1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
/*
* bayesian.cpp
* Mothur
*
* Created by westcott on 11/3/09.
* Copyright 2009 Schloss Lab. All rights reserved.
*
*/
#include "bayesian.h"
#include "kmer.hpp"
#include "phylosummary.h"
/**************************************************************************************************/
Bayesian::Bayesian(string txfile, string tempFile, string method, int ksize, int cutoff, int i, int tid, bool f, bool sh, string version) :
Classify(), kmerSize(ksize), confidenceThreshold(cutoff), iters(i) {
try {
threadID = tid;
flip = f;
shortcuts = sh;
string baseName = tempFile;
string baseTName = txfile;
Utils util;
/************calculate the probablity that each word will be in a specific taxonomy*************/
string tfileroot = util.getFullPathName(baseTName.substr(0,baseTName.find_last_of(".")+1));
string tempfileroot = util.getRootName(util.getSimpleName(baseName));
string phyloTreeName = tfileroot + "tree.train";
string phyloTreeSumName = tfileroot + "tree.sum";
string probFileName = tfileroot + tempfileroot + char('0'+ kmerSize) + "mer.prob";
string probFileName2 = tfileroot + tempfileroot + char('0'+ kmerSize) + "mer.numNonZero";
ofstream out;
ofstream out2;
vector<ifstream*> files;
ifstream* phyloTreeTest = new ifstream(phyloTreeName.c_str()); files.push_back(phyloTreeTest);
ifstream* probFileTest2 = new ifstream(probFileName2.c_str()); files.push_back(probFileTest2);
ifstream* probFileTest = new ifstream(probFileName.c_str()); files.push_back(probFileTest);
ifstream* probFileTest3 = new ifstream(phyloTreeSumName.c_str()); files.push_back(probFileTest3);
long start = time(nullptr);
//if they are there make sure they were created after this release date
bool FilesGood = false;
if(probFileTest && probFileTest2 && phyloTreeTest && probFileTest3){ FilesGood = checkReleaseDate(files, version); }
if(probFileTest && probFileTest2 && phyloTreeTest && probFileTest3 && FilesGood){
m->mothurOut("Reading template taxonomy... "); cout.flush();
phyloTree = new PhyloTree(*phyloTreeTest, phyloTreeName);
maxLevel = phyloTree->getMaxLevel();
m->mothurOut("DONE.\n");
genusNodes = phyloTree->getGenusNodes();
genusTotals = phyloTree->getGenusTotals();
m->mothurOut("Reading template probabilities... "); cout.flush();
readProbFile(*probFileTest, *probFileTest2, probFileName, probFileName2);
}else{
//create search database and names vector
generateDatabaseAndNames(txfile, tempFile, method, ksize, 0.0, 0.0, 0.0, 0.0, version);
//prevents errors caused by creating shortcut files if you had an error in the sanity check.
if (m->getControl_pressed()) { util.mothurRemove(phyloTreeName); util.mothurRemove(probFileName); util.mothurRemove(probFileName2); }
else{
genusNodes = phyloTree->getGenusNodes();
genusTotals = phyloTree->getGenusTotals();
m->mothurOut("Calculating template taxonomy tree... "); cout.flush();
phyloTree->printTreeNodes(phyloTreeName);
m->mothurOut("DONE.\n");
m->mothurOut("Calculating template probabilities... "); cout.flush();
numKmers = database->getMaxKmer() + 1;
//initialze probabilities
wordGenusProb.resize(numKmers);
for (int j = 0; j < numKmers; j++) { diffPair tempDiffPair; WordPairDiffArr.push_back(tempDiffPair); }
for (int j = 0; j < wordGenusProb.size(); j++) { wordGenusProb[j].resize(genusNodes.size(), 0.0); }
ofstream out; ofstream out2;
if (shortcuts) {
util.openOutputFile(probFileName, out);
//output mothur version
out << "#" << version << endl;
out << numKmers << endl;
util.openOutputFile(probFileName2, out2);
//output mothur version
out2 << "#" << version << endl;
}
//for each word
for (int i = 0; i < numKmers; i++) {
//m->mothurOut("[DEBUG]: kmer = " + toString(i) + "\n");
if (m->getControl_pressed()) { break; }
if (shortcuts) { out << i << '\t'; }
vector<int> seqsWithWordi = database->getSequencesWithKmer(i);
//for each sequence with that word
vector<int> count; count.resize(genusNodes.size(), 0);
for (int j = 0; j < seqsWithWordi.size(); j++) {
int temp = phyloTree->getGenusIndex(names[seqsWithWordi[j]]);
count[temp]++; //increment count of seq in this genus who have this word
}
//probabilityInTemplate = (# of seqs with that word in template + 0.50) / (total number of seqs in template + 1);
float probabilityInTemplate = (seqsWithWordi.size() + 0.50) / (float) (names.size() + 1);
diffPair tempProb(log(probabilityInTemplate), 0.0);
WordPairDiffArr[i] = tempProb;
int numNotZero = 0;
for (int k = 0; k < genusNodes.size(); k++) {
//probabilityInThisTaxonomy = (# of seqs with that word in this taxonomy + probabilityInTemplate) / (total number of seqs in this taxonomy + 1);
wordGenusProb[i][k] = log((count[k] + probabilityInTemplate) / (float) (genusTotals[k] + 1));
if (count[k] != 0) {
if (shortcuts) { out << k << '\t' << wordGenusProb[i][k] << '\t' ; }
numNotZero++;
}
}
if (shortcuts) {
out << endl;
out2 << probabilityInTemplate << '\t' << numNotZero << '\t' << log(probabilityInTemplate) << endl;
}
}
if (shortcuts) { out.close(); out2.close(); }
//read in new phylotree with less info. - its faster
ifstream phyloTreeTest(phyloTreeName.c_str());
delete phyloTree;
phyloTree = new PhyloTree(phyloTreeTest, phyloTreeName);
maxLevel = phyloTree->getMaxLevel();
}
}
if (m->getDebug()) { m->mothurOut("[DEBUG]: about to generateWordPairDiffArr\n"); }
generateWordPairDiffArr();
if (m->getDebug()) { m->mothurOut("[DEBUG]: done generateWordPairDiffArr\n"); }
for (int i = 0; i < files.size(); i++) { delete files[i]; }
m->mothurOut("DONE.\n");
m->mothurOut("It took " + toString(time(nullptr) - start) + " seconds get probabilities.\n");
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "Bayesian");
exit(1);
}
}
/**************************************************************************************************/
Bayesian::~Bayesian() {
try {
if (phyloTree != nullptr) { delete phyloTree; }
if (database != nullptr) { delete database; }
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "~Bayesian");
exit(1);
}
}
/**************************************************************************************************/
string Bayesian::getTaxonomy(Sequence* seq, string& simpleTax, bool& flipped) {
try {
string tax = "";
simpleTax = "";
Kmer kmer(kmerSize);
flipped = false;
//get words contained in query
//getKmerString returns a string where the index in the string is hte kmer number
//and the character at that index can be converted to be the number of times that kmer was seen
string queryKmerString = kmer.getKmerString(seq->getUnaligned());
vector<int> queryKmers;
for (int i = 0; i < queryKmerString.length()-1; i++) { // the -1 is to ignore any kmer with an N in it
if (queryKmerString[i] != '!') { //this kmer is in the query
queryKmers.push_back(i);
}
}
//if user wants to test reverse compliment and its reversed use that instead
if (flip) {
if (isReversed(queryKmers)) {
flipped = true;
seq->reverseComplement();
queryKmerString = kmer.getKmerString(seq->getUnaligned());
queryKmers.clear();
for (int i = 0; i < queryKmerString.length()-1; i++) { // the -1 is to ignore any kmer with an N in it
if (queryKmerString[i] != '!') { //this kmer is in the query
queryKmers.push_back(i);
}
}
}
}
if (queryKmers.size() == 0) { m->mothurOut(seq->getName() + " is bad. It has no kmers of length " + toString(kmerSize) + ".\n"); simpleTax = "unknown;"; return "unknown;"; }
int index = getMostProbableTaxonomy(queryKmers);
if (m->getControl_pressed()) { return tax; }
//bootstrap - to set confidenceScore
int numToSelect = queryKmers.size() / 8;
if (m->getDebug()) { m->mothurOut(seq->getName() + "\t"); }
tax = bootstrapResults(queryKmers, index, numToSelect, simpleTax);
if (m->getDebug()) { m->mothurOut("\n"); }
return tax;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "getTaxonomy");
exit(1);
}
}
/**************************************************************************************************/
string Bayesian::bootstrapResults(vector<int> kmers, int tax, int numToSelect, string& simpleTax) {
try {
map<int, int> confidenceScores;
//initialize confidences to 0
int seqIndex = tax;
TaxNode seq = phyloTree->get(tax);
confidenceScores[tax] = 0;
while (seq.level != 0) { //while you are not at the root
seqIndex = seq.parent;
confidenceScores[seqIndex] = 0;
seq = phyloTree->get(seq.parent);
}
map<int, int>::iterator itBoot;
map<int, int>::iterator itBoot2;
map<int, int>::iterator itConvert;
int numKmers = kmers.size()-1;
Utils util;
for (int i = 0; i < iters; i++) {
if (m->getControl_pressed()) { return "control"; }
vector<int> temp;
for (int j = 0; j < numToSelect; j++) {
int index = util.getRandomIndex(numKmers);
//add word to temp
temp.push_back(kmers[index]);
}
//get taxonomy
int newTax = getMostProbableTaxonomy(temp);
//int newTax = 1;
TaxNode taxonomyTemp = phyloTree->get(newTax);
//add to confidence results
while (taxonomyTemp.level != 0) { //while you are not at the root
itBoot2 = confidenceScores.find(newTax); //is this a classification we already have a count on
if (itBoot2 != confidenceScores.end()) { //this is a classification we need a confidence for
(itBoot2->second)++;
}
newTax = taxonomyTemp.parent;
taxonomyTemp = phyloTree->get(newTax);
}
}
string confidenceTax = "";
simpleTax = "";
int seqTaxIndex = tax;
TaxNode seqTax = phyloTree->get(tax);
while (seqTax.level != 0) { //while you are not at the root
itBoot2 = confidenceScores.find(seqTaxIndex); //is this a classification we already have a count on
int confidence = 0;
if (itBoot2 != confidenceScores.end()) { //already in confidence scores
confidence = itBoot2->second;
}
if (m->getDebug()) { m->mothurOut(seqTax.name + "(" + toString(((confidence/(float)iters) * 100)) + ");"); }
if (((confidence/(float)iters) * 100) >= confidenceThreshold) {
confidenceTax = seqTax.name + "(" + toString(((confidence/(float)iters) * 100)) + ");" + confidenceTax;
simpleTax = seqTax.name + ";" + simpleTax;
}
seqTaxIndex = seqTax.parent;
seqTax = phyloTree->get(seqTax.parent);
}
if (confidenceTax == "") { confidenceTax = "unknown;"; simpleTax = "unknown;"; }
return confidenceTax;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "bootstrapResults");
exit(1);
}
}
/**************************************************************************************************/
int Bayesian::getMostProbableTaxonomy(vector<int> queryKmer) {
try {
int indexofGenus = 0;
double maxProbability = -1000000.0;
//find taxonomy with highest probability that this sequence is from it
for (int k = 0; k < genusNodes.size(); k++) {
//for each taxonomy calc its probability
double prob = 0.0000;
for (int i = 0; i < queryKmer.size(); i++) { prob += wordGenusProb[queryKmer[i]][k]; }
//is this the taxonomy with the greatest probability?
if (prob > maxProbability) {
indexofGenus = genusNodes[k];
maxProbability = prob;
}
}
return indexofGenus;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "getMostProbableTaxonomy");
exit(1);
}
}
//********************************************************************************************************************
//if it is more probable that the reverse compliment kmers are in the template, then we assume the sequence is reversed.
bool Bayesian::isReversed(vector<int>& queryKmers){
try{
bool reversed = false;
float prob = 0;
float reverseProb = 0;
for (int i = 0; i < queryKmers.size(); i++){
int kmer = queryKmers[i];
if (kmer >= 0){
prob += WordPairDiffArr[kmer].prob;
reverseProb += WordPairDiffArr[kmer].reverseProb;
}
}
if (reverseProb > prob){ reversed = true; }
return reversed;
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "isReversed");
exit(1);
}
}
//********************************************************************************************************************
int Bayesian::generateWordPairDiffArr(){
try{
Kmer kmer(kmerSize);
for (int i = 0; i < WordPairDiffArr.size(); i++) {
int reversedWord = kmer.getReverseKmerNumber(i);
WordPairDiffArr[i].reverseProb = WordPairDiffArr[reversedWord].prob;
}
return 0;
}catch(exception& e) {
m->errorOut(e, "Bayesian", "generateWordPairDiffArr");
exit(1);
}
}
/**************************************************************************************************/
void Bayesian::readProbFile(ifstream& in, ifstream& inNum, string inName, string inNumName) {
try{
Utils util;
//read version
string line = util.getline(in); gobble(in);
in >> numKmers; gobble(in);
//initialze probabilities
wordGenusProb.resize(numKmers);
for (int j = 0; j < wordGenusProb.size(); j++) { wordGenusProb[j].resize(genusNodes.size()); }
int kmer, name, count; count = 0;
vector<int> num; num.resize(numKmers);
float prob;
vector<float> zeroCountProb; zeroCountProb.resize(numKmers);
for (int j = 0; j < numKmers; j++) { diffPair tempDiffPair; WordPairDiffArr.push_back(tempDiffPair); }
//read version
string line2 = util.getline(inNum); gobble(inNum);
float probTemp;
while (inNum) {
inNum >> zeroCountProb[count] >> num[count] >> probTemp;
WordPairDiffArr[count].prob = probTemp;
count++;
gobble(inNum);
if (m->getDebug()) { m->mothurOut("[DEBUG]: " + toString(zeroCountProb[count]) + '\t' + toString(num[count]) + '\t' + toString(numKmers) + "\n"); }
}
inNum.close();
while(in) {
in >> kmer;
//set them all to zero value
for (int i = 0; i < genusNodes.size(); i++) {
wordGenusProb[kmer][i] = log(zeroCountProb[kmer] / (float) (genusTotals[i]+1));
}
//get probs for nonzero values
for (int i = 0; i < num[kmer]; i++) {
in >> name >> prob;
wordGenusProb[kmer][name] = prob;
if (m->getDebug()) { m->mothurOut("[DEBUG]: " + toString(name) + '\t' + toString(prob) + '\t' + toString(kmer) + "\n"); }
}
gobble(in);
}
in.close();
}
catch(exception& e) {
m->errorOut(e, "Bayesian", "readProbFile");
exit(1);
}
}
/**************************************************************************************************/
|