1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
#include "spline.h"
extern"C" {
void sgram_(double *sg0, double *sg1, double *sg2,
double *sg3, double* knot, int* nk);
void stxwx_(double *xs, double *ys, double *ws, int *n,
double *knot, int *nk, double *xwy, double *hs0, double *hs1, double *hs2, double *hs3);
void sslvrg_(double *penalt, double *dofoff, double *xs, double *ys, double *ws, double *ssw, int *n,
double *knot, int *nk,
double *coef, double *sz, double *lev, double *crit, int *icrit, double *lspar, double *xwy,
double *hs0, double *hs1, double *hs2, double *hs3,
double *sg0, double *sg1, double *sg2, double *sg3, double *abd,
double *p1ip, double *p2ip, int *ld4, int *ldnk, int *ier);
}
/***********************************************************/
// used as reference - http://www.koders.com/fortran/fid8AA63B49CF22F0138E9B3DBDC405696F4A62C1CF.aspx
// http://www.koders.com/c/fidD995301A8A5549CE0361F4E7FFDFD3CDC4B4E4A3.aspx
/* A Cubic B-spline Smoothing routine.
// sbart.f -- translated by f2c (version 20010821).
// ------- and f2c-clean,v 1.9 2000/01/13
//
// According to the GAMFIT sources, this was derived from code by
// Finbarr O'Sullivan.
//
The algorithm minimises:
(1/n) * sum ws(i)^2 * (ys(i)-sz(i))^2 + lambda* int ( s"(x) )^2 dx
lambda is a function of the spar which is assumed to be between 0 and 1
INPUT
-----
penalt A penalty > 1 to be used in the gcv criterion
dofoff either `df.offset' for GCV or `df' (to be matched).
n number of data points
ys(n) vector of length n containing the observations
ws(n) vector containing the weights given to each data point
NB: the code alters the values here.
xs(n) vector containing the ordinates of the observations
ssw `centered weighted sum of y^2'
nk number of b-spline coefficients to be estimated
nk <= n+2
knot(nk+4) vector of knot points defining the cubic b-spline basis.
To obtain full cubic smoothing splines one might
have (provided the xs-values are strictly increasing)
spar penalised likelihood smoothing parameter
ispar indicating if spar is supplied (ispar=1) or to be estimated
lspar, uspar lower and upper values for spar search; 0.,1. are good values
tol, eps used in Golden Search routine
isetup setup indicator [initially 0
icrit indicator saying which cross validation score is to be computed
0: none ; 1: GCV ; 2: CV ; 3: 'df matching'
ld4 the leading dimension of abd (ie ld4=4)
ldnk the leading dimension of p2ip (not referenced)
OUTPUT
------
coef(nk) vector of spline coefficients
sz(n) vector of smoothed z-values
lev(n) vector of leverages
crit either ordinary or generalized CV score
spar if ispar != 1
lspar == lambda (a function of spar and the design)
iter number of iterations needed for spar search (if ispar != 1)
ier error indicator
ier = 0 ___ everything fine
ier = 1 ___ spar too small or too big
problem in cholesky decomposition
Working arrays/matrix
xwy X'Wy
hs0,hs1,hs2,hs3 the diagonals of the X'WX matrix
sg0,sg1,sg2,sg3 the diagonals of the Gram matrix SIGMA
abd (ld4,nk) [ X'WX + lambda*SIGMA ] in diagonal form
p1ip(ld4,nk) inner products between columns of L inverse
p2ip(ldnk,nk) all inner products between columns of L inverse
where L'L = [X'WX + lambda*SIGMA] NOT REFERENCED
*/
int Spline::sbart
(double *penalt, double *dofoff,
double *xs, double *ys, double *ws, double *ssw,
int *n, double *knot, int *nk, double *coef,
double *sz, double *lev, double *crit, int *icrit,
double *spar, int *ispar, int *iter, double *lspar,
double *uspar, double *tol, double *eps, int *isetup,
int *ld4, int *ldnk, int *ier)
{
try{
/* A Cubic B-spline Smoothing routine.
The algorithm minimises:
(1/n) * sum ws(i)^2 * (ys(i)-sz(i))^2 + lambda* int ( s(x) )^2 dx
lambda is a function of the spar which is assumed to be between 0 and 1
INPUT
-----
penalt A penalty > 1 to be used in the gcv criterion
dofoff either `df.offset' for GCV or `df' (to be matched).
n number of data points
ys(n) vector of length n containing the observations
ws(n) vector containing the weights given to each data point
NB: the code alters the values here.
xs(n) vector containing the ordinates of the observations
ssw `centered weighted sum of y^2
nk number of b-spline coefficients to be estimated
nk <= n+2
knot(nk+4) vector of knot points defining the cubic b-spline basis.
To obtain full cubic smoothing splines one might
have (provided the xs-values are strictly increasing)
spar penalised likelihood smoothing parameter
ispar indicating if spar is supplied (ispar=1) or to be estimated
lspar, uspar lower and upper values for spar search; 0.,1. are good values
tol, eps used in Golden Search routine
isetup setup indicator [initially 0
icrit indicator saying which cross validation score is to be computed
0: none ; 1: GCV ; 2: CV ; 3: 'df matching'
ld4 the leading dimension of abd (ie ld4=4)
ldnk the leading dimension of p2ip (not referenced)
OUTPUT
------
coef(nk) vector of spline coefficients
sz(n) vector of smoothed z-values
lev(n) vector of leverages
crit either ordinary or generalized CV score
spar if ispar != 1
lspar == lambda (a function of spar and the design)
iter number of iterations needed for spar search (if ispar != 1)
ier error indicator
ier = 0 ___ everything fine
ier = 1 ___ spar too small or too big
problem in cholesky decomposition
Working arrays/matrix
xwy XWy
hs0,hs1,hs2,hs3 the diagonals of the XWX matrix
sg0,sg1,sg2,sg3 the diagonals of the Gram matrix SIGMA
abd (ld4,nk) [ XWX + lambda*SIGMA ] in diagonal form
p1ip(ld4,nk) inner products between columns of L inverse
p2ip(ldnk,nk) all inner products between columns of L inverse
where LL = [XWX + lambda*SIGMA] NOT REFERENCED
*/
#define CRIT(FX) (*icrit == 3 ? FX - 3. : FX)
/* cancellation in (3 + eps) - 3, but still...informative */
#define BIG_f (1e100)
/* c_Gold is the squared inverse of the golden ratio */
static const double c_Gold = 0.381966011250105151795413165634;
/* == (3. - sqrt(5.)) / 2. */
/* Local variables */
static double ratio;/* must be static (not needed in R) */
double a, b, d, e, p, q, r, u, v, w, x;
double ax, fu, fv, fw, fx, bx, xm;
double t1, t2, tol1, tol2;
double* xwy = new double[*nk];
double* hs0 = new double[*nk];
double* hs1 = new double[*nk];
double* hs2 = new double[*nk];
double* hs3 = new double[*nk];
double* sg0 = new double[*nk];
double* sg1 = new double[*nk];
double* sg2 = new double[*nk];
double* sg3 = new double[*nk];
double* abd = new double[*nk*(*ld4)];
double* p1ip = new double[*nk*(*ld4)];
double* p2ip = new double[*nk];
int i, maxit;
/* unnecessary initializations to keep -Wall happy */
d = 0.; fu = 0.; u = 0.;
ratio = 1.;
/* Compute SIGMA, X' W X, X' W z, trace ratio, s0, s1.
SIGMA -> sg0,sg1,sg2,sg3
X' W X -> hs0,hs1,hs2,hs3
X' W Z -> xwy
*/
/* trevor fixed this 4/19/88
* Note: sbart, i.e. stxwx() and sslvrg() {mostly, not always!}, use
* the square of the weights; the following rectifies that */
for (i = 0; i < *n; ++i)
if (ws[i] > 0.)
ws[i] = sqrt(ws[i]);
if (*isetup == 0) {
/* SIGMA[i,j] := Int B''(i,t) B''(j,t) dt {B(k,.) = k-th B-spline} */
sgram_(sg0, sg1, sg2, sg3, knot, nk);
stxwx_(xs, ys, ws, n,
knot, nk,
xwy,
hs0, hs1, hs2, hs3);
/* Compute ratio := tr(X' W X) / tr(SIGMA) */
t1 = t2 = 0.;
for (i = 3 - 1; i < (*nk - 3); ++i) {
t1 += hs0[i];
t2 += sg0[i];
}
ratio = t1 / t2;
*isetup = 1;
}
/* Compute estimate */
if (*ispar == 1) { /* Value of spar supplied */
*lspar = ratio * pow(16.0, (*spar * 6.0 - 2.0));
sslvrg_(penalt, dofoff, xs, ys, ws, ssw, n,
knot, nk,
coef, sz, lev, crit, icrit, lspar, xwy,
hs0, hs1, hs2, hs3,
sg0, sg1, sg2, sg3, abd,
p1ip, p2ip, ld4, ldnk, ier);
/* got through check 2 */
return 0;
}
/* ELSE ---- spar not supplied --> compute it ! ---------------------------
Use Forsythe Malcom and Moler routine to MINIMIZE criterion
f denotes the value of the criterion
an approximation x to the point where f attains a minimum on
the interval (ax,bx) is determined.
*/
ax = *lspar;
bx = *uspar;
/* INPUT
ax left endpoint of initial interval
bx right endpoint of initial interval
f function subprogram which evaluates f(x) for any x
in the interval (ax,bx)
tol desired length of the interval of uncertainty of the final
result ( >= 0 )
OUTPUT
fmin abcissa approximating the point where f attains a minimum
*/
/*
The method used is a combination of golden section search and
successive parabolic interpolation. convergence is never much slower
than that for a fibonacci search. if f has a continuous second
derivative which is positive at the minimum (which is not at ax or
bx), then convergence is superlinear, and usually of the order of
about 1.324....
the function f is never evaluated at two points closer together
than eps*abs(fmin) + (tol/3), where eps is approximately the square
root of the relative machine precision. if f is a unimodal
function and the computed values of f are always unimodal when
separated by at least eps*abs(x) + (tol/3), then fmin approximates
the abcissa of the global minimum of f on the interval ax,bx with
an error less than 3*eps*abs(fmin) + tol. if f is not unimodal,
then fmin may approximate a local, but perhaps non-global, minimum to
the same accuracy.
this function subprogram is a slightly modified version of the
algol 60 procedure localmin given in richard brent, algorithms for
minimization without derivatives, prentice - hall, inc. (1973).
Double a,b,c,d,e,eps,xm,p,q,r,tol1,tol2,u,v,w
Double fu,fv,fw,fx,x
*/
/* eps is approximately the square root of the relative machine
precision.
- eps = 1e0
- 10 eps = eps/2e0
- tol1 = 1e0 + eps
- if (tol1 > 1e0) go to 10
- eps = sqrt(eps)
R Version <= 1.3.x had
eps = .000244 ( = sqrt(5.954 e-8) )
-- now eps is passed as argument
*/
/* initialization */
maxit = *iter;
*iter = 0;
a = ax;
b = bx;
v = a + c_Gold * (b - a);
w = v;
x = v;
e = 0.;
*spar = x;
*lspar = ratio * pow(16.0, (*spar * 6.0 - 2.0));
sslvrg_(penalt, dofoff, xs, ys, ws, ssw, n,
knot, nk,
coef, sz, lev, crit, icrit, lspar, xwy,
hs0, hs1, hs2, hs3,
sg0, sg1, sg2, sg3, abd,
p1ip, p2ip, ld4, ldnk, ier);
fx = *crit;
fv = fx;
fw = fx;
/* main loop
--------- */
while(*ier == 0) { /* L20: */
if (m->control_pressed) { return 0; }
xm = (a + b) * .5;
tol1 = *eps * fabs(x) + *tol / 3.;
tol2 = tol1 * 2.;
++(*iter);
/* Check the (somewhat peculiar) stopping criterion: note that
the RHS is negative as long as the interval [a,b] is not small:*/
if (fabs(x - xm) <= tol2 - (b - a) * .5 || *iter > maxit)
goto L_End;
/* is golden-section necessary */
if (fabs(e) <= tol1 ||
/* if had Inf then go to golden-section */
fx >= BIG_f || fv >= BIG_f || fw >= BIG_f) goto L_GoldenSect;
/* Fit Parabola */
r = (x - w) * (fx - fv);
q = (x - v) * (fx - fw);
p = (x - v) * q - (x - w) * r;
q = (q - r) * 2.;
if (q > 0.)
p = -p;
q = fabs(q);
r = e;
e = d;
/* is parabola acceptable? Otherwise do golden-section */
if (fabs(p) >= fabs(.5 * q * r) ||
q == 0.)
/* above line added by BDR;
* [the abs(.) >= abs() = 0 should have branched..]
* in FTN: COMMON above ensures q is NOT a register variable */
goto L_GoldenSect;
if (p <= q * (a - x) ||
p >= q * (b - x)) goto L_GoldenSect;
/* Parabolic Interpolation step */
d = p / q;
u = x + d;
/* f must not be evaluated too close to ax or bx */
if ((u - a < tol2 || b - u < tol2)) {
d = abs(tol1) * sgn(xm - x);
}
goto L50;
/*------*/
L_GoldenSect: /* a golden-section step */
if (x >= xm) e = a - x;
else/* x < xm*/ e = b - x;
d = c_Gold * e;
L50:
u = x + ((fabs(d) >= tol1) ? d : (abs(tol1)*sgn(d)));
/* tol1 check : f must not be evaluated too close to x */
*spar = u;
*lspar = ratio * pow(16.0, (*spar * 6.0 - 2.0));
sslvrg_(penalt, dofoff, xs, ys, ws, ssw, n,
knot, nk,
coef, sz, lev, crit, icrit, lspar, xwy,
hs0, hs1, hs2, hs3,
sg0, sg1, sg2, sg3, abd,
p1ip, p2ip, ld4, ldnk, ier);
fu = *crit;
if(isnan(fu)) {
fu = 2. * BIG_f;
}
/* update a, b, v, w, and x */
if (fu <= fx) {
if (u >= x) a = x; else b = x;
v = w; fv = fw;
w = x; fw = fx;
x = u; fx = fu;
}
else {
if (u < x) a = u; else b = u;
if (fu <= fw || w == x) { /* L70: */
v = w; fv = fw;
w = u; fw = fu;
} else if (fu <= fv || v == x || v == w) { /* L80: */
v = u; fv = fu;
}
}
}/* end main loop -- goto L20; */
L_End:
*spar = x;
*crit = fx;
//free memory
delete [] xwy;
delete [] hs0;
delete [] hs1;
delete [] hs2;
delete [] hs3;
delete [] sg0;
delete [] sg1;
delete [] sg2;
delete [] sg3;
delete [] abd;
delete [] p1ip;
delete [] p2ip;
return 0;
/* sbart */
}catch(exception& e) {
m->errorOut(e, "Spline", "sbart");
exit(1);
}
}
/***********************************************************/
|