File: metrolognormal.cpp

package info (click to toggle)
mothur 1.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 13,684 kB
  • sloc: cpp: 161,854; makefile: 122; sh: 31
file content (269 lines) | stat: -rw-r--r-- 9,081 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//
//  metrolognormal.c
//  Mothur
//
//  Created by Sarah Westcott on 4/25/19.
//  Copyright © 2019 Schloss Lab. All rights reserved.
//

#include "metrolognormal.hpp"

/*constants for calculated compound Poisson lognormal*/

/***********************************************************************/
MetroLogNormal::MetroLogNormal(int fi, double sigx, double sigy, double sigS, int n, string st) : sigmaX(sigx), sigmaY(sigy), sigmaS(sigS), nIters(n), outFileStub(st), fitIters(fi), DiversityCalculator(false) {}
/***********************************************************************/


#ifdef USE_GSL
/***********************************************************************/
double nLogLikelihood1(const gsl_vector * x, void * params)
{
    MothurOut* m = MothurOut::getInstance();
    try {
        double dMDash  = gsl_vector_get(x,0), dV = gsl_vector_get(x,1);
        int    nS = (int) floor(gsl_vector_get(x, 2));
        t_Data *ptData = (t_Data *) params;
        int    i       = 0;
        double dLogL   = 0.0;
        
        DiversityUtils dutils("metroln");
        
        for(i = 0; i < ptData->nNA; i++){
            
            if (m->getControl_pressed()) { break; }
            
            double dLogP = 0.0;
            int    nA    = ptData->aanAbund[i][0];
            
            if(nA < 100){
                dLogP = dutils.logLikelihoodQuad(nA, dMDash, dV);
            }
            else{
                dLogP = dutils.logLikelihoodRampal(nA, dMDash, dV);
            }
            
            dLogL += ((double) ptData->aanAbund[i][1])*dLogP;
            
            dLogL -= gsl_sf_lnfact(ptData->aanAbund[i][1]);
        }
        
        dLogL += (nS - ptData->nL)*dutils.logLikelihoodQuad(0, dMDash, dV);
        
        dLogL -= gsl_sf_lnfact(nS - ptData->nL);
        
        dLogL += gsl_sf_lnfact(nS);
        
        /*return*/
        return -dLogL;
    }catch(exception& e) {
        m->errorOut(e, "MetroLogNormal", "nLogLikelihood1");
        exit(1);
    }
}
/***********************************************************************/
double negLogLikelihood1(double dMDash, double dV, int nS, void * params)
{
    MothurOut* m = MothurOut::getInstance();
    try {
        t_Data *ptData = (t_Data *) params;
        int    i       = 0;
        double dLog0 = 0.0, dLogL   = 0.0;
        
        DiversityUtils dutils("metroln");
        
        for(i = 0; i < ptData->nNA; i++){
            
            if (m->getControl_pressed()) { break; }
            
            double dLogP = 0.0;
            int    nA    = ptData->aanAbund[i][0];
            
            if(nA < 100){
                dLogP = dutils.logLikelihoodQuad(nA, dMDash, dV);
            }
            else{
                dLogP = dutils.logLikelihoodRampal(nA, dMDash, dV);
            }
            
            dLogL += ((double) ptData->aanAbund[i][1])*dLogP;
            
            dLogL -= gsl_sf_lnfact(ptData->aanAbund[i][1]);
        }
        
        dLog0     = dutils.logLikelihoodQuad(0, dMDash, dV);
        
        if(nS > ptData->nL){
            dLogL += (nS - ptData->nL)*dLog0;
        }
        
        dLogL -= gsl_sf_lnfact(nS - ptData->nL);
        
        dLogL += gsl_sf_lnfact(nS);
    
        return -dLogL;
        
    }catch(exception& e) {
        m->errorOut(e, "MetroLogNormal", "negLogLikelihood1");
        exit(1);
    }
}
/***********************************************************************/
void* metropolis1 (void * pvInitMetro) {
    MothurOut* m = MothurOut::getInstance();
    try {
        t_MetroInit *ptMetroInit  = (t_MetroInit *) pvInitMetro;
        gsl_vector  *ptX          = ptMetroInit->ptX;
        t_Data      *ptData       = ptMetroInit->ptData;
        t_Params    *ptParams     = ptMetroInit->ptParams;
        gsl_vector  *ptXDash      = gsl_vector_alloc(3); /*proposal*/
        
        const gsl_rng_type *T;
        gsl_rng            *ptGSLRNG;
        
        int nS = 0, nSDash = 0,nIter = 0;
        double dRand = 0.0, dNLL = 0.0;
        void   *pvRet = nullptr;
        double dM = 0.0, dV = 0.0;
        double dMDash = 0.0, dVDash = 0.0;
        double dXDash = 0.0, dX = 0.0;
        
        /*set up random number generator*/
        T        = gsl_rng_default;
        ptGSLRNG = gsl_rng_alloc (T);
        
        nS = (int) floor(gsl_vector_get(ptX,2));
        
        dNLL = negLogLikelihood1(gsl_vector_get(ptX,0), gsl_vector_get(ptX,1), nS,(void*) ptData);
        
        dM = gsl_vector_get(ptX,0); dV = gsl_vector_get(ptX,1);
        gsl_vector_set(ptX,0,dM + 0.5*dV);
        
        string filename = ptParams->szOutFileStub + "_" + toString(ptMetroInit->nThread) + ".sample";
        
        ofstream out; Utils util; util.openOutputFile(filename, out);
        out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
        
        /*seed random number generator*/
        gsl_rng_set(ptGSLRNG, ptMetroInit->lSeed);
        
        DiversityUtils dutils("metroln");
        
        /*now perform simple Metropolis algorithm*/
        while(nIter < ptParams->nIter){
            double dA = 0.0, dNLLDash = 0.0;
            
            if (m->getControl_pressed()) { break; }
            
            dutils.getProposal(ptGSLRNG, ptXDash, ptX, &nSDash, nS,ptParams);
            
            dXDash =  gsl_vector_get(ptXDash,0); dVDash = gsl_vector_get(ptXDash,1);
            dMDash =  dXDash - 0.5*dVDash;
            dNLLDash = negLogLikelihood1(dMDash, dVDash, nSDash, (void*) ptData);
            
            dA = exp(dNLL - dNLLDash);
            if(dA > 1.0){
                dA = 1.0;
            }
            
            dRand = gsl_rng_uniform(ptGSLRNG);
            
            if(dRand < dA){
                ptMetroInit->nAccepted++;
                gsl_vector_memcpy(ptX, ptXDash);
                nS = nSDash;
                dNLL = dNLLDash;
            }
            
            if(nIter % 10 == 0){
                dX =  gsl_vector_get(ptX,0); dV = gsl_vector_get(ptX,1);
                dM =  dX - 0.5*dV;
                
                out << nIter << "," << dM << "," << dV << "," << nS << "," << dNLL << endl;
                
            }
            
            nIter++;
        }
        out.close();
        
        /*free up allocated memory*/
        gsl_vector_free(ptXDash);
        gsl_rng_free(ptGSLRNG);
        
        return pvRet;

    }catch(exception& e) {
        m->errorOut(e, "MetroLogNormal", "metropolis1");
        exit(1);
    }
}
#endif
/***********************************************************************/
vector<string> MetroLogNormal::getValues(SAbundVector* rank){
    try {
        
        t_Params tParams; tParams.nIter = nIters; tParams.dSigmaX = sigmaX; tParams.dSigmaY = sigmaY; tParams.dSigmaS = sigmaS; tParams.szOutFileStub = outFileStub; tParams.lSeed = m->getRandomSeed();
        t_Data   tData;
        
        int bestSample = 0;
        
#ifdef USE_GSL
        
        DiversityUtils dutils("metroln");
        
        dutils.loadAbundance(&tData, rank);

        gsl_vector* ptX = gsl_vector_alloc(3);
        
        gsl_rng_env_setup();

        gsl_set_error_handler_off();

        dutils.loadAbundance(&tData, rank);
        
        int sampled = rank->getNumSeqs(); //nj
        int numOTUs = rank->getNumBins(); //nl

        gsl_vector_set(ptX, 0, 1.0); //INIT_M_DASH
        gsl_vector_set(ptX, 1, 1.0); //INIT_V
        gsl_vector_set(ptX, 2, numOTUs*2);

        double chaoResult = dutils.chao(&tData);
        m->mothurOut("\nMetroLogNormal - D = " + toString(numOTUs) + " L = " + toString(sampled) +  " Chao = " + toString(chaoResult) +  "\n");

        dutils.minimiseSimplex(ptX, 3, (void*) &tData, &nLogLikelihood1, 1.0, 1.0e-2, 100000);

        vector<double> parameterResults = dutils.outputResults(ptX, &tData, &nLogLikelihood1);
        
        if(tParams.nIter > 0){
            
            vector<double> acceptanceRates = dutils.mcmc(&tParams, &tData, ptX, &metropolis1); //sigmaX 0.1
            
            if (fitIters != 0) { bestSample = dutils.fitSigma(acceptanceRates, parameterResults, fitIters, &tParams, &tData, ptX, &metropolis1); }
            
        }
        
        
        /*free up allocated memory*/
        gsl_vector_free(ptX);
        
        dutils.freeAbundance(&tData);
        
#endif
        
        outputs.push_back(outFileStub + "_" + toString(bestSample) + ".sample");
        if (bestSample == 0) {  outputs.push_back(outFileStub + "_1.sample"); outputs.push_back(outFileStub + "_2.sample");  }
        else if (bestSample == 1) {  outputs.push_back(outFileStub + "_0.sample"); outputs.push_back(outFileStub + "_2.sample");  }
        else if (bestSample == 2) {  outputs.push_back(outFileStub + "_0.sample"); outputs.push_back(outFileStub + "_1.sample");  }
        
        return outputs;
    }
    catch(exception& e) {
        m->errorOut(e, "MetroLogNormal", "getValues");
        exit(1);
    }
}
/***********************************************************************/