rvalue);
}
Chao += leftvalue + rightvalue;
}
}
for (int i = 0; i < numNodes; i++) {
delete f1leaves[i];
delete f2leaves[i];
}
data[0] = Chao;
return data;
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "getValues");
exit(1);
}
}
/***********************************************************************/
//builds trees structure with n leaf nodes initialized to 0.
void SharedChao1::initialTree(int n) {
try {
// (2^n) / 2. Divide by 2 because each leaf node contains 2 values. One for + and one for 1 or 2.
numLeaves = pow(2, (float)n) / 2;
numNodes = 2*numLeaves - 1;
int countleft = 0;
int countright = 1;
f1leaves.resize(numNodes);
f2leaves.resize(numNodes);
//initialize leaf values
for (int i = 0; i < numLeaves; i++) {
f1leaves[i] = new IntNode(0, 0, NULL, NULL);
f2leaves[i] = new IntNode(0, 0, NULL, NULL);
}
//set pointers to children
for (int j = numLeaves; j < numNodes; j++) {
f1leaves[j] = new IntNode();
f1leaves[j]->left = f1leaves[countleft];
f1leaves[j]->right = f1leaves[countright];
f2leaves[j] = new IntNode();
f2leaves[j]->left = f2leaves[countleft];
f2leaves[j]->right =f2leaves[countright];
countleft = countleft + 2;
countright = countright + 2;
}
//point to root
f1root = f1leaves[numNodes-1];
//point to root
f2root = f2leaves[numNodes-1];
//set coeffients
setCoef(f2root, 0);
}
catch(exception& e) {
if ((toString(e.what()) == "vector::_M_fill_insert") || (toString(e.what()) == "St9bad_alloc")) { m->mothurOut("You are using " + toString(n) + " groups which creates 2^" + toString(n+1) + " nodes. Try reducing the number of groups you selected. "); m->mothurOutEndLine(); exit(1); }
m->errorOut(e, "SharedChao1", "initialTree");
exit(1);
}
}
/***********************************************************************/
//take vector containing the abundance info. for a bin and updates trees.
void SharedChao1::updateTree(vector<int> bin) {
try {
updateBranchf1(f1root, bin, 0);
updateBranchf2(f2root, bin, 0);
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "updateTree");
exit(1);
}
}
/***********************************************************************/
void SharedChao1::updateBranchf1(IntNode* node, vector<int> bin, int index) {
try {
//if you have more than one group
if (index == (bin.size()-1)) {
if (bin[index] == 1) { node->lvalue++; node->rvalue++; }
else { node->rvalue++; }
}else {
if (bin[index] == 1) {
//follow path as if you are 1
updateBranchf1(node->left, bin, index+1);
}
//follow path as if you are +
updateBranchf1(node->right, bin, index+1);
}
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "updateBranchf1");
exit(1);
}
}
/***********************************************************************/
void SharedChao1::updateBranchf2(IntNode* node, vector<int> bin, int index) {
try {
//if you have more than one group
if (index == (bin.size()-1)) {
if (bin[index] == 2) { node->lvalue++; node->rvalue++; }
else { node->rvalue++; }
}else {
if (bin[index] == 2) {
//follow path as if you are 1
updateBranchf2(node->left, bin, index+1);
}
//follow path as if you are +
updateBranchf2(node->right, bin, index+1);
}
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "updateBranchf2");
exit(1);
}
}
/***********************************************************************/
void SharedChao1::setCoef(IntNode* node, int coef) {
try {
if (node->left != NULL) {
setCoef(node->left, coef+1);
setCoef(node->right, coef);
}else {
node->lcoef = coef+1;
node->rcoef = coef;
}
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "setCoef");
exit(1);
}
}
/***********************************************************************/
//for debugging purposes
void SharedChao1::printTree() {
m->mothurOut("F1 leaves"); m->mothurOutEndLine();
printBranch(f1root);
m->mothurOut("F2 leaves"); m->mothurOutEndLine();
printBranch(f2root);
}
/*****************************************************************/
void SharedChao1::printBranch(IntNode* node) {
try {
// you are not a leaf
if (node->left != NULL) {
printBranch(node->left);
printBranch(node->right);
}else { //you are a leaf
m->mothurOut(toString(node->lvalue)); m->mothurOutEndLine();
m->mothurOut(toString(node->rvalue)); m->mothurOutEndLine();
}
}
catch(exception& e) {
m->errorOut(e, "SharedChao1", "printBranch");
exit(1);
}
}
/*****************************************************************/
|